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Abstract

This  chapter  addresses  the  finite  element  modeling  methodologies  intended  for
performance evaluation, analysis, and design of viscoelastic systems. The mathemati‐
cal models widely used to represent the frequency and temperature dependent behavior
of viscoelastic materials are also considered, namely the complex modulus approach,
the fractional derivative model, the Golla-Hughes-McTavish (GHM) model, and the
anelastic displacement fields (ADFs) model. The straightforward strategies to integrate
the viscoelastic effects into finite element matrices of structural systems such as three-
layer sandwich plates, intended for the modeling of medium and large-scale engineer‐
ing  structures,  are  presented.  In  the  same  context,  emphasis  is  placed  on  the
condensation methods for the reduction of the order of the finite element matrices to
perform frequency-response functions, complex eigenvalue problem, and time domain
analyses. Based on the fact that for viscoelastic materials subjected to dynamic loadings
superimposed on static preloads, the classical modeling assuming isothermal condi‐
tions can lead to poor designs, since the energy dissipated within the volume of the
material leads to temperature rises, an experimental investigation of the self-heating
phenomenon is also addressed.

Keywords: viscoelastic damping, finite element, reduction, self-heating phenomenon

1. Introduction

It is well known that viscoelastic materials can be used with advantage to mitigate undesira‐
ble vibrations [1, 2] and, consequently, to increase the fatigue life of engineering structures to
avoid catastrophes [3, 4]. As a result, they have been applied in a number of engineering
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applications such as robots, automobiles, airplanes, communication satellites, tall buildings,
and space structures [5, 6].

However, one of the major difficulties regarding the use of viscoelastic materials for vibration
mitigation is the fact that their mechanical properties vary strongly with environment and
operational factors for which, the excitation frequency and temperature are usually considered
to be the most relevant parameters [1]. This is a reason for which in the last decades, a number
of viscoelastic models exist in the open literature to be used in conjunction with the finite
element (FE) discretization procedure. Among those viscoelastic models, the fractional
derivative model (FDM) is a more complex relationship between the stress and strain than the
standard linear viscoelastic model [1], which is based on the use of fractional derivatives [7–
9] in order to reduce the number of terms required by the generalized standard viscoelastic
model. The so-called Golla-Hughes-McTavish (GHM) model initially proposed by Golla and
Hughes [10] is based on the use of internal variables to represent the dissipation mechanism
of viscoelastic materials. In the Laplace domain, the resulting GHM complex modulus function
is a series of mini-oscillators terms similar to that of a damped single degree of freedom system.
McTavish and Hughes [11] have demonstrated later the FE modeling strategy of a truss
structure incorporating a structural viscoelastic damper by using the GHM model. Another
viscoelastic model normally used is the so-called anelastic displacement field (ADF) model
suggested by Lesieutre and his co-authors [12–14]. The strategy is the use of anelastic fields to
represent the dissipative effects of viscoelastic materials similar to the GHM model. However,
as opposed to the GHM, the ADF model can be formulated directly in the time domain.

For large FE models of real-world engineering structures incorporating viscoelastic materials
typically composed by many thousands of degrees of freedom (DOFs), the inclusion of internal
variables by using ADF or GHM models leads to global systems of equations of motion whose
numbers of DOFs largely exceeds the order of the associated undamped system. As a result,
if such evaluations are made based on response computations performed on the full finite
element matrices, the computational time required to obtain the solutions is high [15–18]. It
must be also reminded that if the interest is to perform active control techniques by using the
resulting viscoelastic models, the dimension is a typical problem and must be not disregarded
[19–23]. Thus, it is interesting to perform model condensation techniques especially adapted
to viscoelastic systems with the aim of reducing the computational burden [24, 25].

The simplest model reduction method very useful to reduce static systems is the well-known
Guyan static method [19], where the condensation is performed by separating the physical
coordinates of the static system in master and slaves coordinates. However, as discussed in
[20], this strategy is not adapted to viscoelastic systems [23], even when the reduced coordi‐
nates are a subset of the initial physical coordinates. In this case, the internal balancing method
proposed by Moore [24] is more interesting to be used, but leads to reduced coordinates that
are not necessarily a subset of the original physical coordinates. In order to circumvent this
problem, Yae and Inman [19] have proposed a modified internal balancing method adapted
to viscoelastic systems.

The other very simple reduction strategy, is the so-called modal reduction method [20], where
in the construction of the reduction basis it is considered only the most relevant eigenvectors
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characterizing the dynamic behavior of the system in the frequency band of interest. However,
it is shown here that since the viscoelastic stiffness matrix is frequency- and temperature-
dependent, this strategy must be modified to generate a constant reduction basis formed by
the static residues associated with the external loads and the viscoelastic damping forces.
Clearly, the dimension of the reduced viscoelastic system of matrices corresponds to the
number of eigenvectors and the static residues kept in the truncated series to form the
reduction basis [18].

A natural extension of the modeling capability of engineering systems incorporating a
viscoelastic damping device is the optimization aiming the reduction of cost and/or maximi‐
zation of its performance. In the quest for optimization, the engineers are frequently faced with
large FE models of real-world systems that require a great number of evaluations of the cost
functions involved [19]. Consequently, if such computations are performed based on the full
FE matrices, the time required to obtain the dynamic responses may be high. Here, a general
strategy to construct a constant reduction basis for viscoelastic systems is suggested, composed
by the eigenmodes of the associated conservative viscoelastic behavior enriched by the static
residues associated with the external loadings and the viscoelastic damping forces. Also, the
reduction basis can be easily extended to the case of robust condensation of viscoelastic systems
subjected to parametric uncertainties if the static residues due to the small modifications are
included into the basis. This robust condensation strategy in the frequency domain is a very
interesting tool to be integrated into numerical optimization and/or model updating processes
[25].

Another problem regarding the practical application of a viscoelastic damper to mitigate
unwanted vibrations is the fact that the assumption of assuming a constant and uniform
temperature distribution within the viscoelastic material can lead to a poor design and to
unexpected damping performance of it due to the self-heating phenomenon [26–29]. As a
result, it is expected that the temperature changes induced by the self-heating when the
viscoelastic damper is subjected to cyclic excitations have a strong influence on the stiffness
degradation and damping capacity of it. Moreover, in applications such as engine mounts, it
must be considered the effects of the cyclic loadings superimposed on the static strains in the
self-heating modeling procedure in which the prediction of the temperature evolution inside
the viscoelastic material volume is an interesting thermoviscoelastic problem to be solved.
Here, the influence of the cyclic loading superimposed on static preloads on the self-heating
phenomenon is investigate numerically and experimentally for a three-dimensional transla‐
tional viscoelastic mount used for vibration attenuation.

In the remainder, after the presentation of the theoretical foundations of the methodology, the
description of some numerical studies of engineering systems incorporating passive con‐
strained viscoelastic layers and discrete viscoelastic damping devices is addressed. The main
interest is to illustrate those viscoelastic models and topics described in the methodology,
intended to design and performance analyses of viscoelastically damped systems. In addition,
the results of some experimental investigations with a freely suspended plate partially treated
by passive constraining damping layer are carried out to validate the viscoelastic models and
to confirm the effectiveness of the viscoelastic materials applied as a passive control strategy.
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Finally, an experimental investigation of the self-heating phenomenon on a three-dimensional
translational viscoelastic mount subjected to dynamic loadings superimposed on static
preloads is also addressed.

2. Review of viscoelastic models

2.1. The concept of complex modulus approach

According to the linear theory of viscoelasticity [30], the complex modulus of viscoelastic
materials in the frequency domain is expressed as follows:

(1)

where G′(ω), G″(ω) and η(ω) = G″(ω)/G′(ω) designates the storage modulus, loss modulus and
loss factor, respectively. As reported by [31], these parameters can be used to characterize the
dynamic behavior of linear viscoelastic materials.

This model is adopted in the study reported herein since it enables the direct use of the data
of viscoelastic materials commonly provided by the manufacturers [1]. Within this context, in
the open literature, various mathematical models have been developed in order to represent
the material modulus function, G(ω), as summarized later in this chapter.

However, it is widely recognized that the temperature also exerts a strong influence upon the
properties of viscoelastic materials. Hence, it becomes important to account its variations in
the modeling procedures of engineering systems incorporating viscoelastic materials. Accord‐
ing to Nashif et al. [1] and Christensen [30], this can be done by making use of the frequency–
temperature superposition principle (FTSP), where the damping properties of linear viscoe‐
lastic materials as functions of frequency at various temperatures can be collapsed on a single

Figure 1. Illustration of the frequency–temperature superposition principle.
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master curve, as illustrated in Figure 1, if appropriate horizontal shifts along the frequency
axes are used. This establishes the well-known shift factor and reduced frequency concepts,
symbolically expressed by the following relations [18]:

(2)

where T is the temperature, ωr = αT(T)ω is the reduced frequency, ω is the excitation frequency,
αT(T) is the shift factor, and T0 is a reference value of temperature.

Functions G(ωr) and αT(T) can be obtained from experimental tests for specific viscoelastic
materials [1]. Drake and Soovere [32] suggest analytical expressions for the complex modulus
and shift factor for various commercially available viscoelastic materials, as functions of
reduced frequency and temperature. The following equation represents the complex modulus
for the 3M ISD112™ viscoelastic material [33], as provided by the authors:

(3)

where α(T )=10
(−3758.4×( 1

T −0.00345)−225.06×log(0.00345×T )+0.23273×(T −290)) and ωr = α(T)ω.

Figure 2 shows the curves representing the variations of the storage modulus and loss factor
as functions of the reduced frequency, as obtained from Eq. (3).

Figure 2. Master curves  and shift factor for the 3M™ ISD112 material.
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2.2. Golla-Hughes-McTavish model (GHM)

According to the developments made by Golla and Hughes [10], and McTavish and Hughes
[11], the viscoelastic material modulus function is expressed under the form:

(4)

where G0 is the static modulus, s designates the Laplace variable and G∞=G0(1 +∑i=1
N G αi) is the

higher frequency modulus.

It can be clearly seen the similarity of each NG term of the series appearing in Eq. (4) with the
transfer function of a damped single DOF system known as mini-oscillator formed by the
design variables (αi, ωi, ζi), identified for a specific viscoelastic material [20].

2.3. Anelastic displacement field model (ADF)

The ADF model, developed by Lesieutre and co-workers [12–14], is similar, in some aspects,
to the GHM model. The modulus function is represented in Laplace domain by:

(5)

where G0 is the low frequency modulus, NA is the number of anelastic displacement fields,
each of which is represented by parameters Ωi, the inverse of the characteristic relaxation time
at constant deformation, Δi is the relaxation magnitude, and G∞=G0(1 +∑i=1

N A Δi) is the higher
frequency modulus.

2.4. Fractional derivative model (FDM)

The FDM model proposed by Bagley and Torvik [7–9] can be viewed as the generalization of
the standard viscoelastic model, by the introduction of non-integer time derivatives in the
differential constitutive equation relating the stresses to strains as follows:

(6)

where σn and βm are non-integer numbers. As stated by Bagley and Torvik [7], experimental
observations have indicated that the behavior of many commercially viscoelastic materials can
be adequately modeled by retaining only one term in each of the series appearing in Eq. (6).
Through this simplified form, the modulus requires only five parameters, resulting in the
following expression:
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(7)

3. Curve fitting of material parameters

One important aspect regarding the use of GHM, ADF, and FDM models presented in
previously section is the identification of the model parameters from experimental data. In
most cases, manufacturers provide data sheets containing the material storage modulus G′
(ω, T) and loss factor η(ω, T), defined in Eq. (1), as functions of excitation frequency ω and
temperature T. Thus, it becomes necessary to express, for each model, the material modulus
expressions as complex functions by making, s = iω :

(8.a)

(8.b)

(9.a)

(9.b)

(10.a)

(10.b)

From the equations above, for each viscoelastic model, the determination of the material
parameters can be carried out by formulating a deterministic optimization problem in which
the objective function represents the difference between the experimental data points and the
corresponding model predictions. Clearly, the number of design variables depends on the
previous choice of a model order, which is assumed to be sufficient to represent the frequency-
dependent behavior in the frequency band of interest: N par

G =1 + 3NG for the GHM; N par
A =1 + 2NA

for the ADF; and N par
F =5 for the FDM.
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4. Incorporation of the viscoelastic behavior into FE models

Based on the formulation presented in the previous sections, and including external viscous
damping, the FE equations of motion in the frequency domain of a viscoelastic structure
containing N DOFs can be expressed as [18]:

(11)

where M, D, K∗ ∈ RN × N are, respectively, the mass, viscous damping, and complex stiffness
matrices. q(t) ∈ RN and f(t) ∈ RNare the vectors of displacements and external loads. y(t) ∈ Rc

and u(t) ∈ Rf are the vectors of responses external loads. b ∈ RN × f and c ∈ Rc × N are matrices,
which enable to select, among the FE DOFs, those in which the external excitations are applied
and responses are computed, respectively.

It should be emphasized that the dependency of the stiffness matrix on frequency and
temperature is a consequence of the dependency of the material moduli with respect to these
parameters as expressed by Eq. (1). Thus, by assuming harmonic excitation conditions,
f(t) = Feiωt, u(t) = Ueiωt, and steady-state harmonic responses, q(t) = Qeiωt, y(t) = Yeiωt, the following
equations in the frequency domain are obtained:

(12)

It is assumed that the model contains both elastic and viscoelastic elements. Thus, the elas‐
tic–viscoelastic correspondence principle [1] is applied leading to:

(13)

where Ke and Kv(ω, T) are the stiffness matrices associated with the elastic and viscoelastic
substructures, respectively. Also, taking into account the stress state for the specific viscoelastic
element assumed in the analysis, one of the moduli (through the relation, G(ω, T) = E(ω, T)/
2(1 + ν)) can be factored out of, Kv(ω, T )=G(ω, T )K̄ v, where K̄ v is the frequency- and temper‐
ature-independent matrix. Then, Eqs. (12) and (13) can be combined to give the following
complex receptance matrix for the viscoelastic system:

(14)

where Z (ω, T )= Ke + G(ω, T )K̄ v + iωD −ω 2M  is the complex dynamic stiffness matrix.

Clearly, the difficulty in predicting the dynamic responses for viscoelastic systems comes from
the fact that the stiffness matrix depends on frequency and temperature. As a result, one has
an eigenvalue problem that must be solved iteratively [34]. Some other procedures for dealing
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with this problem have been suggested, such as the contributions by Palmeri and Ricciardelli
[35] and by Palmeri et al. [36], where the eigenvalue problem of viscoelastic systems has been
derived in the time domain with the help of the novel concept of modal relaxation functions.
In the papers proposed by Yuan and Agrawal [37] and Wagner and Adhikari [38], an alterna‐
tive state-space approach has been proposed for the time-domain analysis of viscoelastic
structures. Others alternatives have been suggested based on the adoption of particular
representations for the frequency-dependent behavior of the viscoelastic materials [39]. Such
an approach is used in the FDM, GHM, and ADF models, which enable to transform the
equations of motion of a viscoelastic system in the time-domain into state-space forms, with
frequency-independent state matrices, at the expense of a typically high increase in the order
of the system matrices.

4.1. GHM model

Applying the Laplace Transformation to Eq. (11) and replacing G(s) by the modulus function
given by Eq. (4), the following governing equation of motion is obtained:

(15)

A series of dissipation coordinates Qi
G(i =1, …, NG) are defined as:

(16)

Upon introduction of Eq. (16) into (15), after some mathematical manipulations and back
transformation to time domain, the following coupled system of equations is obtained:

(17)

where
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where MG, DG, KG ∈ R T G xT G with TG = N(1 + NG), Kv
0 =G0K̄ v and Kv

∞=G∞
G K̄ v..

4.2. ADF model

Following the procedure outlined above for the GHM model, the equations of motion obtained
by considering the ADF model is expressed by Eq. (5) [12]:

(18)

In the ADF model the coordinates are separated into an elastic part, Qe, which is instantane‐
ously proportional to the stress, and an anelastic part, Qi

A (i =1, …, NA), that represents the
dissipation effects of the viscoelastic materials [13]:

(19)

The system of equations is adopted for describing the time-evolution of the anelastic fields:

(20)

Introducing Eq. (19) into (18), transforming the resulting equation to time domain and
combining it with Eq. (20), the following coupled system of equations is obtained:

(21)

where:
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where, MA, DA, KA ∈ R T AxT A with TA = N (1 + NA), Kv
0 =G0K̄ v and Kv

∞=G∞
AK̄ v.

4.3. FDM model

Introducing Eq. (7) into the Laplace transform of Eq. (11) and multiplying the resulting
equation by, (1 + bsβ), the following system of equations of motion is obtained:

(22)

According to Bagley and Torvik [8], the system of Eq. (22) can be written under the compact

form, ∑ j=0
J s

j

mAjQ = (1 + bs β)F , where J = m(2 + β), m is the smallest common multiple of the
denominators of the fractional terms α and β, matrices Aj are computed by direct comparison
between Eq. (22) and the compact representation:

(23)

where

5. Modal reduction methods for viscoelastic systems

It can be seen that the internal non-physical coordinates used by the GHM and ADF models
to represent the viscoelastic dissipation mechanism lead to large system of equations of motion.
Thus, it requires a high computational cost in the computation of dynamic responses of the
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viscoelastic system [18]. To develop the formulation pertaining the modal reduction method,
it is convenient to transform the Eqs. (17) and (21) into an equivalent first-order form (space-
state model) with an output equation added as follows:

(24)

where A assumes the following forms for the GHM and ADF models, respectively:

Since A is a non-symmetric matrix, the following eigenvalue problems are formulated:

(25)

where Λ is the spectral matrix composed by the complex eigenvalues, and Rr and Rl are the
modal matrices whose columns contain the right- and left-hand-side eigenvectors, respective‐

ly, normalized by the relation, Rl
T Rr = Ι. Thus, the left- and right-hand-side eigenvectors can

be separated into a structural and dissipative eigenvectors represented, respectively, by the
subscripts e and d according to the following expressions:
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(26)

The eigenvectors related to the internal variables are overdamped with a small contribution
to the dynamic behavior. As result, the state of the system can be approached by the contri‐
butions of the elastic eigenvectors, x ≈ Rrexe, so that the Eq. (24) can be expressed under the

following form [24], xe =Arxe + Bru
•

 and y = Crxe, where Ar = Rle
T ARre, Br = Rle

T B and Cr = CRre are input
and output state reduced matrices of the system.

This modal reduction technique is very simple to implement since the choice of eigenmodes
to be retained is based only on the frequency band of interest. However, for some viscoelastic
systems, where the elastic modes may be overdamped, care must be taken, and an eigenfre‐
quency analysis a priori must be performed in order to identify these eigenmodes. Also, the
main disadvantage of the reduced state-space system, intended to apply control techniques,
is that the matrices are complex. However, since all overdamped (relaxation/dissipative)
modes were neglected, all elements of  are composed of complex conjugates pairs, such that
they can be rewritten as follows:

(27)

where λi and λ̄ i are the retained elastic eigenvalues and their complex conjugates.

According to Friot and Bouc [40], to construct a real representation of the state-space system
represented by Eq. (24), one can use a state transformation matrix such as xe =T x̄e, where T is
defined as:

(28)

Thus, the real state-space system can be constructed,  and y = C̄ r x̄e, where Ār = TArT
− 1, B̄r =T Br , and C̄ r =CrT

−1.
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6. Internal balancing method

The internal balancing method is another interesting reduction method of viscoelastic systems.
However, it does not guarantee that the reduced coordinates are a subset of the original
coordinates of the system. This method is based on the controllability and observability of each
balanced state.

Based on the work by Moore [24], the balanced internal system is defined such that the
grammians are diagonal and equal. For a viscoelastic system expressed by Eq. (24), the con‐
trollability and observability grammians, denoted by Wc and W0, are defined in order to satisfy
the Lyapunov stability equations, AWc + WcAT = − BBT and ATW0 + W0A = − CTC, where the
Cholesky decomposition of matrix Wc is performed by the relation, W c = L cL c

T . Also, a
transformation matrix P is introduced, P = LcUΛ− 1/2, where Λ and U are the eigenvalues and
eigenvectors of the eigenvalue problem, L cW0L c

T , in such a way that the internal balanced
model is given as:

(29)

where Ar = P− 1AP, Br = P− 1B, Cr = CP, and xr = P− 1x.

According to the definition of an internally balanced system, Wc(P) = W0(P) = diag(σi), where
σi(1, 2, …, N) is the controllability of a state i, and N is the number of DOFs. Thus, according
to the high and small values of states, σi, the internally balanced system (29) can be partitioned
into retained states, xrr, and reduced states, xrd, as follows:

(30)

Hence, the undesirable states, xrd, must be removed by performing a simple static reduction
and retaining only the contributions of states, xrr.

7. Robust condensation strategy of viscoelastic systems

For real-world systems incorporating viscoelastic elements, it is practically impossible to
perform time and frequency analyses using the GHM, ADF or FDM models, owing to the
prohibitive computation times and storage memory required to evaluate the augmented
equations of motion. This fact motivates the use of alternatives strategies with the aim of
diminishing the model dimensions (and the computational burden, as a result), while keeping
a reasonable predictive capacity of the numerical models. This can be done based on the
assumption that the exact responses, given by the resolution of Eq. (12), can be approached by
solutions in a reduced space as follows [18]:
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(31)

where T ∈ CN × NR is the vector basis (or Ritz basis) and Qr ∈ CNR where NR ≪ N is the number
of vectors in the basis. Hence, the transfer function can be rewritten as follows:

(32)

where Zr(ω, T )=T T KeT + G(ω, T )T T K̄ vT −ω 2T T MT  is reduced dynamic stiffness matrix.

It can be seen that for viscoelastic systems, the construction of the basis is an issue, since the
stiffness matrix is frequency- and temperature-dependent. Thus, three solutions are possible:
(a) one can neglect this dependence by considering the stiffness matrix as independent from
frequency and temperature [15, 19]. In this case, the basis is also constant; (b) one can use a
reduction basis obtained by the resolution of the nonlinear eigenvalue problem [22, 23]; (c) it
is possible to use an iterative method, which allows the re-actualization of the basis according
to frequency [15, 16].

The strategy adopted here consists in using a constant reduction basis computed by using the
tangent stiffness matrix representing the static behavior of the viscoelastic material. As can be
seen in Figure 2, on the low frequency range, by prolonging the modulus and loss factor curves
by asymptotes, the extrapolation leads to the real values G0 and η0 = 0. The tangent stiffness
matrix can thus be calculated by the relation, K0 = Ke + G0K̄ v [15].

The nominal basis containing the first retained modes of the viscoelastic system can thus be
obtained by the resolution of the following eigenvalue problem [18]:

(33)

where ϕ0 contains the mode shapes of the conservative associated system, which is further
enriched by introducing the following residues associated with the external loads and the
viscoelastic damping forces, respectively:

(34)

Thus, the enriched basis of reduction is represented as follows:

(35)

The basis (35) can be used to reduce viscoelastic systems with reasonable accuracy, but it is
not “robust” enough to taking into account parametric uncertainties and to be used in con‐
junction with optimization and/or model updating processes. This means that the basis given
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by Eq. (35) should in principle be updated successively to guarantee a satisfactory accuracy of
model reduction during iterations. However, according to the authors in reference [18], the
strategy consists in using a fixed reduction basis evaluated from the initial model [as given by
Eq. (35)], to be further enriched by a set of residual vectors depending on the parametric
modifications introduced by the viscoelastic treatment. In most practical applications, the
viscoelastic surface treatments are not applied to the entire structure, but only in specific zones.
Thus, based on Eq. (12), one can write the following modified system:

(36)

where ΔZ(ω, T) = ΔΚv(ω, T) − ω2ΔΜv is the dynamic stiffness matrix due the perturbations.

Hence, Eq. (36) can be interpreted as the equilibrium equation of the nominal model, subjected

to forces of modifications, Z(ω, T)Q = F + fΔ(ω, T), where fΔ(ω, T) = − ΔZ(ω, T)Q, ΔΜv = ∑
i=1

n_mp
Δmi Μv

and ΔΚ̄v = ∑
i=1

n_mp
Δki Κ̄v. Δmi and Δki are the mass and stiffness variations, Μv =∪

i
Μvi

 and Κ̄v =∪
i

Κ̄vi

are the mass and stiffness matrices of the zones, Μvi
 and Κ̄vi

, are the elementary viscoelastic

mass and stiffness matrices, and ΔΜv and ΔΚ̄v are the matrices to be reduced, which are in
general sparse and nonlinear functions of the design parameters.

7.1. Basis of displacements associated with the structural modifications

The vector of forces of modifications, fΔ(ω, T), depends on the response of the modified system,
Q. Since this response is unknown a priori, the forces associated with the modifications cannot
be computed exactly. The strategy is to generate the forces due to the small modifications by
fΔ(ω, T) using a truncated basis of normal modes of the mean model according to Eq. (40); next,
the static responses of the mean model can be obtained by using the estimated forces of
modifications. These two steps must be performed for each design variable subjected to small
modifications.

(37)

Hence, after obtaining the basis of forces, one can calculate a series of static responses of the
system based on the tangent stiffness matrix according to the following form:

(38)

and the final robust basis of reduction taking into account the small modifications is as follows:

(39)
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Figure 3 illustrates a cycle of optimization process by using the robust basis, where the
standard Ritz basis is increased by the static residues associated with the external loadings and
the forces associated with the viscoelastic modifications. This procedure is used to approximate
the behavior of the modified viscoelastic system without the re-actualization of the nominal
basis, leading to a drastic reduction of the time required for computing the response of the
large-scale viscoelastic systems.

Figure 3. Block diagram showing the standard and the robust optimization procedures.

8. Review of FE modeling of passive constraining layer damping

One type of structure of particular interest in terms of practical viscoelastic applications is the
three-layer sandwich plate illustrated in Figure 4. In the present work, the FE modeling
procedure is summarized based on the original contribution made by Khatua and Cheung [41]

Figure 4. Illustration of the three-layer sandwich plate FE.
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and implemented by de Lima et al. [42]. The sandwich element is composed by four nodes and
seven DOFs per node, as depicted in the figure, where u and v are the in-plane displacements
in directions x and y, respectively, w is the transverse displacement, and θx and θy are the
rotations.

In the development of the theory, it has been assumed that the three layers are perfectly
bounded and the materials involved are considered to be isotropic with linear behavior. These
assumptions are reasonable [18], since, in practice, the most commercially available viscoelastic
materials for vibration attenuation are self-adhesive. The analysis also assumes the Kirchhoff’s
theory for the base plate and constraining layer with the same rotations, and only for the
viscoelastic core, the transverse shear is included (Mindlin’s theory). The transverse displace‐
ment is assumed to be same for all the layers.

A number of approaches have considered in the open literature to describe with reasonable
accuracy the shear behavior of constrained-layer damping treatments. However, the assump‐
tions adopted herein are often used to model moderately thin sandwich beam and plate
structures with reasonable accuracy [43].

The displacements are discretized by using linear shape functions for the in-plane displace‐
ments of the base plate and constraining layer, and a cubic shape function for the transverse
displacement, by the expression, u(x, y, t) = N(x, y)u(e)(t), where N(x, y) represents the matrix
of the interpolation functions, and u(e)(t)= u1

i v1
i u3

i v3
i w i θx

i θy
i T  with i = 1 to 4 is vector

formed by the mechanical nodal DOFs. According to the theory of elasticity, the strain–
displacement relations are formulated, ε(x, y, z, t) = B(x, y, z) u(e)(t), where the strains for elastic
layers, εk = εx

(k ) εy
(k ) γxy

(k ) T  with (k = 1, 3), and for the viscoelastic core,

ε2 = εx
(2) εy

(2) γxy
(2) γxz

(2) γyz
(2) T , are obtained. Thus, based on the stress states assumed for each

layer and the stress–strain relations, the stress responses of the system can be obtained as
follows:

(40.a)

(40.b)

(40.c)

where b and a designate, respectively, the dimensions of the rectangular plate element in
directions x and y, and hk and ρk represent the thickness and the mass density of the kth layer,
respectively. The stiffness matrices, Ke

(e) = K1
(e) + K3

(e) and Kv
(e)(ω, T )= K2

(e)(ω, T ), give, respec‐
tively, the contributions of the purely elastic and viscoelastic parts of the sandwich structure.
Hence, the elementary equations of motion are given as follows:
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(41)

where M (e)∈R N e×N e is the mass (symmetric, positive definite) matrix, and Ke
(e)∈R N e×N e and

Kv
(e∗) = Kv

(e)(ω, T )∈R N e×N e are the stiffness matrices (symmetric, non-negative definite) corre‐

sponding to the purely elastic and viscoelastic substructures, respectively. q(e)(t)∈R N e and

f (e)(t)∈R N e are displacements and load vectors, respectively.

9. FE modeling of discrete viscoelastic dampers

From the practical standpoint, the use of viscoelastic materials in mounts and joints is an
interesting alternative [1, 31]. Figure 5a illustrates the two mostly used configurations of
viscoelastic mounts with the corresponding geometrical parameters. The placement of those
mounts in structures is illustrated in Figure 5b. The mounts can be conveniently represented
by springs, meaning that a translation mount produces damping forces while a rotational
mount generates damping moments. In the same figure, the translational and rotational
stiffness coefficients, Kt(s) and Kr(s), are given.

Figure 5. Sketches (a) and springs representation (b) of discrete viscoelastic devices.

Designating by p the order of the coordinate following the which the viscoelastic mount works,
the inclusion of the viscoelastic effect into the equations of motion can be easily done by using
the concept of dyadic structural modifications [44]. Thus, the equations of motion of the
structural system with viscoelastic mount can be written as follows:

(42)

where Kv(s)=Kt(s)Ip
T Ip for a translation mount, and Kv(s)=Kr(s)Ip

T Ip for a rotation mount, and
Ip designates the pth column of the identity matrix of order N.

Hence, the global system of equations of motion can be expressed under the form:

Finite Element Modeling and Experiments of Systems with Viscoelastic Materials for Vibration Attenuation
http://dx.doi.org/10.5772/64532

351



10. Numerical examples

The purpose of this section is to perform numerical examples in order to illustrate the main
features and capabilities of the viscoelastic modeling procedures intended to design and
performance analysis of the viscoelastic damping treatments presented herein. In addition,
experimental investigations with a freely suspended rectangular plate were performed, where
frequency-response functions (FRFs) and modal analysis have been performed to demonstrate
the accuracy of the viscoelastic models and to confirm the effectiveness of the viscoelastic
materials applied in the context of vibration attenuation.

10.1. Curve fitting of the viscoelastic model parameters

In the simulations that follow the viscoelastic characteristics of commercially available ISD112
manufactured by 3M [33] have been used. The material data provided by the manufacturer,
in terms of storage and loss moduli, at 25°C in the frequency band [8–8000 Hz], have been used
to identify the parameters for each viscoelastic model. Eq. (3) was used to form the objective
function, which was minimized with respect to the unknown set of model parameters. Such
objective function is symbolically defined as follows:

(43)

Optimization was carried out by using genetic algorithms [45], with populations of 800
individuals, allowing for 200 generations and using side constraints. For illustration, Fig‐
ure 6 shows the storage modulus, loss modulus, and loss factor functions reconstructed from
the identified parameters only for the GHM model with five mini-oscillators, superimposed
to the experimental counterparts. As can be seen, good quality of the curve fitting could be
achieved. The same quality could be obtained for the FDM model and the ADF model with
five anelastic fields. Negligible improvement was obtained by increasing the order of those
models. The values of the parameters obtained for the models are defined in Table 1.

Figure 6. Curve fitting of modulus functions for 3M ISD112 according to the GHM model.

10.2. Model validation

To verify the model summarized in Section 8, experimental tests were performed on a freely
suspended plate made of aluminum with a constraining damping layer made of a thin ISD112
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viscoelastic material and an outer thin aluminum sheet. The experiments consisted in obtaining
a set of 20 FRFs corresponding to point I, indicated in Figure 7. Only the average FRF is shown
here. The number of elements used to generate the model is shown in the same figure, formed
by 378 elastic DOFs, and the anelastic displacements are computed according to the mini-
oscillator terms defined in Table 1.

Table 2 provides the physical and geometrical properties used to generate the FE model.

GHM ADF FDM
Gr (MPa) αi ωi (rad/s) ζi Gr (MPa) Δi Ωi (rad/s) Ci G0 =0.428 (MPa)

G1 =0.0088 (MPa)

α =0.67
β =0.41

0.4623 0.26 991.33 4.575 0.4680 0.205 103.48 460.7

0.95 6986.15 4.27 0.682 103.48 138.2

2.04 103,437.5 2.702 1.942 638.33 48.5

Gu(MPa) 3.69 22,950.1 1.923 Gu(MPa) 7.062 3054.43 13.4

28.49 53.7 266,466.6 1.299 44.08 83.37 17,583.2 1.13

Table 1. Identified parameters for the GHM, FDM, and ADF models.

Figure 7. Illustration of the FE model for the plate with partial viscoelastic treatment.

Base plate Viscoelastic core Constrained layer

A = 20 × 10−2 m
B = 25 × 10−2 m

C = 2 × 10−2 m C = 2 × 10−2 m

hp = 5 × 10−4 m hv = 20 × 10−5 m hc = 5 × 10−4 m

E = 70.3 × 109 N/m ρ = 1099.5 kg/m3 E = 70.3 × 109 N/m

ρ = 2750 kg/m3 ν = 0.5 ρ = 2750 kg/m3

Table 2. Physical and geometrical characteristics of the plate FE model.

Figure 8 shows the amplitudes of the average FRFs calculated from the experiments, compared
to the numerically acquired counterparts. It can be seen the efficiency of the surface damping
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treatment in mitigating the amplitudes of vibrations in the frequency band of interest. Also, it
can be noted the accuracy of the model in predicting the dynamic response of the viscoelastic
system.

Figure 8. FE and experimental FRFs of the system with and without treatment.

Mode 1 2 3

Modal parameters ω1 (Hz) ζ1 ω2 (Hz) ζ2 ω3 (Hz) ζ3

Experimental 184.37 8.1 × 10−3 242.47 1.9 × 10−3 429.38 18.2 × 10−3

FE prediction 184.38 7.5 × 10−3 238.75 1.8 × 10−3 434.4 14.4 × 10−3

Deviations (%) 0.00 8.00 1.60 5.50 1.30 26.40

Table 3. Experimental natural frequencies and modal damping factors of the plate.

Table 3 compares numerical and experimental frequencies and damping factors obtained by
applying the half-power bandwidth method [1]. It can be noted that the two sets are reasonably
close to each other. However, the differences observed are mostly due to the identification
procedure of the mini-oscillator parameters from the experimental data for the ISD112
material; the theory adopted in the FE model such as the perfectly bounded conditions; the
variations on the temperature during the tests; and the boundary conditions.

10.3. Two-dimensional truss with a translational viscoelastic mount

Figure 9 shows the two-dimensional truss FE model in which a translational mount is applied
on node 7 with the direction indicated on the same figure.
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Figure 9. Two-dimensional truss with a translational viscoelastic mount.

Figure 10. Natural frequencies and damping ratios (a) and FRFs (b) for the truss.

Using the theory presented in Section 9 combined with the FDM model, the complex eigen‐
value problem was performed to obtain the natural frequencies and damping ratios. The
results corresponding to the five vibration modes in the frequency band [80–800 Hz] are
presented in Figure 10a. In Figure 10b, the amplitudes of the FRFs of the systems with and
without viscoelastic damper are compared. Again, it is possible to evaluate the influence of
the damping on the response amplitudes and the influence of the frequency on damping and
stiffness of the structure. The FRFs are related to the vertical displacement of node 7 indicated
in Figure 9.

10.4. Internally balanced method

Figure 12 shows the results for a beam-like structure partially treated with constrained-layer
damping, as illustrated in Figure 11, in terms of the controllability and observability gram‐
mians in the balanced realization. It can be noted that Wc and W0 must be equal and diagonal,
as predicted by the theory of internally balanced reduction method detailed in Section 6. Also,
since the retained states must be composed by the states with major controllability and
observability indices, the first five modes will be considered in the model reduction system.
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The time response to an impulse excitation applied at point P (indicated in Figure 11), and the
amplitudes of the FRFs of the beam before and after reduction are depicted in Figure 13. It can
be clearly perceived the efficiency of the internally balanced method in predicting both time
and frequency responses of the viscoelastic system by the appropriate choice of the major
controllability and observability indices of the states.

Figure 11. Illustration of the beam partially treated with constraining viscoelastic layer.

Figure 12. Wc and W0 versus internally balanced states for the viscoelastic beam.

Figure 13. Time and FRFs for the full and reduced systems—internally balanced method.
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Figure 14. Time and FRFs for the full and reduced systems—constant enriched basis.

10.5. Modal reduction method

Figure 14 shows the time and frequency domain responses of the reduced beam system by
using the enriched modal reduction method compared with the full system. In this case, it has
been considered only the first five modes of the associated conservative viscoelastic system,
ϕ0, enriched with the static residues associated with the external loads, R, and the viscoelastic
damping forces, Rv

0. As can be seen, both impulse responses and FRFs appear as expected
when compared with the time and frequency responses obtained by the internally balanced
method, leading to conclude that the reduction method by applying the constant enriched
basis (35) is also a viable method to reduce viscoelastic systems.

11. The self-heating phenomenon

The good damping performance and inherent stability of viscoelastic materials in relatively
broad frequency bands, besides cost-effectiveness, offers many possibilities for practical
engineering applications. However, some drawbacks must be dealt with, such as ageing and
chemical instability in the presence of some substances, the mass added and the fact that in
most traditional design procedures of viscoelastic dampers subjected to cyclic loadings,
uniform and constant temperature is generally assumed and does not take into account the
self-heating phenomenon. Also, for viscoelastic dampers subjected to dynamic loadings
superimposed on static preloads, especially when good isolation characteristics are required
at high frequencies, traditional design guidelines can lead to poor designs or even severe
failures, since it is observed a rapidly increasing rate of temperature change and an accompa‐
nying stiffness reduction.

The self-heating can cause temperature increases in viscoelastic materials, affecting signifi‐
cantly their damping capacity [26–28]. Thus, in applications in which the viscoelastic materials
are subjected to cyclic loadings superimposed on static preloads, such as engine mounts and
tall buildings, the interest to obtain high isolation characteristics becomes essential, since the
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vibration amplitudes are directly related to fatigue and, consequently, to structural integrity
[4, 29, 35]. Moreover, depending on the magnitude of the applied loadings, the vibration energy
of the viscoelastic material is converted to heat at a rate faster than the heat is conducted away,
leading to a rapidly increasing rate of local temperature change known as thermal runaway
phenomenon [26]. Thus, it is expected that it can have a strong influence on the stiffness and
damping properties of viscoelastic materials, leading to unexpected damping performance or
even severe failures of viscoelastic damping devices.

Figure 15 shows the experimental results obtained for a viscoelastic damper subjected to a
vertical cyclic loadings during 3396 s, superimposed on different values of static displacement
applied to the specimen by the screws shown in the same figure.

Figure 15. Time evolution of the temperature inside the viscoelastic material and the experimental setup.

Figure 16. Temperature contours for one half of the damper at t = 100 s for δ = 250 N.

One can conclude that as the static preload increases, the self-heating becomes more pro‐
nounced. As a result, an increasing in the temperature values of the viscoelastic material is
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observed, leading to a significantly reduction of its damping capacity or even its complete
failure in practical engineering applications. Moreover, it is not possible to identify a progres‐
sive stabilization of the temperatures in the loading phase, indicating the occurrence of the so-
called thermal runaway phase [29].

Figure 16 enables to conclude that the assumption of assuming a constant and uniform
temperature distribution for viscoelastic materials subjected to cyclic loadings is not correct,
since the temperatures are not constant and vary from one point to another.

12. Concluding remarks

A comprehensive review of the modeling strategies of engineering structures incorporating
viscoelastic materials has been showed. The FE modeling procedure of two-dimensional
sandwich plates treated with viscoelastic materials as a passive constrained-layer damping
and a modeling strategy of discrete viscoelastic damping devices including translational and
rotational mounts have been also implemented. As can be noted, the modeling of viscoelastic
materials was conceived so as to encompass different designs, regarding the type of treatment
applied as surface or discrete viscoelastic vibration dampers. The GHM, ADF, and FDM
models were used to include the frequency- and temperature-dependent viscoelastic behavior
into FE matrices, in spite of the significant increase in the order of the system’s augmented
matrices, entailed by the inclusion of internal variables especially for the GHM and ADF
models. Moreover, the separation of the material modulus function of each viscoelastic model
into real and imaginary parts to enable the identification of the material modulus parameters
from experimental data has also been addressed and illustrated for the ISD112 viscoelastic
material as detailed in the examples.

The ongoing work aims at developing a user-friendly computer code incorporating various
modeling tools available to date to be used for the design, performance analysis, and optimi‐
zation of different types of viscoelastic vibration dampers taking into account the self-heating
phenomenon, as can be available in numerical examples. Also, the implementation of efficient
numerical procedures as model reduction methods for the resolution of the equations of
motion for modal and frequency-domain analyses of more complex engineering systems
incorporating viscoelastic materials was addressed.

In general, the numerical simulations presented enabled to illustrate the application of the
modeling procedure as a tool to evaluate the damping effectiveness in terms of eigenvalue and
frequency response analysis. Based on the obtained results, one can conclude about the
convenience of using more elaborate viscoelastic models in combination with FE models of
complex medium- to large-scale structural systems.

Currently, the modeling procedure is being extended to include other types of structural
elements, such as three-dimensional beams, plates, and shells. Also, the implementation of
efficient numerical and experimental procedures of the self-heating phenomenon and the
thermal runaway phase in viscoelastic materials is a topic under investigation.
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