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Abstract

Vorticity dynamics is studied near the interface between turbulent and non-turbulent
flows, the so-called turbulent/non-turbulent (T/NT) interface, with the direct numerical
simulations of planar jets and mixing layers. The statistics near the interface confirm that
the T/NT interface consists of two layers: viscous superlayer and turbulent sublayer. The
viscous superlayer with the thickness of four times of Kolmogorov length scale is found
at the outer edge of the interface, where the vorticity grows with the viscous diffusion. In
the turbulent sublayer between the viscous superlayer and the turbulent region, the strain-
vorticity interaction becomes active. In the Lagrangian statistics for the fluid particles, the
different scaling laws appear in the entrained particle movement depending on the layer:
a ballistic evolution in the viscous superlayer and the Richardson-like scaling for relative
dispersion in the turbulent sublayer. These scalings indicate that the change in the particle
position in the viscous superlayer is governed by the outward viscous diffusion of vorticity,
whereas it is governed by the inviscid small-scale eddy motions in the turbulent sublayer.
The flow topology on the particle path line shows that the fluid being entrained tends to
circumvent the core region of intense eddies near the T/NT interface.

Keywords: jet, mixing layer, turbulent/non-turbulent interface, DNS, Lagrangian sta‐
tistics

1. Introduction

Interfaces dividing turbulent and non-turbulent regions appear in various canonical turbulen‐
ces, such as boundary layers, jets, and mixing layers, where turbulence is generated from the
shear due to the wall friction or mean velocity difference. These interfaces are called turbulent/
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non-turbulent (T/NT) interfaces. Turbulence is generated by shear motions in various circum‐
stances,  where the turbulent  fluids are  surrounded by non-turbulent  fluids.  This  locally
generated turbulence often plays an important role in the relevant phenomena. For example,
ocean-mixing layers [1], generated in the stably stratified fluid, are sometimes responsible for
the transport of heat, salinity, and plankton. The atmospheric boundary layer [2] is related to
the cooling/heating of the ground surface and the transport of contaminant. In the flows with
the T/NT interface, the turbulent region grows into the non-turbulent region with the mass,
momentum, and energy exchanges across the T/NT interface.

Corrsin and Kistler [3], in laboratory experiments with hot-wire probes, found that the essential
feature of the turbulent regions is the high vorticity, and the turbulent and non-turbulent
regions can be distinguished by the vorticity. They also predicted that a very thin layer where
the non-turbulent fluids acquire vorticity by the viscous diffusion is formed at the outer edge
of the turbulent region. This thin layer, called the viscous superlayer, was confirmed with the
recent high-resolution direct numerical simulations (DNSs) [4]. Furthermore, the statistical
approach conditioned relative to the interface [5] clearly showed that the T/NT interface is the
layer with a finite thickness. In addition to the viscous superlayer, an adjacent layer, turbulent
sublayer, was found between the turbulent core region and the viscous superlayer [6]. One of
the differences between the turbulent sublayer and the viscous superlayer is in the vorticity
dynamics; the initial growth of vorticity of the non-turbulent fluid occurs by the viscous
diffusion in the viscous superlayer with the absence of inviscid vortex stretching, whereas the
vortex stretching plays an important role in the amplification of vorticity in the turbulent
sublayer [7,8].

The T/NT interface has been studied in particular attention to the entrainment process since
this is where the non-turbulent fluid acquires vorticity and results in the transition to turbu‐
lence. Turbulent flows consist of the motions in a wide range of scales, and both small and
large scales can cause the entrainment by nibbling [9] and engulfment [10], respectively. The
experiments in the boundary layers indicated that the entrainment is the multi-scale process
[11]. The entrainment across the interface was studied in [12] with the propagation velocity of
the enstrophy isosurface. These analyses on the isosurface movement showed that the
propagation velocity is of the order of the Kolmogorov velocity vη = (νε)1/4 [13,14], where ν is
the kinematic viscosity and ε is the dissipation rate of turbulent kinetic energy, and the complex
shape of the isosurface [15] relates the propagation velocity to the total entrainment rate, which
can be written as a function of large-scale quantities [16]. The enstrophy isosurface is an
infinitely thin surface located within the T/NT interface layer. Therefore, a more precise
description of the entrainment process is the fluid movement across the entire T/NT interface
layer than across the enstrophy isosurface. During the entrainment, the irrotational particles
pass both the viscous superlayer and the turbulent sublayer. The Lagrangian analysis is useful
for studying the entrainment, and both experiments and simulations have been used for
tracking the fluid particles (tracers) being entrained from the non-turbulent regions [14,17,18].
These studies showed the evolution of turbulence characteristics during the entrainment.
However, the relation between these Lagrangian statistics and the layer structures is not clear
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because the particle tracking does not show the location within the T/NT interface layer
because the T/NT interface also moves with the convective fluid motion.

In this study, we explore the connection between the T/NT interface structure and the Lagran‐
gian statistics during the entrainment process based on our recent DNS results [19]. The DNS
is performed for mixing layers and planar jets, and used for tracking the fluid particles being
entrained. In addition to the fluid particles, the outer edge of the T/NT interface layer, defined
by the enstrophy isosurface, is also tracked with the Lagrangian markers, enabling us to
examine the location of the fluid particle within the T/NT interface layer and to relate the
Lagrangian statistics to the Eulerian counterparts. The roles of small-scale eddy structures in
the entrainment are considered from the Lagrangian and Eulerian statistics. This chapter is
organized as follows: Section 2 presents the numerical methods and parameters as well as the
conventional statistics for the validation of the DNS data. Section 3 discusses the analysis on
the T/NT interface, such as the interface detection, and the conditional analysis based on the
Eulerian and Lagrangian statistics. Finally, Section 4 closes the chapter with the conclusion.

2. Direct numerical simulations

Direct numerical simulations are performed for temporally evolving mixing layers and planar
jets [19]. These flows develop from the initial state in the computational domain, which is
periodic in the mean flow (x) and spanwise (z) directions. The flows spread in the cross-
streamwise (y) direction. We consider the computational box with the size of (Lx × Ly × Lz)
represented by (Nx × Ny × Nz) grid points. The boundaries in the y direction are treated as the
slip wall [7]. The origin of the coordinate system is at the center of the computational domain.
The DNS code is an incompressible Navier-Stokes solver based on the fractional step method
[8]. In addition to the flow field, a passive scalar ϕ is simulated with the convection-diffusion
equation. The governing equations are spatially discretized with a fully conservative finite-
difference method [20]. The second-order and fourth-order schemes are used in the cross-
streamwise and the periodic directions, respectively. The governing equations are integrated
in time with a third-order Runge-Kutta method. The Poisson equation is solved with the fast
Fourier transform along the periodic directions and the diagonal matrix algorithm along the
x direction.

The initial velocity field is obtained by superimposing the statistically homogeneous and
isotropic velocity fluctuations onto the mean velocity, which is given by
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Here, UM is the velocity difference in the mixing layers, UJ the jet velocity, H the width of the
jet inlet and θM (θJ) the initial shear layer thickness in the mixing layers (planar jets). The
angular bracket denotes the averaged value in a x − y plane. We set θJ = 0.015H. The initial
velocity fluctuations are generated by a diffusion process [21], where the characteristics length
scales are 0.07H in the planar jets and 0.25δM in the mixing layers. The initial rms velocity is
0.04UJ for |y|/H ≤ 0.5 in the planar jets and is 0.025UM for |y|/δM ≤ 3 in the mixing layer. Except
these regions, the fluctuations are not imposed on the mean velocity. The initial scalar profiles
are given by
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Run ML04 ML08 PJ50 PJ90

Flow type Mixing layer Mixing layer Planar jet Planar jet

Re 400 800 5000 9000

L x 16πθM 16πθM 2.4πH 2.6πH

L y 16πθM 16πθM 4.8πH 3.8πH

L z 8πθM 8πθM 2.4πH 1.3πH

N x 512 1 024 512 1 024

N y 500 700 850 1 150

N z 256 512 512 512

Time step dt 0.08θM/UM 0.04θM/UM 0.012H/UJ 0.006H/UJ

Δx = Δz 1.5η 1.2η 1.5η 1.4η

Δy (y = 0) 1.0η 1.1η 1.2η 1.2η

Reλ 105 151 94 158

η 0.064θM 0.041θM 0.0096H 0.0059H

λ 20.8η 23.3η 14.8η 20.3η

Table 1. Physical and computational parameters of the DNS. The displayed turbulence characteristics are from the
turbulent core regions.

The Reynolds numbers Re are defined by UMθM/ν and UJH/ν. We perform the DNS for the
planar jets with Re = 5 000 and 9 000 and for the mixing layers with Re = 400 and 800. The
Schmidt number of ϕ is Sc = ν/D = 1, where D is the molecular diffusivity. Table 1 shows the
physical and computational parameters, such as the Kolmogorov scale η, Taylor microscale
λx, and the turbulent Reynolds number Reλ, where the Taylor microscale and turbulent
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Reynolds number are calculated from the streamwise velocity statistics. The computational
grid size, Δi, is comparable to η, and is able to capture turbulent motions in very small scales.

Figure 1. Self-similar profiles of mean streamwise velocity U  and rms streamwise velocity urms in (a and b) planar
jets and (c and d) mixing layers. U C and bU denote the mean streamwise velocity on the centerline and the jet half-
width obtained from U , respectively. The mixing layer thickness δU is defined as δU = ∫(0.5UM − U )
( U  − 0.5UM) /(UM)2dy. The present DNS results are compared with the experiments and DNS on the planar jets [22]
and mixing layers [23,24].

Figure 2. One-dimensional longitudinal spectrum Euu on the centerline of the planar jets and mixing layers compared
with the experimental plots in grid turbulence [25] and axisymmetric wake [26].
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The fundamental characteristics of the planar jets and mixing layers are compared with other
DNS and experiments for validation of the DNS. Figure 1 compares the self-similar profiles of
mean velocity and rms velocity fluctuations. The present DNS reproduces well the self-similar
profiles of these statistics in previous studies. Figure 2 shows the one-dimensional longitudinal
spectrum on the centerline with the experimental plots. We can see the overlap of the spectrum
in small scales, and the small-scale turbulent fluctuations are well resolved in the DNS.

3. Analysis on turbulent and non-turbulent interface

3.1. Detection of the T/NT interface

The turbulent regions are characterized by high vorticity [3]. Therefore, following [5], we
define the turbulent region as where the vorticity magnitude |ω| exceeds the threshold ωth.
Then, with an appropriate value of ωth, the isosurface of |ω| = ωth can be detected so that
it is located near the outer edge of the T/NT interface layer. The specific value of ωth is
obtained from a well-known dependence of turbulent volume on ωth [18]. Figure 3(a) shows
the volume fraction of turbulent regions as a function of ωth. We can see a plateau in the
turbulent volume, and the isosurface location hardly changes with ωth for the plateau. We
choose ωth = 0.04 |ω| C, which is from the plateau shown in Figure 3(a). This value is chosen
so that the isosurface is located at the outer edge of the T/NT interface layer. We call this
isosurface as the irrotational boundary hereafter. Figure 3(b) and (c) show the enstrophy
profile and the irrotational boundary. The irrotational boundary surrounds the high
enstrophy region and is located at the outer edge of the turbulent fluids. Thus, the outer
edge of the T/NT interface layer is well defined by thresholding the vorticity magnitude.

Figure 3. Detection of the T/NT interface. (a) Dependence of the turbulent volume fraction on the normalized threshold
ωth/ ω C. (b) Visualization of the irrotational boundary in ML08 (white line). The color contours show enstrophy levels
in log10(ω2/2). (c) The close-up of the T/NT interface (the region A in (b)).
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The irrotational boundary is visualized in Figure 4. The T/NT interface has a very com‐
plex shape. The Re dependence is also clear; the higher Re mixing layer has smaller-scale
structures because of the small length scales of turbulence.

Figure 4. Visualization of the irrotational boundary (the vorticity magnitude isosurface) in the mixing layers with (a)
Re = 400 and (b) Re = 800. The color shows the interface height YI from the centerline normalized by the mixing layer
thickness δU = ∫(0.5UM − U )( U  − 0.5UM)/(UM)2dy.

3.2. Statistics conditioned on the location of the T/NT interface

The vorticity dynamics is studied with the statistics conditioned on the location from the
irrotational boundary. This interface coordinate, ζI, is taken in the normal direction of the
irrotational boundary n = − ∇ω2/|∇ω2|, where ζI = 0 is the location of the irrotational boundary.

Figure 5. (a) Conditional mean enstrophy ω2/2 I. The vertical lines, from right to left, denote ζI = 0 and ζI = − 15η,
where ω2/2 I reaches the value close to the turbulent core region. Conditional mean enstrophy divided by the value at
the irrotational boundary ω2/2 I0 against the interface coordinate normalized by (b) Kolmogorov scale η and (c) Taylor
microscale λ = (λx + λy + λz).
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The non-turbulent region is indicated by ζI > 0. Because of the complicated shape of the T/NT
interface, a turbulent (non-turbulent) fluid and an associated irrotational boundary can appear
for ζI > 0 (ζI < 0). For separating the statistics into the turbulent and non-turbulent parts, the
statistics are calculated solely from turbulent and non-turbulent regions in ζI < 0 and ζI > 0,
respectively. When another irrotational boundary is found at ζI ≠ 0, the region within the
distance of λ from this boundary is excluded from the statistics for preventing the T/NT
interface layer from affecting the statistics for ζI ≫ 0 or ≪ 0. Note that previous studies have
shown that the T/NT interface layer thickness is about 0.5λ [27]. Hereafter, I denotes the
conditional mean value.

Figure 5 shows the conditional mean enstrophy profiles. The mean enstrophy is matched in
the layer with the thickness of ≈ 15η. The scaling of the thickness of the interface layer is
examined in the plots of ω2/2 I normalized by the value at ζI = 0, ω2/2 I0, in Figure 5(b) and
(c), where ζI is normalized by the Kolmogorov scale η and Taylor microscale λ, respectively.
The plots tend to better collapse onto a single curve for ζI/η than ζI/λ, and thus the thickness
of the T/NT interface layer, across which the enstrophy changes, is scaled with the Kolmogorov
scales. It should be noted that the Taylor microscale can be the characteristics length scale of
the T/NT interface when the large-scale coherent structures exist near the T/NT interface [28].

Figure 6. Conditional enstrophy budget in (a) ML08 and (b) PJ90, where Dω = ν∇2ω2/2 is the viscous diffusion term,
Pω = ωiSijωj is the production term, εω = − ν∇ωj ⋅ ∇ωj is the viscous dissipation term. The vertical lines, from right to
left, denote ζI = 0, ζI = − 4η, where Dω I = Pω I, and ζI = − 15η. The viscous superlayer (VSL) with the thickness δν and
the turbulent sublayer (TSL) with the thickness δω are highlighted.

The vorticity evolution near the interface is studied by the enstrophy transport equation:

2
2 2/ 2 ( / 2) ,w w w n w n w w= + Ñ - Ñ ×Ñi ij j i i

D S
Dt

(5)

where the first term on the right-hand side is the enstrophy production Pω (Sij: strain-tensor),
the second is the viscous diffusion Dω, and the third is the viscous dissipation εω. The condi‐
tional average of each term is plotted in Figure 6 for ML08 and PJ90. The plots are very similar
for these flows in the T/NT interface layer; the enstrophy grows by the viscous diffusion near
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the outer edge of the T/NT interface, whereas the inviscid vortex stretching becomes important
slightly inside the outer edge. The profile of Dω I exhibits negative and positive values in the
T/NT interface layer, indicating the vorticity transport toward the non-turbulent region. Near
the outer edge of the T/NT interface layer, Dω I is larger than Pω I in the region of − 4η ≤ ζ ≤ 0.
This thickness, δν = 4η, agrees with the direct observation of the viscous superlayer thickness
[4]. Thus, from the conditional mean profiles of enstrophy and its budget, we can identify the
viscous superlayer in − 4η ≤ ζI ≤ 0 and the adjutant layer, turbulent sublayer, with the thickness
of δω = 11η in − 15η ≤ ζI ≤ − 4η. This structure of the T/NT interfaces is observed in all DNS
dataset. In the turbulent core region, the mean enstrophy production Pω I almost balances with
the mean viscous dissipation εω I. This balance is absent in the T/NT interface layer; from
ζI = − 15η, εω I becomes small toward the irrotational boundary, whereas Pω I hardly changes
with the location for − 15η ≤ ζI ≤ − 9η.

Figure 7 gives the conditional plots of passive scalar ϕ and scalar dissipation rate
χ = D∇ϕ ⋅ ∇ϕ. In the mixing layer, the conditional statistics are calculated from the upper
interface, for which the non-turbulent fluid has ϕ = 0.5, where the upper interface is detected
as the irrotational boundary with ∇ω2 ⋅ ∇ϕ < 0. The conditional mean scalar, ϕ I, also changes
in the T/NT interface layer, and is adjusted between the turbulent and non-turbulent regions.
The jump in ϕ I is very similar in all DNS, and the thickness of this jump scales with the
Kolmogorov scale at Sc = 1 and in the Re range studied here. Because of the difference in ϕ
between the turbulent and non-turbulent regions, the scalar gradient becomes large in the
T/NT interface layer. Therefore, as shown in Figure 7(b), the scalar dissipation has a large peak
at ζI = − 4.9η in the T/NT interface layer. This location is shown in Figure 7(a) by the vertical
line, and is close to the inflection point of ϕ I and to the boundary between the viscous
superlayer and the turbulent sublayer.

Figure 7. Conditional mean scalar (ϕ) and normalized scalar dissipation rate  where  in

the mixing layers and  in the planar jets. The vertical lines, from right to left, denote ζI = 0,

ζI = − 4.9η, where  reaches a peak, and ζI = − 15η.

The strain-rate tensor Sij plays an important role in small-scale dynamics of turbulence. The
interaction between strain and vorticity leads to the vortex stretching ωiSij, and in turn to
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enstrophy production ωiSijωj. The gradient of passive scalar, Gi = ∂ϕ/∂xi, is also affected by the
strain field via the straining term − GiSij, which appears as the production term of χ. The
effective strains acting on the vorticity and the scalar gradient are written as follows [29]:

,w
w w

a
w w

= i ij j

k k

S
(6)

,cg = - i ij j

k k

G S G
G G

(7)

where αω and γχ are the production rates of enstrophy and of scalar dissipation rate, respec‐
tively [30]. Note that the vortex stretching and the compression of the scalar gradient are
denoted by positive αω and γχ, respectively, and positive values of the effective strains
contribute to the amplification of enstrophy and of scalar dissipation rate. Figure 8 shows the
conditional average of αω and γχ normalized by the strain product on the centerline SijSij C.
The profiles are almost independent of the flows. αω I and γχ I decrease toward the interface
in the turbulent core region, but peaks can be found in the turbulent sublayer, where the
amplification of enstrophy and scalar dissipation rate becomes more efficient. This results in
a predominance of the enstrophy production over the viscous dissipation in the T/NT interface
layer ( Pω I > | εω I| in Figure 6).

Figure 8. Conditional mean profiles of (a) effective extensive strain acting on vorticity αω = ωiSijωj/(ωkωk) and (b) effec‐
tive compressive strain acting on scalar gradient γχ = − GiSijGj/(GkGk), where the mean strain product on the centerline
SijSij C is used for normalization. The viscous superlayer and turbulent sublayer are also indicated.

3.3. Lagrangian statistics of entrained fluid particles

The Lagrangian particle tracking is used for investigating the vorticity growth during the
entrainment of non-turbulent fluids. Once the flows have reached the self-similar regime,
140,000 particles are seeded in the non-turbulent regions near the irrotational boundary. The
particles are tracked with a third-order Runge-Kutta method and a trilinear interpolation
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scheme [31]. The flow characteristics are changed depending on the location in the T/NT
interface layer. Therefore, it is important to know the entrained fluid particle location within
the T/NT interface layer for better understanding of the Lagrangian properties of the entrain‐
ment. Because of the T/NT interface movement, the entrained particle tracking does not show
the location in the T/NT interface layer. Here, in addition to the fluid particles, the irrotational
boundary is also tracked with a marker, which moves with the velocity of the enstrophy
isosurface movement uI. As in Figure 9(a), the marker is placed on the irrotational boundary
where the fluid particle has crossed. uI is the sum of the fluid velocity at the irrotational
boundary u0 and the propagation velocity of the enstrophy isosurface uP = vEn, where vE = (Dω2/
Dt)/|∇ω2|. It was shown that only a negligible fraction of entrained fluid particles is trapped
inside a non-turbulent region completely surrounded by turbulent fluids [18]. Because the
irrotational boundary of this region disappears after it becomes turbulent, the markers of this
irrotational boundary are no longer located on the enstrophy isosurface. Therefore, |ω| on the
markers is monitored at every time step, and markers with |ω| > 2ωth are excluded from the
subsequent analysis.

The Lagrangian statistics are calculated for the fluid particles, conditioned on the time τ
elapsed after a fluid particle has crossed the irrotational boundary, and the Lagrangian
conditional average is denoted by τ. A separation vector δx is introduced as in Figure 9(a),
and is used for examining the particle location in the T/NT interface layer.

Figure 9(b) shows the Lagrangian conditional average of δx = |δx|, where δx and τ are
normalized by the Kolmogorov length scale η and time scale τη at the time when the fluid
particles are seeded. The plots are quite similar for small τ in all DNS. It takes about 7τη for
the entrained particles to reach the turbulent sublayer by moving across the viscous superlayer.
A difference in δx becomes clear in the turbulent sublayer; the time needed for the particles to
move across the turbulent sublayer changes depending on the flow configuration and
Reynolds number. The relation between δx τ and τ is used for relating the Lagrangian statistics

Figure 9. (a) The fluid particle movement is analyzed in relation to the irrotational boundary, which is tracked with a
marker moving with the velocity of the enstrophy isosurface movement. A marker is introduced at the boundary
where the fluid particle crosses. The irrotational boundary is indicated by a white line while enstrophy levels are
shown with the color contours. (b) Conditional mean distance between the entrained fluid and the irrotational boun‐
dary marker |δx| τ against τ/τη, where the Kolmogorov time scale τη = (ν/ε)1/2 and length scale η are taken on the cen‐
terline at the time when the fluid particles are seeded. The viscous superlayer (VSL) and the turbulent sublayer (TSL)
estimated from the Eulerian statistics are indicated in the figure.
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with the interface structure by plotting the Lagrangian statistics, which is a function of τ,
against δx τ.

The separation vector δx(τ), a fluid particle location relative to a marker of the irrotational
boundary, changes as

I
( ) ( ) ( ) ( ),d t d t t t
t

= º -
d
d
x u u u (8)

where δu is the fluid particle velocity in relation to the velocity of the marker of the irrotational
boundary, and is simply referred to as the relative velocity. The dot product of Eq. (8) with δx
yields the following equation [32]:

2

0
2 ( ) ( ) .

td d t d t t
t

¢ ¢= ×òd x d
d

u u (9)

The relative velocity can be decomposed into the two components: the irrotational boundary
propagation velocity (uP) and the fluid velocity difference (u − u0) between the fluid particle
and the location of the marker of the irrotational boundary:

P 0( ) ( ) ( ( ) ( )).d t t t t= - + -u u u u (10)

For small τ, we can assume that the fluid particles are located in the proximity of the irrotational
boundary [14], and the fluid velocity is almost the same between the locations of the fluid
particle and the marker of the irrotational boundary. Then, |uP| ≫ |u − u0| ≈ 0, and the
relative velocity can be approximated by δu(τ) ≈ − uP(0) [33]. Thus, Eq. (9) is simply,

2
2

P P E
0

2 ( (0) (0)) 2 .
td t

t
¢= × =òd x dt v

d
u u (11)

Integration of Eq. (11) yields δx 2 =vE
2τ 2, where vE is taken at τ = 0. Thus, the Lagrangian

conditional root-mean-squared distance changes with

2 1/2 2 1/2
E 0 (for small  ).t td t t=á ñ = á ñx v (12)

It was shown that the propagation velocity scales with the Kolmogorov velocity [14]. By
contrast, the fluid velocity difference between two points can be much larger in turbulent flows.
Therefore, once the fluid particle has reached far away from the irrotational boundary, the
fluid velocity difference can be large compared with the propagation velocity. Then, in the
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case of δu ≈ u − u0, the fluid particle movement in relation to the irrotational boundary is
described as the two-particles dispersion problem [34]. Similar to Richardson’s law for the
relative diffusion, under the assumption that δx changes by eddies of size δx(τ) [35], we can
obtain the following relationship in the self-similar regime:

1/22 3/2/ (for large  ),
t

d e t t=x C (13)

where C is a constant, and the mean kinetic energy dissipation rate ε is time dependent. Here,
we use ε obtained in the turbulent core region. This expression can be obtained with the
modified Richardson’s law for decaying turbulence [36,37] in the self-similar regime, where
ε(t) decays as ε(t) ~ t− n.

Figure 10. The scalings for the mean-squared distance between entrained fluid particle and irrotational boundary. (a)
The ballistic evolution in the initial stage of the entrainment. (b) The modified Richardson-like scaling for the mean-
squared distance. The viscous superlayer (VSL) and the turbulent sublayer (TSL) estimated from the Eulerian statistics
are indicated in (a) and (b). (c) Pdf of the cosine of the angle between δx and the irrotational boundary normal n.

Figure 10(a) shows δx 2
τ
1/2 for comparison between the DNS results and Eq. (12). For τ/τη ≲ 10,

Eq. (12) well predicts δx 2
τ
1/2. Thus, within the viscous superlayer (τ/τη ≤ 7), δx is changed by

the irrotational boundary propagation with only a negligible influence of the fluid velocity.
Since the irrotational boundary is located at the outer edge of the T/NT interface, where the
enstrophy grows by the viscous diffusion with only a negligible influence of vortex stretching,
the outward enstrophy diffusion causes the fluid particles to reach the turbulent sublayer.
Figure 10(b) shows δx 2 / ε τ

1/2 against τ. The plots of δx 2 / ε τ
1/2 are similar in all DNS presented

in this study. For τ ≈ 0, Eq. (12) yields δx 2 / ε τ
1/2∝τ. Both scaling laws, Eqs. (12) and (13), are

recovered in all simulations. The relationship for larger τ, Eq. (13), is satisfied from τ/τη ≈ 9,
which is the time slightly after the particles reach the turbulent sublayer (see Figure 9(b)). Eq.
(13) is valid for larger τ/τη, including the entire turbulent sublayer. The values of the constant
C, obtained with the least-squares methods, are between 0.25 and 0.30 as displayed in
Figure 10(b). The important assumption behind the relationship, Eq. (13), is that the fluid
particle movement in relation to the irrotational boundary is caused solely by eddies of size
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δx without viscous effects nor eddies with different sizes. The entrained particles within the
turbulent sublayer, δν ≲ δx ≲ δν + δω, obey Eq. (13), indicating that the particle movement is
caused by the small-scale eddy motions whose size is from δν to δν + δω. These small-scale eddies
with core radius of about 5η (≈δν) were found within the turbulent sublayer as intense vorticity
structures [38].

Figure 10(c) shows the pdf of the cosine of the angle between the separation vector δx and the
irrotational boundary normal n. Because the particle location within the viscous superlayer
changes with the irrotational boundary propagation, whose direction is given by n, the particle
in the viscous superlayer stays in the normal direction of the irrotational boundary. This is
confirmed by a large peak in the pdf associated with a parallel alignment of δx and n.

Figure 11. Lagrangian conditional mean enstrophy ω2/2 τ. The inset plots ω2/2 τ against the mean distance between
the particle and the irrotational boundary.

Figure 11 shows the Lagrangian conditional mean enstrophy ω2/2 τ, where the inset plots
ω2/2 τ against δx τ for comparison with the Eulerian statistics in Figure 5. Once the particle

moves into the T/NT interface layer, the enstrophy begins to grow. The inset shows that
even after the particle reaches deep inside the turbulent region, the mean enstrophy on the
particle path is much smaller than the Eulerian conditional mean enstrophy in Figure 5(a).
It should be noted that the Lagrangian statistics are obtained only from the fluid being
entrained, whereas the Eulerian statistics contain the contributions from the entrained fluid
and the fluid from the turbulent core region. This makes differences between the Lagran‐
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gian and Eulerian statistics, and the Eulerian statistics are not enough for studying the
entrainment process across the T/NT interface layer.

Figure 12. Lagrangian conditional mean enstrophy budget of the entrained particles plotted against the mean distance
δx τ between the particle and the irrotational boundary. (a) ML08 and (b) PJ90.

Figure 12 shows the Lagrangian conditional statistics of the enstrophy budget, where again
the Lagrangian statistics are plotted against δx τ for comparison with the Eulerian statistics in
Figure 6. Qualitative differences can be found between the Eulerian and Lagrangian condi‐
tional means of Dω. The Eulerian Dω I displays both positive and negative values indicating
an outward mean enstrophy transport, whereas the Lagrangian Dω τ is positive even for large
δx τ. Thus, although the fluid being entrained possesses an important level of enstrophy in

the T/NT interface layer, the enstrophy transport toward the non-turbulent region is hardly
associated with this entrained fluid. The Lagrangian enstrophy production and dissipation
terms are smaller than their corresponding Eulerian counterparts. Note that these terms are
proportional to the enstrophy, and this difference between Lagrangian and Eulerian statistics
seems to be due to a smaller enstrophy level on the entrained particle path.

Figure 13(a) compares the Eulerian and Lagrangian conditional averages of the second
invariant of velocity gradient tensor Q = (ωiωi − 2SijSij)/4. A large positive value of Q implies
the predominance of vorticity over the strain while its negative value is related to where
dissipation is dominant. The vortex core region of an eddy often has positive Q while negative
Q appears around the core region [35]. The Eulerian Q I has a negative peak near the irrota‐
tional boundary and a large positive peak inside the turbulent region. However, the Lagran‐
gian Q τ is negative even for large δx τ in the turbulent core region. The third invariant of the
velocity gradient tensor is defined by R = − (SijSjkSki/3 − ωiSijωj/4), and the joint pdf of Q and R
has been used for investigating the local flow topology in various turbulent flows [39–41].
Figure 13(b) and (c) compares the joint pdf of Q and R obtained as the Eulerian and Lagrangian
statistics in the turbulent sublayer. Both Eulerian and Lagrangian pdfs show a “teardrop”
shape similar to various turbulent flows, but a difference is found for large positive Q; the
probability of finding intense values of Q ≫ 0 is smaller in the Lagrangian pdf than in the
Eulerian counterpart. These statistics of Q show that although there are regions with Q ≫ 0
within the T/NT interface layer, the fluid particles being entrained tend to circumvent these
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regions. The regions with Q ≫ 0 can be related to the core of the intense eddies. Thus, a circular
motion induced by these eddies may explain this entrained particle path.

Figure 13. (a) Comparison between the Eulerian and Lagrangian conditional averages of the second invariant of the
velocity gradient tensor ( Q I and Q τ, respectively). The Lagrangian conditional average is plotted against δx τ. Joint
pdf of the second and third invariants of the velocity gradient tensors in (b) Eulerian and (c) Lagrangian statistics. In‐
variants are normalized by the mean strain product on the centerline SijSij C at the time when the particles are seeded.

4. Conclusion

The DNS of planar jets and mixing layers was performed for investigating the vorticity
dynamics near the T/NT interface. The outer edge of the T/NT interface layer, irrotational
boundary, is detected as an isosurface of the vorticity magnitude. The Eulerian and Lagrangian
statistics were investigated in this study. The former was calculated conditioned on the
distance from the irrotational boundary. For investigating the Lagrangian properties of the
entrainment, a large number of fluid particles are seeded in the non-turbulent region of the
self-similar regime. The Lagrangian statistics were calculated as a function of time elapsed
after the particle crosses the irrotational boundary. Furthermore, a marker of the irrotational
boundary is also tracked with the velocity of the enstrophy isosurface movement, and is used
for examining the fluid particle location within the T/NT interface layer.

The Eulerian conditional mean enstrophy and its budget showed that the T/NT interface is a
layer with the thickness of about 15η, and consists of the viscous superlayer and the turbulent
sublayer with the thickness of δν ≈ 4η and δω ≈ 11η, respectively. It was also found that the
amplification of the vorticity and scalar gradient is efficient in the turbulent sublayer. The
passive scalar exhibits a jump in the T/NT interface layer, where the large scalar dissipation
rate appears near the boundary between the viscous superlayer and the turbulent sublayer in
all simulations.

The Lagrangian statistics of the entrained particle and the marker of the irrotational boundary
showed that it takes about 7τη for the entrained particle to pass across the viscous superlayer.
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The mean-squared distance exhibited two different scalings depending on the location: a
ballistic evolution in the viscous superlayer and the Richardson-like scaling for the relative
dispersion in the turbulent sublayer. These scalings indicate that the different mechanisms
govern the entrained fluid movement between the two layers. A ballistic evolution was
explained reasonably based on the irrotational boundary propagation, which arises from the
viscous diffusion of vorticity. The Richardson-like scaling implies the importance of inviscid
motions of small-scale eddies in the entrainment. The Lagrangian statistics also showed that
although the fluid being entrained possesses an important level of enstrophy, it does not
contribute, in a mean sense, to the viscous diffusion of vorticity to the irrotational region. Thus,
the fluid existing in the turbulent core region plays an important role in the vorticity diffusion
near the T/NT interface. The Q − R analysis indicates that the entrained fluid path appears
around the core of the small-scale eddy structures related to very large Q.
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