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Abstract

Many mixing processes in engineering applications are turbulent. At high‐Schmidt
regime, the scalar scales are much lower than those of the velocity field, making difficult
instantaneous measurements and direct numerical simulation for studying systems of
practical interest. The use of large eddy simulation (LES) for analyzing transport and
mixing of passive and reactive scalars at high‐Schmidt (Sc) regime is addressed in this
article. We present two different approaches for studying scalar transport and mixing
in LES: the conventional approach is based on the modeling of the unclosed subgrid‐
scale scalar flux term in the filtered scalar equation by models commonly used for high‐
Sc flows. The second approach presented in this review for dealing with high‐Sc flows
is  based  on  the  use  of  a  filtered  mass  density  function  (FDF)  of  the  scalar  field.
Conclusions are presented about the relative merits of the two approaches.

Keywords: mixing, large eddy simulation, high Schmidt, filtered mass density func‐
tion

1. Introduction

At molecular scale, the mixing of two or more fluids having different composition is driven
by diffusion, a rather slow process. Turbulence increases the rate of mixing by the action of
large‐scale motions, making higher the contact surface area between adjacent unmixed fluid
“elements.” Turbulent mixing plays an important role in many engineering, biological, and
environmental applications. In the case of reactive systems, chemical reactions can only take
place after reactants are mixed at molecular level; in many of such systems, the availability of
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mixed reactants at the molecular scale limits the reaction rate; consequently, the mixing process
can be a controlling rate.

In the chemical and pharmaceutical industries, an inadequate mixing can raise the produc‐
tion costs due to the reduction in selectivity, low yield, undesired product accumulation, and
scale‐up and process development problems. Some costs related to mixing are reported by
Paul et al. [1]: in 1989, the cost of poor mixing in the U.S. chemical industry was estimated at
$1 to $10 billion; yield losses of 5% due to poor mixing are typical. In the pharmaceutical
industry, the costs due to lower yield and due to problems in scale‐up and process develop‐
ment are on the order of $100 and $500 million, respectively. In the 1980s, the pulp and paper
industry reported savings averaging 10–15% by introducing medium consistency mixer
technology in their processes.

Numerous studies have dealt with transport and mixing of passive scalars in systems where
the Schmidt number (Sc) is close to one, as it is the case for gas flows in which the smallest
scalar scale (the Obukhov‐Corrsin scale) is of the same order of magnitude or higher than the
smallest flow scale, the Kolmogorov scale (see Refs. [2–5]). However, in many industrial and
biological applications that take place in the liquid phase, the ratio of the fluid momentum
diffusivity to molecular diffusivity of the scalar is much greater than 1; so, the scalar field holds
finer structures than the velocity field (see Refs. [6–9]).The smallest scalar length‐scale when
the Schmidt number is greater than 1 is named the Batchelor scale (ηB) and is much smaller
than the Obukhov‐Corrsin scale, ηoc, and the smallest velocity length‐scale,—the Kolmogor‐
ov scale (η). The small dimension of the Batchelor scale makes accurate measurement of the
instantaneous concentration in turbulent liquid flows scarce and only possible with rather
sophisticated systems [10].

To overcome many of the difficulties found in mixture‐based processes, numerical simula‐
tion appears as an important tool for design and process improvement, as it can predict
important information about the flow and scalar fields, which is hard to measure. When
numerical simulations of industrial process are carried out, key requirements are the compu‐
tational efficiency, algorithm robustness, and accurate representation of the process.

Models that correctly represent the mixing processes in turbulent flows are important for the
design of various engineering and environmental applications where turbulence plays an
important role. While the current understanding of turbulence allows a reasonable descrip‐
tion of the flow field, a universal description of turbulent mixing processes remains a
challenge [11, 12].

Direct numerical simulation (DNS) gives the most detailed information about the flow, as it
resolves all the scalar length‐ and timescales by setting up the spatial resolution according to
the smallest scalar/flow scale. No empirical closure or turbulence model assumptions are
required. DNS has been useful for the study of transition and turbulent flows [13]. Because
physics and chemistry are properly represented, DNS has also been used for the analysis of
complex phenomena in combustion systems [14]. The use of DNS has been increasing as a
complementary means of study of turbulent mixing process [15]. Sophisticated discretiza‐
tion schemes are used by DNS, imparting low flexibility when complex geometries are used
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[13]. The full‐scale resolution requirement makes very expensive the computational cost, and
sometimes prohibitive, even for future computational capabilities. The computational cost
rises as Re3. Approximately 99% of calculations are used to solve the dissipation scales [16].
For these reasons, DNS is not a viable choice for systems of practical importance at high
Reynolds and Schmidt numbers.

A more realistic alternative to DNS is the utilization of spatial filtering or temporal ensemble
averages, such as large eddy simulation (LES) and unsteady Reynolds averaged Navier‐Stokes
equations (U‐RANS) [17]. When LES and U‐RANS formulations are used, additional terms
appear in the transport equations. These terms need to be modeled. The information given by
DNS has been useful to validate the unclosed terms of LES and RANS approaches [18].

RANS is based on the application of the Reynolds decomposition to any quantity
Q(x, t)=Q(x, t )̄ + Q '(x, t), where Q(x, t )̄ is the mean of Q, and Q '(x, t) is the deviation from the
mean. The temporal average must be done for time intervals greater than any flow time‐
scales. Averaged equations contain additional unknown terms: Reynolds stresses, scalar
fluxes, and averaged source terms. These terms are unclosed, and turbulence models must be
provided in order to close the mathematical system. In RANS, the largest scales are solved,
and the turbulent spectrum information is provided by turbulence models. By using RANS, a
good balance between results and computational cost is obtained. RANS is useful in engi‐
neering, especially for industrial and environmental sectors [19]. It is possible to perform
parametric studies, considering its low computational cost. The main limitation of RANS
models is that they only give limited information about turbulence, because all turbulent scales
are modeled. Although RANS has achieved reasonable good precision for simple flows, in the
reproduction of large‐scale organized and nonstationary turbulence structures, when strong
streamline curvature or nongradient transport is present, RANS has achieved limited
success [20]. Some inaccuracies arise from the turbulent viscosity hypothesis, the equation for
ε and the nonuniversality of the model's constants which have to be tuned in order to improve
the simulation results [16]. Although RANS provides a reasonable computational cost‐
precision ratio, it does not always predict the concentration fluctuation distributions [21] in
turbulent reacting liquid flows; in the case of stirred tank reactors (STR), the turbulent kinetic
energy is unpredicted in the impeller region and discharge stream [22–25].

On the other hand, LES can be viewed as an intermediate approach between DNS and RANS,
because in the former all turbulent structures are calculated, while in the latter they are
modeled. The idea of LES is to solve the large, nonuniversal, anisotropic turbulent scales and
to model the small turbulent scales, which contain less kinetic energy and are nearly univer‐
sal and isotropic. These small scales are easier to model than the whole turbulent spectrum.
The LES approach was proposed by Leonard [26]. A higher fidelity on the representation of
the flow structure than RANS is expected, since the geometry‐dependent, large turbulent
scales are calculated.

The cut‐off length must be proportional to the longitudinal integral length‐scale [16], LEI.
Typically, 92% of the kinetic energy is resolved for a one‐dimensional flow and 80% for a three‐
dimensional flow [16]. The proportionality constant depends on the filter specification. The
uncertainty about residual motions is lowered by reducing the filter width; therefore,
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constitutive LES equations are grid‐dependent, that is, LES is an incomplete model. Referenc‐
es [27–29] review the LES literature.

Compared to DNS, LES saves the computational cost of solving the lower turbulent scales (99%
of DNS calculations), and can be used for the simulation of systems of practical importance.
However, it is more expensive than a k‐ε model for a given grid resolution.

In shear flows, LES prediction capabilities are diminished by the fact that in the viscous region,
the energy‐containing structures are of the same order of magnitude as the viscous length‐
scales (δv =v ρ / τw), and LES cannot solve them. To face this issue, it is possible to refine the
computational mesh in near‐wall zones in order to consider the small coherent structures
developed on those zones, but this refinement implies more computational effort. There are
three additional possibilities: incorporating the fluid behavior in the wall region by wall
models, simulating those zones with RANS (hybrid RANS‐LES), or incorporating wall‐
adapted SGS closures.

Most research efforts in LES for reactive flows are concentrated on the SGS fluxes and Favre‐
filtered source terms [30]. In diffusion flames, chemical reactions take place after mixing of
reactive species is achieved at the smallest scales of turbulence (unresolved in LES); so, in LES
the combustion process must be modeled.

According to Ref. [31], the uncertainty initially contained in the nonresolved scales is propa‐
gated to the resolved ones; hence, it is said that SGS modeling is not a well‐posed problem.
LES results can be interpreted as a different realization of the flow. They could have the same
statistical properties of the flow and may predict the same spatially organized structures but
at a different location.

LES has been successfully applied to turbulent flows, in particular to complex geometries in
liquid phase such as stirred tank reactors (see Refs. [10, 24, 32–34]). Because LES equations are
unclosed, SGS models must be supplied in order to specify the SGS stresses, SGS scalar fluxes,
and filtered reaction terms.

There are still unanswered questions about the behavior of high Schmidt turbulent flows. LES
could be an alternative method for studying these flows, as long as the flow's physical behavior
can be captured by the subgrid‐scale models [15]. The LES equations are presented in the
following section.

2. Large eddy simulation (LES)

Spatial scale separation is done by applying a low‐pass filter to the governing balance
equations. This set of filtered equations governs the dynamics of the large scales. Spatial
fluctuations, lower than a defined filter cut‐off length ‐Δ‐, are smoothed or removed. The
spatial filtering operation of a flow variable Q, being a function of time and space, is defined
by the convolution integral:
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(1)

where Q = Q L + Q”. Favre filtering has been applied to Eqs. (1) and (2). G is the filter kernel
defined over the entire domain. The filter kernel depends on the filter width, Δ, and must
satisfy a set of conditions (see Ref. [16]). Favre‐filtered mass, momentum, and scalars’ balance
equations are as follows:

(2)

(3)

(4)

where the symbol ∂ denotes the partial differential operator, and the summation convention
is used for repeated indices. Time (t) and spatial coordinates (xj) are the independent varia‐
bles; ρ is the fluid mass density; ϕα is the mass‐weighted value of the scalar field (e.g., internal
energy, mass fraction); uj is the mass‐averaged velocity in the j‐direction; p denotes pressure;
τij is the shear stress tensor; and J  is the diffusive flux of the scalar.

New terms appear in LES equations, as it occurs in RANS. These terms account for resolved
and subgrid scales’ interactions. The SGS stresses (τij

SGS) and SGS scalar fluxes ( jα, j
SGS ) are

defined by

(5)

In addition, a model is needed for filtered source terms. Subgrid‐scale (SGS) models must be
supplied in order to specify the SGS stresses, SGS scalar fluxes, and filtered reaction terms.

The main task of SGS stress tensor model is to dissipate the energy transferred from turbu‐
lent large scales. The dynamics of the subgrid scales affect that of the resolved flow field
through the subgrid‐scale stress tensor.

There are several SGS stress tensor models (for review, see Refs. [17, 35]). The simplest models
are based on the gradient assumption. More complex models are of first and second order. As
the model complexity increases, so does the required number of equations. Those models
based on eddy viscosity show good balance between accuracy and numerical computation
and present good prediction abilities in turbulent combustion and other highly interacting
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processes. It is also possible to close the LES approximation by PDF methods, such as the
velocity‐filtered density function (VFDF) [36] and the velocity‐scalar filtered mass density
function (VSFMDF) [37], but this approach increases considerably the number of equations to
be solved. This procedure increases the computational cost 15–30 times longer than the
Smagorinsky [38] and dynamic Smagorinsky [39, 40] models, respectively.

2.1. The Smagorinsky model

The Smagorinsky model [38] is one of the pioneer SGS models in the development of LES. Its
simple formulation and good performance have made it very popular, and it is used in this
work. The Smagorinsky model is an eddy‐viscosity based model, which assumes equilibri‐
um between the turbulent kinetic energy dissipation and production rates to obtain a relation
between the characteristic velocity and the resolved strain rate. A Boussinesq approximation
is applied to the deviatoric part of the SGS stress.

(6)

where νT  is the subgrid eddy viscosity of residual motions and δ is the Dirac delta function.
The filtered strain rate is given by

(7)

The subgrid eddy viscosity is modeled in a similar way as the mixing length:

(8)

where Cs is the Smagorinsky coefficient. This Model parameter is not universal and depends
on the flow configurations. While for isotropic turbulence, the Smagorinsky coefficient is
about 0.17 [41], for other configurations this value may not be correct; for a channel flow, the
Smagorinsky coefficient is about 0.1 [42]. In addition, the spatial variation of this coefficient
makes it difficult to find a proper value. This model parameter can be dynamically calculat‐
ed by using the dynamic procedure [39, 40], in which, by assuming scale invariance, a test filter
greater than the filter width, Δ, can be used for calculating Cs from the resolved flow field.

2.2. The dynamic Smagorinsky model

The major drawback of the Smagorinsky model is that a single universal constant cannot
correctly represent different turbulent flows. Germano et al. [39] proposed a dynamic
procedure for computing the Smagorinsky model coefficient, based on the instantaneous
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information given by the filtered velocity field. The coefficient is locally recalculated during
the simulations; so, it is no longer necessary to specify its value as an input parameter.

The dynamic procedure is based on the idea that the information given by the smallest resolved
scales can be used to model the largest unresolved scales, as they have a similar behavior. The
latter can be done by employing a test filter, with the test filter width larger than the filter
width (Δ), usually taken as Δ̂ =2Δ.

A model for the SGS stress is

(9)

where Cdyn is a Model parameter, and the term should be modeled. If the test filter is applied
to the filtered momentum equation, the filter stress has the form:

(10)

As it was the case for the SGS stress, a model for the filter stress is

(11)

The coefficient has been assumed to be independent of the filtering process. By applying the
test filter on the unresolved SGS scalar flux (τij

SGS) and subtracting it from the test filter stress
(Tij), the resolved part of the SGS stress tensor is obtained. This is the Germano identity [40]:

(12)

The Germano identity can be partially satisfied by replacing model equations for the SGS and
filter stresses [Eqs. (9) and (11), respectively] into Eq. (12), giving an approximation for the
model coefficient (Cdyn):

(13)

Equation (13) is overspecified, because there are five independent equations and one un‐
known value. There are different ways to calculate the coefficient. By applying a least‐squares
methodology, Lilly [40] minimized the error incurred in the calculation of the coefficient. The
error is
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(14)

The minimum corresponds to

(15)

leading to

(16)

The calculation of the parameter generates spatial and temporal fluctuations, as well as
negative values [43]. Regions with a negative coefficient may be interpreted as regions where
backscatter takes place. According to Carati et al. [44], the dynamic Smagorinsky model does
not have information about the amount of energy that is available in the subgrid scales.

3. Subgrid‐scale scalar flux models

In the context of mixing of scalars, the interaction between resolved and nonresolved scalar
structures is accounted for by the unknown SGS scalar flux term, which must be provided via
SGS scalar flux models. In the context of mixing, the aim of LES closures is to express the SGS
scalar flux in terms of the known filtered values in order to close the numerical set or partial
differential equations. Accounting for the nature of turbulent mixing, where various regimes
are present in the scalar spectrum, modeling of the SGS scalar flux models is a complex task
that is far from trivial [45].

Macromixing, mesomixing, and micromixing happen simultaneously as the mixing process is
taking place. The spatial and temporal transport of large‐scale structures describes the
macromixing, and they can be solved in LES. Mesomixing is driven by turbulent fluctua‐
tions in the energy‐containing range, and viscous convective deformations of fluid elements
and molecular diffusion are responsible mechanisms for micromixing. Because the inertial
range of the velocity spectrum is modeled in LES, mesomixing can be expressed by gradient
correlations. On the other hand, characterization of micromixing can be based on the second
statistical moment (variance) of the local concentration distribution [46–48]. A physical
meaning of the concentration variance is that it provides a measure of the scalar distribution
from small‐scale homogeneity. The variance production, then, is dependent on the scalar flux.

There are many published works proposing SGS scalar flux models; most of them were
developed for gas flow. For review of SGS scalar flux models in gas flows, see Refs. [27, 49].
Even though gas‐based SGS scalar flux models have some limitations on the prediction of
mixing where high Schmidt number effects are important [48], physically based models for
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the SGS scalar flux have been rarely proposed. One exception is the study of Jaberi and
Colucci [50].

According to experimental data and DNS results, the assumption of isotropy at inertial and
dissipation scales of the scalar field is no longer valid for structured functions and derivative
skewness, when a mean scalar gradient is taking place [4, 8, 35]. Different models have been
proposed in order to take into account the anisotropic behavior of micromixing, mainly
focused on gas‐phase (see Refs. [50–52]), but their application for fluids with high Sc num‐
bers is scarce.

Few models have been developed or used for high Schmidt flows. The eddy diffusivity
model [53] with constant and dynamically calculated turbulent Schmidt number [39, 54] has
been widely used on the simulation of mixing at high Schmidt numbers [40, 55].

Other models used in the simulation of high Schmidt flows have been adapted from SGS stress
tensors or extended from their RANS counterpart. These models include the following:

1. The dynamic mixed model, originally developed by Zang et al. [55] to represent the SGS
stress tensor extended to the LES of scalar field by Na [56] in a turbulent channel (Sc/Pr
=1, 3, 10); The model was also used by Tkatchenko et al. [57] in the near‐field of a coaxial
jet mixer (Sc = 1000).

2. The dynamic structure model proposed by Chumakov et al. [58] and a priori tested using
DNS data of a nonreacting mixing layer and decaying isotropic turbulence.

3. The multifractal SGS stress tensor model introduced by [59, 60] and extended to model
the SGS scalar flux in a low Schmidt flow [61, 62] in a homogeneous isotropic turbu‐
lence at Sc = 100 [15] and a jet mixer [63].

4. The implicit method (non‐SGS model), in which discretization methods are developed,
so that the truncation error itself acts as an implicit SGS model. This approach was applied
to a stirred tank reactor by Revstedt et al. [32] and isotropic turbulence and channel
flow (Sc = 1, 3, 10, and 25) by Hickel et al. [45].

On the other hand, the anisotropy model [48] was proposed for the simulation of mixing of
passive and active scalars. Simulation results of mixing at low and high Schmidt regime have
shown its superior performance among other SGS scalar flux models. The anisotropy and the
eddy diffusivity models are presented in the following subsections.

3.1. The eddy diffusivity model

In analogy to the Smagorinsky model, most of the SGS scalar flux models are based on the
eddy diffusivity assumption. The eddy diffusivity model [53] can be viewed as a counter‐
part of the Smagorinsky model for the scalar field. The eddy diffusivity model relates the SGS
flux to the local filtered scalar strain rate, and the transport is assumed to be aligned to the
filtered scalar gradient [15]. The proportionality constant is called the turbulent Schmidt
number, which appears as an adjustable parameter. However, the turbulent Schmidt num‐
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ber can be dynamically calculated by using the methodology proposed by Germano et al. [39]
and further refined by Moin et al. [54].

(17)

where ScT is the turbulent Schmidt number, which is given by the ratio of SGS viscosity to the
SGS diffusivity (ScT =vT / DT ).

The eddy diffusivity model has been often used due to its simplicity, and it shows good results
for gas flows. The model has been widely used in simple and complex geometries, some
involving reactive scalars.

The turbulent Schmidt number appears as an adjustable parameter that can be tuned in order
to minimize the error with reference data. According to Durbin and Patterson [63], the value
is dependent on the type of flow, and is in the range 0.1–1 [27]. Various authors (see Table 1)
have proposed different values for the nondimensional parameter ScT in high Schmidt flows.

Configuration ScT Reference

Stirred tank
reactors

0.8 [23]

0.7 [24]
[113], [114]

Channel 0.25 [110]

Inclined channel 0.7 [109]

Confined
impinging jets

0.4 [108]

Coaxial jet 0.7 [107]

Jet in channel 1.0 [48]

Mixing layer 1.0 [48]

Co‐flowing jet 0.7 [99]

Table 1. Turbulent Schmidt number used in LES of high Schmidt flows.

In turbulent shear flows, different orientations of the mean scalar gradient yield different
values for the turbulent Schmidt number [49]. A constant value of ScT is, therefore, not
adequate. The turbulent Schmidt number can be thought of as a parameter that characteriz‐
es the dissipative/diffusive cut‐off scales of the velocity and scalar fields. The behavior of the
scalar mixing spectrum, presented in Section 2.2, indicates that a universal distribution of an
effective turbulent Schmidt number cannot exist [27].
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3.2. The eddy diffusivity model with dynamic procedure

Similar to the dynamic Smagorinsky model, in the dynamic model, the ScT in Eq. (17) can be
dynamically calculated by using the methodology proposed by Germano et al. [39], which was
further extended to scalar transport and compressible flow by Moin et al. [54]. By applying a
test filter over the filtered velocity and scalar fields, the turbulent Schmidt number can be
computed as follows [64].

The filter scalar flux is

(18)

where

(19)

Configuration Sc
(Pr)

Reference

Channel 0.1–200 [105], [106]

1–100 [104]

0.1–100 [103], [104]

Mixing layer 600 [10]

600 [34]

3300 [48]

Coaxial jet 1000 [57]

Jet in channel 3300 [48]

Grid‐generated turbulent flow 600 [102]

Co‐flowing jet 2000 [98], [99]; [102]

Table 2. Previous works of turbulent mixing of Sc >> 1 using the dynamic procedure.

On implementation of the dynamic procedure, negative values are clipped to zero, and a
relaxation process is imposed to instantaneous values.

The dynamic procedure is one of the most popular SGS scalar flux models in LES of high
Schmidt flows. Table 2 summarizes the geometry and Schmidt numbers of previous works,
using the dynamic eddy diffusivity model.
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Theoretical considerations suggest that the dynamic procedure should be adequate for LES,
where the scalar fluctuations are resolved but the velocity fluctuations are not, so that SGS
kinetic energy transfer takes place [27]. This is the case of low Schmidt flows.

Since the eddy diffusivity model assumes the alignment of the scalar flux with the scalar
gradient, this approach does not predict realistic values of the scalar flux components [45, 48].
In addition, errors are introduced, as the model does not account for the different dynamics
of the velocity and scalar fields.

3.3. The dynamic anisotropy model

Another recent SGS scalar flux model is the anisotropy model [48]. Contrary to the eddy
diffusivity and dynamic models, the anisotropic model [48] accounts for the nonlinear
contributions of the SGS to the turbulent scalar flux. If it is assumed that the turbulent flow
field (mean velocities and turbulence characteristics) is available from LES using the dynam‐
ic‐based Smargorinsky SGS model [39], the anisotropy model is the simplest explicit aniso‐
tropic‐resolving algebraic form, and consists of a cubic formulation in terms of the scalar
gradients. This model is thermodynamically consistent as it agrees with the irreversibility
requirement of the second law of thermodynamics [47, 65]. It combines the linear eddy
diffusivity model with an additional term coupling the (deviatoric) SGS stress tensor and the
gradient of the filtered scalar field. Pantangi et al. [65] present a detailed analysis:

(21)

where Ddev is the anisotropy model coefficient. Both DT and Ddev depend on the invariants of

τij
SGS  and ∂ ϕ L

∂ xj
. The tensor diffusivity is defined by

(22)

The anisotropy model may lead to other models proposed in the literature, according to the
modeling level used for the deviatoric part of the SGS stress tensor. Note that the additional
term is a measure of how local mixing, dependent on the molecular Schmidt number through
the SGS timescale, is influenced by the nonresolved flow structures (see Eq. (9) in Ref. [65]).

If the turbulent flow field (mean velocities and turbulence characteristics) is available from the
LES solver using the dynamic‐based Smargorinsky SGS model, the anisotropy model is the
simplest explicit algebraic model that solved accounts for the anisotropy found in turbulent
flows. In the context defined by the Smagorinsky model, the anisotropy model can be
developed by expressing the SGS timescale using the filter size and the subgrid viscosity. The
anisotropy model reads:
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(23)

The anisotropy coefficient, Dan, can be either specified or calculated by the dynamic proce‐
dure as well as the ScT. A preliminary evaluation of this procedure was reported in Ref. [47]
for chemical liquid flows and for gases in Ref. [46]. In order to compute the anisotropy
coefficient, the turbulent Schmidt number must be calculated using Eqs. (21)–(23). Then, the
calculation of the anisotropy model coefficient is done as follows:

(24)

4. The filtered density function (FDF) approach

A second approach in the LES mixing context is to solve the joint probability function of the
SGS scalars [66], named filtered density function (FDF), in conjunction with the filtered
momentum equations from LES. In this approach a filtered density function (FDF) is used to
quantify the probability to find a filtered variable of the flow (Y) in the range (Y*–ΔY/2, Y*
+ΔY/2). The fundamental property of the FDF method is to account, in a probabilistic way, for
the effects of SGS fluctuations. The advantage of the FDF approach over other methods is that
the chemical source term appears in a closed form, so that the turbulent/chemistry interac‐
tion can be correctly included. The counterpart of the FDF equation in the RANS context is
named probability density function (PDF) equation. The main difference between PDF and
FDF is that temporal fluctuations over different flow realizations are characterized by the use
of PDF, while the instantaneous subgrid‐scale fluctuations are characterized by the use of
FDF [67]. The PDF is the expected value of the FDF in the limit of vanishing filter width [68].

The statistical information of the reactive scalar fields can be obtained explicitly from a
transport equation. Pope [66] introduced the mathematical definition of the FDF transport
equation. Pope [66] highlighted one of the major advantages of the FDF approach: the chemical
reaction term in the FDF transport equation is closed; so, the modeling of this term is no longer
required. Drozda et al. [69] present an overview of the state of progress in FDF.

The mass‐filtered mass density function (FDF) is defined as

(25)

where Ψ is the sample space variable for each composition and f ' is the fine‐grained joint FDF
of compositions [16], defined as
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(26)

Based on the properties of Dirac delta functions and, after some manipulation, the FDF
equation is [70]

(27)

The introduction of the scalar balance equation into Eq. (19) gives

(28)

The zeroth, first, and second order moments of FDF are

(29)

.

Conditionally filtered terms of equations are unclosed. The conditional advection term can be
modeled by the conventional gradient diffusion [70]:

(30)

where DT is the SGS diffusion coefficient. The conditional diffusion term in Eq. (30) accounts
for transport in the physical space and mixing in the composition space. It has to be mod‐
eled by mixing models. The interaction by exchange with the mean model (IEM) or linear mean
square estimation (LMSE) [71, 72] is described by Eq. (32) [70]:

(31)

where CΩ is the frequency of mixing within the subgrid, and it can be modeled as
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(32)

where CΩ is the SGS mixing time constant. The solution of the FDF equation by convention‐
al difference schemes is intractable due to the high‐dimensionality of the equation: the
computational cost rises exponentially as the number of scalars increases [73]. To overcome
this problem, stochastic methods have been used for the solution of the equation, because the
computational cost rises linearly with the number of scalars [74].

The FDF approach also has a modeling requirement, because the conditional convective flux
and conditional diffusion terms in the FDF transport equation are unknown. By deducing an
equation for the conditional convective flux based on the velocity‐scalar filtered density
function formulation, Ref. [75] showed that a gradient transport hypothesis model performs
well under many conditions. This model is usually implemented in FDF methods.

On the other hand, the conditional diffusion term accounts for transport of the FDF in the
physical space and mixing in the composition space by the action of molecular diffusivity, and
it has to be modeled by mixing models. From a theoretical point of view, McDermott and
Pope [30] developed a set of desirable properties that an ideal FDF mixing model should fulfill.
These properties differ from the corresponding PDF mixing models (see Ref. [16]). Most of the
FDF mixing models have been adapted from their RANS counterpart.

A widely used mixing model is the interaction by exchange with the mean (IEM) model [71,
72]. The IEM model has a deterministic origin, initially formulated for PDF methods in RANS.
The IEM states that the stochastic particle only interacts with itself, and the rate of change is
proportional to the distance to the mean in the scalar space. Equivalently, the model relaxes
the solution in the composition space toward the mean value; the relaxation is done over a
subgrid‐scale mixing time. The major drawback of the IEM model is that it preserves the shape
of the PDF, avoiding the relaxation toward a Gaussian distribution [76], being an unphysical
situation. However, as pointed by [77], large‐scale mixing in inhomogeneous turbulent mixing
problems also affects the shape of the distribution, and then limitation of the preservation of
the distribution becomes less critical.

Numerical solution of the RANS/PDF equations has shown that the IEM model does not have
good predictive capabilities (see Refs. [78, 79] for comparison of the accuracy of different PDF
mixing models). On the contrary, the IEM model performs reasonably well in FDF/LES
simulations. It has been used in most LES/FDF studies (see Refs. [70, 74, 78, 80–84] and others).
There are few LES/FDF works in which other mixing models were used.

Mitarai et al. [78] and Olbricht et al. [74] implemented the modified Curl model—MCurl [85],
which is a particle interaction model based on Curl's model [86]. In the Curl model, the PDF
of the composition field is described by N stochastic particles. Mixing results from the
movement of these particles in the composition space. According to the “simple” model, the
mixing processes take place randomly between two stochastic particles, and the resulting
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composition of the new particle in the following time step is taken as the mean of the preced‐
ing particles. The Curl model produces a correct decay rate, but it relaxes the PDF to a bell‐
shaped curve instead of the Gaussian shape. This problem can be reduced by using improved
models. In the modified Curl model of [85], the particle gradually mixes with the other one at
a random mixing rate (for each pair of particles), instead of the originally instantaneous mixing
assumption.

The Euclidean minimum spanning tree model (EMST) from Ref. [87] was evaluated by Mitarai
et al. [78] and Shetty et al. [77]. The EMST is a sophisticated particle interaction model, where
local mixing in composition space occurs between the selected group of particles, in contrast
with the previous models (IEM, MCurl, etc.). Briefly, a Euclidean minimum spanning tree is
constructed on the ensemble of particles which are selected based on a defined state variable.
The Euclidean minimum spanning tree is formed by minimizing the length of the spanning
tree. Mixing occurs between pairs of particles connected by a common branch of the tree. The
EMST model has a superior performance over other PDF mixing models; however, it de‐
mands more computational time. In comparison to the IEM and MCurl, the implementation
in the numerical solvers is more complicated.

Cleary et al. [88] implemented the multiple mapping conditioning (MMC) mixing model [89].
In the MMC model, a reference space is mapped to the physical space in order to attain local
mixing in the composition space. This is done by choosing one or more reference variables
(e.g., mixture fraction, sensible enthalpy, scalar dissipation, and others). Mixing occurs
between particles that are close in both physical and reference spaces. The main difference of
the MMC model with the EMST model is that local mixing in the former model is indirectly
enforced in the composition space by assuring localness in the reference space, while it is
directly enforced in composition space in the latter model [90]. Therefore, the principle of
independence of scalars is assured in MMC. An advantage of the MMC model in FDF is that
the averaged joint scalar distribution can be well predicted by using fewer particles in the
computational domain than other models. However, the model has two unknown constants,
and the reference space has to be solved in LES.

A recent PDF mixing model is the parameterized scalar profile (PSP), developed by Meyer and
Jenny [91] and used by Shetty et al. [77] in LES/FDF. In this approach, it is assumed that one‐
dimensional effects dominate the dynamics of molecular diffusion at molecular interfaces. The
PSP model is based on a parameterization of one‐dimensional scalar profile in high Rey‐
nolds number flows. These scalar profiles are composed of scaled sinusoidal shaped sections,
which move with the fluid within a reference frame. There are three parameters used by the
scalar profiles; so, they become as additional properties of the particles. The latter makes the
model very expensive, because three additional equations must be solved.

A mixing model developed in the LES framework is the fractal IEM (FIEM) [77]. The FIEM is
a modified version of the IEM in which it is considered that the behavior of the system at the
small scales is repeated at the large scales. It is done by splitting the control volume into many
smaller control volumes, each one having the same size, allowing strong mixing in the smaller
control volumes and further weak mixing in the larger control volume. The model uses two
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additional empirical parameters that account for the relative importance of the two mixing
steps into the global mixing process. These constants are tuned by trial and error.

The performance of different mixing models was evaluated by Mitarai et al. [78]. These authors
compared the numerical results of IEM, EMST, and MCurl in RANS/PDF and LES/FDF with
DNS data of a gas diffusion flame with one‐step reaction. The predicted filtered temperature
was in an acceptable agreement with DNS results; the results from MCurl and IEM models
were similar, while a better agreement was achieved with the EMST model. The mean and
variance of the mixture fraction were accurately predicted by all mixing models. Their results
also showed that LES/FDF approach provides much better results than the RANS/PDF in
which marked differences between PDF mixing models were observed.

Shetty et al. [77] compared the predictions with IEM, EMST, PSP, and the FIEM mixing models
in LES/FDF when modeling a low Schmidt three‐stream turbulent jet. Comparisons with
experimental data were done in the near‐field of the configuration [max. downstream
location = 7.2 jet diameters]. The simulation results of the mean and RMS of the radial scalar
distribution obtained with all models followed the experimental observations. However, the
FIEM results were in better agreement with the mean experimental observations at the largest
downstream location. Results showed fast mixing of the scalar of the inner jet and slow mixing
of the scalar of the annular jet, but, conversely, this did not happen when the FIEM was used.
Large scale motions play an important role in mixing at the unstable shear layers formed
between the inner, annular, and co‐flowing streams, mainly due to entrainment processes. In
the inner part of this jet, the scalar field may behave similar to the velocity field. Because the
filtered velocity field is supposed to be the same for all tests [not showed in the chapter], little
variations are expected in the performance of different mixing models, as was the case for the
IEM, EMST, and PSP models. This suggests that the performance of the FIEM could be the
result of artificial diffusion transport in the calculations.

Another aspect in the development of FDF is the fact that in LES there may be computation‐
al zones where the velocity field is locally fully resolved (the DNS limit). The mixing model
has to take into account this aspect. McDermott and Pope [30] showed that the latter can be
accomplished by using a mean drift term in the particle composition equation, rather than a
random walk in physical space. The model developed by McDermott and Pope [30] correct‐
ly reduces to DNS in the limit of vanishing filter width and is able to deal with differential
diffusion.

On a discrete representation of the FDF at a given time, the particles in the sample space
correspond to particles in physical space, and distance between particles in the subgrid volume
is small [67]. In a LES/FDF computational domain, the numerical solution of a FDF equation
using a particle‐based method may involve 106–108 stochastic particles. Therefore, the scalar
resolution increases and may approximate to that of DNS, depending on the Schmidt number.

According to Klimenko [92], in the DNS limit, when the physical distance between particles
becomes infinitesimally small (particle‐based solutions of the FDF equation), many mixing
models behave essentially the same. Furthermore, recalling the differences between PDF and
FDF methods, the modeling requirements are different: in the RANS context, the PDF aims to
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solve mean scalar values, and fluctuations about the local mean value must be represented by
the mixing models; contrarily, spatially filtered scalar values are sought in the LES approach,
and the role of mixing models is to deal with SGS fluctuations about the local spatially filtered
scalar. For these reasons, it is expected that simple mixing models used by the FDF method
can provide a good approximation [68, 93]. In contrast, RANS has higher levels of sensitivity
on the mixing model selection; so, the closure of the conditional diffusive term is the main
difficulty in the application of PDF methods [88].

For review of the FDF method, see Haworth [93] who presents a comprehensive paper about
theoretical aspects, physical models, numerical algorithms, and applications of PDF‐FDF
methods. Drozda et al. [69] present an overview of the state of progress of LES/FDF methods
applied to the particular case of turbulent combustion.

The application of the FDF method to high Schmidt flows is scarce. Schwertfirm et al. [94–96]
used the FDF approach to study high Schmidt number flows using the DNS of the flow field
(a priori analysis). Schwertfirm et al. [94–96] showed for three different Schmidt numbers (Sc
= 3, 25), that if a correct definition of the SGS mixing frequency is done then the statistical and
instantaneous behavior of the scalar field can be well predicted by using the IEM mixing model.
One important finding is that the SGS scalar variance transport can be neglected in the SGS
mixing frequency definition.

Van Vliet et al. [97] applied the LES/FDF approach to a tubular reactor with a moderated
Reynolds number (Re = 4000) and high Schmidt number (Sc = 2000). They used IEM mixing
model. They compared the mean and variance concentration distribution in the axial direc‐
tion with a few experimental data, and without reaction (conserved scalar). From a qualita‐
tive point of view, simulation results are in agreement with experimental observations.
However, the quantitative comparison of simulation results with experimental information
shows that the simulated concentration (mean) decays faster. A similar behavior was exhibit‐
ed by the scalar variance, showing a poor agreement with experiments. The discrepancy
between experiments and simulations indicates that the mixing rate is overpredicted due to
an inaccurate estimation of the subgrid‐scale mixing time, rather than a feature of the IEM
model. The performance of the reactor was studied by the LES/FDF approach by changing the
Damköhler number over eight (8) orders of magnitude. A LES/FDF numerical study of a low‐
density polyethylene tubular reactor was done by Van Vliet et al. [81], at the vicinity of the
initiator injection point. Multiple reactive scalars were solved (concentration and tempera‐
ture), and a mechanism of six chemical reactions was used.

Experimental studies indicate that in gas flows, the subgrid mixing time constant is not
universal, having values between 0.6 and 3.1 in the RANS context [76]. Different values of the
SGS mixing time constant have been reported, mostly in the range 2–10 for gas flows. For liquid
flows, Van Vliet et al. [97] used a value of 3. Mejía et al. [98] evaluated four values (between 4
and 10) in a turbulent round jet. They found that as the subgrid mixing time constant increas‐
es, the jet decay rate as well as the mixing rate decreases. The nonuniversality of this con‐
stant can affect the predictive capability of LES.
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The works of Van Vliet et al. [81, 97] and Schwertfirm et al. [94–96] demonstrate the feasibili‐
ty of performing (advanced) numerical simulations of systems of practical interest (e.g.,
industrial reactors), with minimum assumptions and complex chemistry. The numerical
simulation is a valuable tool for designing, optimizing, and evaluating such processes. Their
simulations showed that the calculation of the SGS mixing time, a common parameter in many
mixing models, is an Achilles heel in their simulation of the high Schmidt flow, and it may be
also the case for other high Schmidt systems.

5. Comparison between different SGS scalar flux models and the FDF
method

In previous works [98, 99], we simulated a turbulent round jet (Re = 10,000) discharging diluted
rhodamine B in a co‐flowing stream of water (Sc = 2000), using large eddy simulation. The flow
configuration is detailed by Antoine et al. [100]. Three different models for the unknown
subgrid‐scale (SGS) scalar flux term were used for closing the filtered scalar balance equa‐
tion: eddy diffusivity model with both constant turbulent Schmidt number (ScT = 0.7) and
dynamically calculated turbulent Schmidt number, and the dynamic anisotropy model. In
addition, the filtered density function (FDF) method was implemented. The interaction by
exchange with the mean (IEM) mixing model was used for closing the conditional diffusion
term in the transported FDF equation. The FDF transport equation was solved using a Monte
Carlo method.

Figure 1. Radial mean concentration distribution across the jet. Experimental data (symbols) from Ref. [100]: + = 70; ● =
80; × = 90. Simulation results (lines) from Refs. [98, 99]: Solid line: eddy; dashed line: dynamic; dotted line: anisotropy;
dashed‐dotted line: FDF.
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Figure 2. Radial mean (a) and fluctuation (b) concentration distribution across the jet. Experimental data (symbols) from
Ref. [100]: + = 70; ● = 80; × = 90. Simulation results (lines) from Refs. [98, 99]: Solid line: eddy; dashed line: dynamic; dotted
line: anisotropy; dashed‐dotted line: FDF.

Figures 1 and 2 compare the simulated radial mean and fluctuation distribution of the scalar
concentration [98, 99], normalized by the centerline value (η = r/x, where r is the radial
coordinate and x is the downstream distance from the nozzle exit), with the experimental
data [101].

Having in mind the limitations of the eddy diffusivity model, it is noted in Figure 1 that the
mean concentration distribution is predicted reasonably well. On the other hand, Figure 2
reveals that the three SGS scalar flux models fail to reproduce the concentration fluctuations
at higher values of the nondimensional radial coordinate (η). Although the LES simulation
results of the concentration distribution in radial direction are similar for the tested SGS scalar
flux models in Figures 1 and 2, the dynamic anisotropy model provides a better perform‐
ance. In LES, a mesh grid refinement would improve the simulation results. Mejía et al. [98]
also showed that if the mesh grid is further refined, the dynamic eddy diffusivity improved
its predictive capabilities.

Figure 3. Streamwise velocity‐concentration correlation across the jet. Experimental data (symbols) from Antoine et al.
[100]: + = 70; ● = 80; × = 90. Simulation results (lines) from Refs. [98, 99]: Solid line: eddy; dashed line: dynamic; dotted line:
anisotropy; dashed‐dotted line: FDF.
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Figure 4. Radial velocity‐concentration correlation across the jet. Experimental data (symbols) from Antoine et al. [100]:
+ = 70; ● = 80; × = 90. Simulation results (lines) from Refs. [98, 99]: Solid line: eddy; dashed line: dynamic; dotted line:
anisotropy; dashed‐dotted line: FDF.

The simulation results of the FDF approach are in good agreement with the mean and
fluctuations concentration distribution for all regions of the jet. The radial distributions of the
axial and radial scalar fluxes are presented, respectively, in Figures 3 and 4.

Figures 3 and 4 show that the dynamic eddy diffusivity and anisotropy models reproduce the
behavior of the scalar fluxes for low and intermediate values of the radial coordinates.

The agreement of the simulations of the FDF method (Figures 3 and 4) with the experimen‐
tal data is good, and much better than that obtained with LES simulations using advanced SGS
scalar flux models, such as the anisotropy model (see, e.g., Figures 1 and 2 ). The LES/FDF can
capture strong intermittency effects that take place on the surroundings of the superviscous
layer formed between the jet and the co‐flowing streams, leading toward anisotropy of the
scalar field. Contrary to the SGS scalar flux models evaluated in [98, 99], the FDF equation does
not spread the scalar away from the superviscous layer, as seen in the predicted rms and scalar
fluxes distributions.

The computational costs of the dynamic and anisotropy models were 1.2 and 1.7 times that of
the eddy diffusivity model, respectively. When a higher level model has to be considered, it
is usual that more computational resource is required. From an engineering point of view, the
dynamic model captures the most important mixing characteristics at a rather low computa‐
tional cost. The computational time of the FDF, compared to the one required by using the
eddy diffusivity model is approximately 1.9 times higher though [101].

6. Conclusions

Large eddy simulation of transport and mixing in high Schmidt flows remains a challenge, in
particular for engineering applications. The appraisal of conventional and advanced SGS scalar
flux models as well as the FDF method has to done based on the object of study. However,
some of the merits of the approximations can be highlighted. The SGS scalar flux models have
the advantage over FDF methods in that the simplest ones (e.g., eddy diffusivity model) are
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available in many CFD solvers. This closure strategy uses the same mesh grid of the flow solver
as well as the numerical methods used for the numerical solution of the N‐S equations.
Therefore, one important consequence is that the programming of advanced SGS scalar flux
models is straightforward. Having in mind the computational cost, simple SGS scalar flux
models can reproduce important characteristics of the scalar field such as mean quantities on
a moderate grid resolution. However, if the application requires a deeper understanding of
mesomixing and micromixing (such as combustion and flow instability studies), the use of
advanced SGS scalar flux models becomes mandatory. On the other hand, the main advant‐
age of FDF method is that it allows for a detailed description and simulation of the scalar field.
The FDF transport equation can be solved using particle‐based methods, which are very simple
to implement and to couple to LES solvers. The computational domain can be simpler than
the one used by LES, since it only has to account for the spatial domain where the scalar field
evolves.
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