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1. A epigrammatic testimony of luminescence

From the prehistoric times, the term ‘luminescence’ is more fascinating towards mankind. One
can simply look at the logically occurring luminescence through the aurora borealis, lumines‐
cent wood, glow worms, putrid fish and meat [1]. The effect was wearing a veil in secrecy and
illustrated consequently in the Middle Ages and past. The most primitive printed report of a
solid‐state luminescent material originated from a Chinese text that was published in the Song
dynasty (960–1279 A.D.), quite referred to a book (never recovered) from the period 140–88
B.C. It narrates a painting picture of a cow munch grass in an outside field. In the darkness,
the cow would be seen repose within a shelter [1–3]. Perhaps, the first man‐made ink was
exploited using a persistent phosphor material. Harvey [3] dispenses a tremendous description
of these untimely interpretations far beyond the purview of the current reassess. In general,
the name phosphorus is mentioned only for the chemical element, whereas specific micro‐
crystalline luminescent materials are referred as phosphors. The first artificial phosphor
exemplified in Western literature dates from 1603. Then, the Italian alchemist and shoemaker
Vincenzio Cascariolo’s phosphor (1870) manifest was the earliest commercially available
phosphor, referred to as “Balmain’s paint,” a barium sulphide preparation. Phosphors (light‐
bearing materials) are optical transducers that yield luminescence when the material is suitably
excited. The idiom ‘luminescence’ (the Greek translation of lucifer, means light bearer) was
first initiated by the German physicist, Eilhardt Wiedemann, in 1888, to facilitate the discrim‐
ination among the emission of light (luminescence) from thermally excited substances/
molecules under suitable excitation devoid of escalating their average kinetic energy.

After 1900, the modern period luminescence experimentations were started on the inspira‐
tions of promising quantum mechanics approaches [4–6]. During the antediluvian 1900s, the
progress of quantum theory bestowed a concrete evidence on theoretical groundwork about
the  enormous  accretion  of  spectroscophical  facts.  A  comprehensive  understanding  of
luminescent emission led from quantum theory, which voluntarily elucidating prior inter‐
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pretation and consenting predictions  of  innovative  occurrence.  Subsequently,  during the
period of  1920–1930,  theoretical  concepts  of  luminescence  are  very  well  implicit  among
researchers, and it was documented to facilitate luminescence spectroscopy is intrinsically
added  novel  perceptive  than  absorption  spectroscopy.  A  minimum  of  five  independent
luminescence properties are able to be estimated which are the features of a testing sample
module [4–6]:

1. Emission intensity by monitoring the excitation wavelength.

2. Excitation intensity by monitoring the emission wavelength.

3. Decay time of the excited state.

4. Emission of polarization.

5. Quantum yield.

6. Anisotropy.

As an assessment, the merely alternative variable calculated using absorption spectroscopy is
the transmission spectra (Beer‐Lambert law). However, most studies concern the activity of
luminescence concepts in the prediction of innovative occurrences as summarized in Table 1.

Type Examples Applications

Fluorescence Lignum nephriticum (‘kidneywood’), aragonite,
and so on (in all the below cited luminescence
types) [7]

Display devices, fluorescent
hydrogels, biomarkers

Phosphorescence Eu2+‐doped strontium silicate‐aluminate and so on
(in all the below cited luminescence types) [8]

Traffic signals, phosphorescent paint
(‘Leuchtgelb’)

Photoluminescence Halophosphate (fluoro‐or chloro‐apatite):
Ca5(PO4)3(F,CI):Sb3+, Mn2+ [9]

Fluorescent lamp

Radioluminescence Paint with radium, gaseous tritium light source
(GTLS) [10]

Wristwatch faces, gun sights, nuclear
reactors and radioisotopes

Cathodoluminescence Ca3Gd7(PO4)(SiO4)5O2: Ce3+, Tb3+ and Mn2+ [11] Cathode ray tube, monitors, field
emission device

Electroluminescence Zn(S,Se): Cu+, ZnS: Cu+ [12] LED, EL displays

Thermoluminescence ZnS: Mn2+, Radioactive irradiation, quartz [13, 14] Archaeology, dating of burnt flint,
pressure gauge temperature

Chemiluminescence Oxidation of luminol, fluorescein, rhodamines,
coumarins, oxazines [15]

Analytical chemistry

Bioluminescence Green fluorescent protein [16] Cell tracking, fast‐acting biocides

Candoluminescence/
Pyroluminescence

Zinc oxide and cerium oxide or thorium dioxide,
trimethyl borate, alkali metals and alkali earth
metals [17, 18]

Gas mantles or limelight

Galvanoluminescence Electrolysis of sodium bromide (NaBr) [19] Fabrication of electrolytic cell

Sonoluminescence Collapse of gas‐filled bubbles in a liquid [20] Bomb‐resistant baggage container for
wide body aircraft
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Type Examples Applications

Mechanoluminescence/
Mechanochromic
luminescence

CaZnOS:Mn2+ and CaZr(PO4)2:Eu2+ [21] Mechanical stress in industrial
plants, structures and living bodies

Triboluminescence/
Fractoluminescence

ZnS:Mn2+ [22, 23] Diamond, quartz, emission of
electromagnetic radiation (EMR)—
sensors/smart materials

Crystaloluminescence NaCl [24] Image intensification techniques
(spatial, temporal and spectral)

Injection luminescence LED [25] Basic research

Negative luminescence InSb, (Hg,Cd)Te, Ge and InAs [26] Electronic device

Table 1. Different types of luminescence, with material examples, and field of applications.

Luminescence is a process having a wide range of applications in everyday life, starting from
the conventional fluorescent lighting they extend to digital radiography in the field of magnetic
resonance imaging (MRI) [27], electronic portal imaging device (EPID) [28], light‐emitting
diodes (LEDs) [29, 30], solid‐state lasers [31], luminescent solar concentrators [32] and many/
much other electrical and electronic equipment employ luminescent materials. Recently,
electroluminescent display that shows promise for making flexible electroluminescent flat
panel display (FEL‐FPD) technology [33] is emerging worldwide; it also provides an excellent
platform for a foundation for a no‐compromise hang‐on‐the wall TV. In the field of biochem‐
istry and biophysics, the fluorescence spectroscopy and time‐resolved fluorescence are
deemed as the first and foremost research equipment and this prominence has transformed
and expanded nowadays with modern spectroscophical equipment. Currently, fluorescence
as one of the foremost tactics was meticulously utilized in dissimilar areas of biochemistry, cell
and molecular biology, genetics, bioinformatics, microbiology, biometrics, forensics, flow
cytometry, medical diagnostics, nanomaterials, DNA sequencing, etc. The usage of fluores‐
cence proves a dramatic growth in cellular and molecular imaging. Fluorescence imaging
should be able to disclose the localized analysis of intra‐cellular molecules, every so often at
the stage of the detection of single molecule [34].

2. Technological advancements in the science of luminescence
spectroscopy

All and sundry is having numerous astonishing moments to have a high regard for the
spectacular engagement in recreation of luminosity, the consequence and the good organiza‐
tion of the assistance offered through optical devices to expand our prospect, in addition to
reward for its ensnared defects to make ourselves with optical illusions. The well‐equipped
spectroscophical techniques possess broad accessibility by means of ease procedure, selectiv‐
ity, sensitivity, accuracy, speed and precision [6, 9, 34]. The novel applications of fluorescence
have proffered innovative technological advancements over few decades and these techno‐
logical features were rapidly implemented for ground‐breaking research. It is pointed out that
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two‐photon or multi‐photon excitation and multi‐photon microscopy is one of the important
technologies by employing the fluorescence mechanism [35–38]. By two‐photon absorption
process fluorophores can be excited by means of femtosecond pump‐pulse lasers with regular
pulse width. These lasers have turned out to be simple to utilize and are equipped with
microscopes in the recent days. Table 2 summarizes some major innovative technological
advancement associated with the science of luminescence activities in a broad spectrum.

Instrumentation References

Time‐resolved fluorescence spectroscopy [6]

Transient‐absorption spectroscopy (flash spectroscopy) [39]

Time‐resolved infrared spectroscopy [40]

Time‐resolved two‐photon photoelectron (2PPE) spectroscopy (or)
time‐resolved photoemission spectroscopy (or)
laser‐based angle‐resolved photoemission spectroscopy

[41–44]

Fluorescence lifetime imaging spectroscopy [45]

Fluorescence correlation spectroscopy [46, 47]

Single‐molecule fluorescence spectroscopy [48]

Fluorescence microscopy (epi‐fluorescence, confocal) [49]

Two‐photon excitation fluorescence microscopy [50]

Near‐field scanning optical microscopy (or) optical stethoscopy [51]

Table 2. Different types of luminescence spectroscophical instrumentation.

In fluorescence microscopy, the controlled excitation from the phenomenon of two‐photon
excitation has created a prevalent employability. Only through the focal plane of a microscope
the image processing could be achieved through multi‐photon excitation process [49]. This is
a major benefit, since fluorescence images may get deformed from fluorescence process from
top and bottom of the focal plane. There is no definite phase fluorescence so as to reduce the
dissimilarity in non‐confocal fluorescence microscopy; as a result, the images are obtained with
good resolution. Such images are currently being achieved in numerous research laboratories.

Recently, a variety of scientific themes in association to the perspective of analytical advance‐
ments in luminescence spectroscopy and luminescence‐based imaging in the field of earth
sciences and related disciplines were discussed in detail [52]. Cathodoluminescence (CL)
spectroscopy can be employed to detect and differentiate diverse generation of minerals or
mineral by its variable CL colours or as an efficient technique on behalf of spatially resolved
analysis of point/lattice defects (e.g. radiation‐induced defects or vacancies, or broken bonds
induced from electron defects) in solids by using the CL spectral measurements [53]. A new
approach where fluorescence methods combined with modern chemo‐metric approaches,
such as bio‐specific and other sensors, shows significant potential in the detection of cultural
heritage and its degradation, explosives, residues and their components using time‐resolved
photoluminescence spectroscopy (TRPL) and fluorescence lifetime imaging (FLIM) [54].
Similarly, the total reflection x‐ray fluorescence (TXRF) spectrometry is an energy‐dispersive
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x‐ray method that is employed for determining the elemental and chemical analysis (in
stainless steel metal release) and is also suitable for small‐sample analyses like airborne silver
nanoparticles (NPs) from fabrics [55].

Thus, the invention of modern luminescence technology‐oriented spectroscophical tools
employed with multi‐photon excitation/emission is one of the most important mechanisms
that encompasses with radiative energy transfer, energy transfer by resonant exchange, energy
transfer by spatial process, energy exchange by spin coupling, energy transfer by non‐resonant
processes and so on, which involved during photophysical processes even in a molecular level.
As a result, the up‐to‐date activity in luminescence‐based spectroscophical instrumentation
has been correlated to expand our prospects towards new ideas in the field of biological science,
physical chemistry, food science, pharmacology, nanotechnology, photovoltaics/solar cells,
LEDs and displays, environmental science and so on.

In connection to the aforementioned aspects, the proper evaluation of environmental risks
pertinent to recent experimental standards with reference to technological perspectives based
on the growth inhibition caused by the chemical substances require necessary qualitative
assessment such as the assessment of mechanism articulating toxicity. Therefore, it is affirmed
that this assessment is need to be developed for building improvement towards ecological
preservation and to deep evasion against human health.

3. Conclusion

As discussed above, luminescence is not only well conceived, but a pioneer across the globe
with innovative scientific developments; however, facts also demonstrate that it has been and
will prolong to be imperative towards ground‐breaking research against novel applications
for the societal cause. The most important worldwide challenges amongst the major notewor‐
thy progress are in diverse fields of biochemistry, cell, molecular biology, genetics, bioinfor‐
matics, microbiology, bioinformatics, biometrics, forensics, flow cytometry, medical
diagnostics and the addition of nanotechnology. The dispute of novel spectroscophical/
microscopical innovation comprises interdisciplinary areas that must continue to be improved
for these innovative global developments in spectral imaging, fluorescence lifetime, time‐
correlated single‐photon counting, kinetic chemical reaction rates, singlet‐triplet dynamics,
visual implants, non‐invasive optical biopsy and neurology. Thus, studies on inimitable
luminescence technological surroundings might provide an insights about atoms/molecules
that may perhaps turn out to be the future harbingers of green energy in the upcoming scenario.
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