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Abstract

Nonviscously  damped  vibrating  systems  are  characterized  by  dissipative  mecha‐
nisms depending on the time history of the response velocity, introduced in the physical
models using convolution integrals involving hereditary kernel functions. One of the
most used damping viscoelastic models is Biot’s model, whose hereditary functions are
assumed  to  be  exponential  kernels.  The  free-motion  equations  of  these  types  of
nonviscous systems lead to a nonlinear eigenvalue problem enclosing certain number
of  the  so-called  nonviscous  modes  with  nonoscillatory  nature.  Traditionally,  the
nonviscous modes (eigenvalues and eigenvectors) for nonproportional systems have
been  computed  using  the  state-space  approach,  computationally  expensive.  This
number of real eigenvalues is directly related to the rank of the damping matrices
associated with the exponential kernels. The state-space approach has traditionally been
used up to now as the only method to compute the nonviscous modes for nonpropor‐
tionally damped systems. Motivated by this open problem, we propose in this chapter
to describe the available numerical methods for classically damped systems and present
the recent methods for nonclassically damped systems. It is shown that the problem of
finding the nonviscous modes can be reduced to solve as a set of linear eigenvalue
problems. The presented methods are compared through a numerical example.

Keywords: vibrating systems, nonviscous damping, eigenvalues and eigenvectors,
nonproportional systems, numerical methods

1. Introduction and background

It has been always very difficult to model the physical fundamentals of damping in structural
dynamics. In general, the proposed models depend on several parameters, which must be
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fitted according to experimental results. The viscous model, proposed by Rayleigh [1], is the
most used representation of dissipative forces for vibrating systems as it predicts an exponen‐
tial decay rate of displacements, something that can be observed experimentally in a great
variety of structural materials such as metals, concrete, wood, glass, or masonry. However,
damping models need to be updated for the mathematical modeling of the real behavior of
the so-called viscoelastic damping materials, widely used for vibration control and energy
dissipation devices. Although the term viscoelastic damping has traditionally been used, in the
last years the concept nonviscous damping is also found in the bibliography, since this behavior
can be considered as a generalization of the classic viscous damping. These materials, used in
different areas of engineering as mechanical, civil, industrial, or aeronautics, are formed by
polymer derivatives, rubbers, and rubber-like materials, and are characterized by a time-
dependent constitutive model and by frequency-dependent Young and shear moduli.

Viscoelastic models of energy dissipation are introduced in the structure assuming that the
damping forces are proportional to the history of the degrees-of-freedom (dof) velocities via
kernel hereditary functions. These functions, also named damping functions, are the terms of
the viscoelastic damping matrix in time domain, denoted by . The dynamic balance
of internal forces yields to the system of motion differential equations for a viscoelastically
damped structure, with the form
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where the dofs’ time-domain response is represented by  are the mass
and stiffness matrices. In general, we do not assume symmetry in these matrices although the
mass matrix will be assumed to be non-singular. Under these conditions, the modes of the
system can be obtained as the nontrivial solutions of the free-motion problem obtained
considering fe(t)=v0 =u0 =0 in Eq. (1). Thus, checking functions of the form u(t)=ue st  we obtain

2 ( ) ( ) =s s s s + + ≡ M G K u D u 0 (2)

where  is the so-called dynamic stiffness matrix.

In this chapter, we will analyze Biot’s damping model with N  exponential kernels, a restriction
commonly assumed in engineering applications. The expressions of the normalized damping
functions in time and in frequency domain are, respectively
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where μk >0 with 1≤k ≤N  are the relaxation or nonviscous parameters and Ck∈Rn×n are the
damping matrices (in general asymmetric) of the limit viscous model, obtained if the relaxation
parameters tend to infinite, that is
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The coefficients μk  control the time and frequency dependence of the damping model while
the spatial location and the level of damping are modeled via the matrices Ck . From this
property, it is not strange to find them also as the damping coefficients of Biot’s model. The
level of damping is closely related to the magnitude of these limit-damping matrices, while
the relaxation parameters give information on how far is our nonviscous model from a viscous
behavior [2]. It is also easy to demonstrate that the limit viscous damping and the time-domain
kernel function are related by

0
=1

= ( )
N

k

k

t dt
∞

∑ ∫C  (6)

Eqs. (2) and (4) clearly show the frequency dependence of the damping matrix, characteristic
in this type of systems. This fact leads to a nonlinear eigenvalue problem whose eigenvalues
are the roots of the equation

det ( ) = 0s  D (7)

In general, the damping matrix G(s) admits a rational representation, so that the polynomial
of the denominator is at least of one order less than that of the numerator [2]. Thus, the
determinant can be written as a polynomial, whose order is greater than 2n and, therefore, the
total number of roots of Eq. (7) can be expressed as 2n + r  and arranged as

* *

1 1 =1 1
{ , , , , } { , , }n

n n j r
s s s s σ σ∪  (8)

where si,si
* are n complex conjugate pairs and σ1,…,σr  are r  negative real numbers named

nonviscous eigenvalues. The name is chosen precisely because they are characteristic of
nonviscous or viscoelastic models. The number of these nonviscous eigenvalues will depend
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on the nature of the damping function, particularly on the number of hereditary exponential
kernels. The complex conjugate pair forces the solution to be oscillatory, whereas the other
eigenvalues are associated with overdamped, nonoscillatory modes. The latter modes decay
rapidly and in general are not important for the system response.

The representation of the hereditary behavior was originally introduced by Boltzman [3] at
the end of the nineteenth century. Its application to viscoelastic materials and to damping of
vibrating systems was studied by different authors in the middle of the twentieth century.
Among them, it is worth mentioning specially Biot [4, 5] whose multi-exponential hereditary
model has widely been used for modeling viscoelastic damping materials. The fundamentals
of viscoelasticity, a thorough study on the time-dependence constitutive models, and its
application for modeling damping materials can be found in books such as Fluegge [6], Nashif
[7], and Jones [8]. Although this chapter is closely related to Biot’s damping model, we must
not forget the other viscoelastic models based on the fractional derivatives and widely used
for representing the frequency-dependent behavior of damping materials. This model allows
to use less parameters than exponential-based models [9], although the mathematical treat‐
ment is more difficult to implement, especially in the time domain, which is computationally
more expensive [10].

This chapter is focused on the study of the r  nonviscous modes of a nonviscously damped
vibrating system. It is known that the effect of not considering these modes in the time-domain
response is not important [2, 11]. Additionally, the exact calculation requires the use of the
state-space approach, significantly increasing the computational effort and losing the physical
insight of the involved internal variables [12, 13]. Maybe, these two reasons put together
explain why they have not been analyzed in detail in the literature. Recently, Lázaro [14]
derived a numerical approximated method to extract the nonviscous modes avoiding the state-
space approach. In this chapter, we present a review of the nonviscous modes with nonoscil‐
latory nature, giving their characteristics, mathematical properties, and the current available
numerical methods for their computation.

2. Single degree-of-freedom systems

A single dof nonviscously damped vibrating system is dynamically characterized by a mass
m, a linear stiffness k , and a nonviscous hereditary damping function . The motion equation
is

( ) ( ) d = ( )
t

e
m t k tτ τ τ

−∞
+ − +∫ u u u f (9)

where  represents the degree of freedom and  represents the applied force in time
domain. In this chapter, we analyze the nonviscous modes associated to Biot’s damping model
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with N  exponential kernels. The expressions of the normalized damping functions in time and
in frequency domain for single dof are, respectively
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where μk >0 with 1≤k ≤N  are the relaxation or nonviscous parameters. Eqs. (5) and (6) can be
particularized for single dof resulting
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Checking solutions of the form , we can derive the characteristic equation

2 2
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Multiplying this expression by ∏k =1
N (s + μk ), it results in a 2 + N -order polynomial. If the system

is lightly or moderately damped, the set of eigenvalues presents the form {s0,s0
*,σ1,…,σN }, where

s0,s0
* are a pair of conjugate-complex eigenvalues representing the modes of oscillatory nature.

The rest N  roots are negative real numbers representing the nonviscous eigenvalues of
nonoscillatory nature (overcritically damped). In this point, we focus on giving a mathematical
characterization of these eigenvalues and to provide efficient methods to approximate the
nonviscous eigenvalues avoiding solving the polynomial equation.

2.1. Mathematical characterization of eigenvalues

Let us see that the damping function evaluated at a nonviscous eigenvalue must always verify
certain inequality related to the dynamic properties of the system, say mass m and stiffness

k . Eq. (12) is rewritten in terms of the undamped natural frequency ωn = k / m and of a new
dimensionless damping function denoted by

( )
( ) =

2
n

G s
J s

mω
(13)

The characteristic Eq. (11) now becomes
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2 22 ( ) = 0
n n

s sJ s ω ω+ + (14)

Reordering this equation, we can express it as

22 2 2 22 ( ) = ( ) 1 ( ) = 0
n n n n

s sJ s s J s J sω ω ω ω  + + + + −    (15)

Let  be any real nonviscous eigenvalue. Since  for all  it can be ensured that

(16)

equivalent to | J (σ)| ≥1. This inequality always holds for any real eigenvalue of Eq. (12). This
result is a generalization of the well-known relationship between the dynamic parameters m,

k , and c of a single dof viscously damped oscillator for having real eigenvalues: c ≥ccr =2 m k

(condition for critical damping).

As a direct consequence, we can define the following set:

{ }= :| ( )| 2s G s m k
−∈ ≥ (17)

assuring that every real eigenvalue of Eq. (12) lies inside  Lázaro and Pérez-Aparicio [15]
derived the necessary condition expressed as | J (σ)| ≥1 and calculated approximate limits for
the set  denoted as nonviscous set.

2.2. Numerical computation

It is known that the influence in the response of the nonviscous modes is much less important
than that of the oscillatory complex modes [2, 16, 17]. For this reason, it is reasonable to look
for closed-form approaches, avoiding the computational effort needed for solving the charac‐
teristic polynomial. Two methods based on the hypothesis of light damping can be found in
the literature. They allow to approximate the nonviscous eigenvalues using closed-form
formulas as function of the dynamic and damping parameters. The first one due to Adhikari
and Pascual [18] approximates the nonviscous eigenvalues with the first iteration of Newton’s
method applied to the characteristic polynomial. The second one, developed by Lázaro in his
PhD Thesis [19] and published in the paper [20], is a perturbation-based approach. Both
methods will be described in detail below and can be applied for both single dof systems and
multiple dof systems with proportional (or classical) damping.
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2.2.1. Adhikari and Pascual’s method

Let us denote by ζk = ck / 2mωn to the damping ratio associated to the jth exponential kernel.
Introducing these parameters, the characteristic equation can be written as

2 2
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2 = 0

N

k k

n n

k k

s s
s

ζ µ
ω ω

µ
+ +

+∑ (18)

As mentioned before, the characteristic polynomial can be obtained multiplying the above
equation by ∏ j=1

N (s + μj), resulting the 2 + N -order polynomial
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The method of Adhikari and Pascual [18] is based on the application of the first iteration of
Newton’s method with s = −μj as the initial point. Indeed, assuming that −μj + Δj is close to the
solution, Δj can be explicitly calculated from the first-order expansion of P(s) around the initial
point
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∂ −
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After some simplifications, the expressions of Adhikari and Pascual published in Ref. [18] can
be rewritten in terms of the current notation as
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where

=1 =1=1 =1 =1
, ,
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Under the hypothesis of light damping ζj≪1, the nonviscous eigenvalue lies close to −μj;
therefore, it is expected that the solution from Eq. (21) accurately estimates the exact solution.
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2.2.2. Lázaro’s method

Lázaro’s method [19, 20] is based on considering the jth nonviscous eigenvalue σj, 1≤ j ≤N  as
a function of the jth associated damping ratio ζj. The damping ratio ζj can be interpreted as a
perturbation parameter of Eq. (18). Thus, we can write σj =σj(ζj) and Eq. (18) can be written for
this eigenvalue as

2 2

=1

( ) 2 ( ) 2 ( ) = 0
( ) ( )

N
j j k k

j j j j n j j n n
kj j j j j k
k j

ζ µ ζ µ
σ ζ σ ζ ω σ ζ ω ω

σ ζ µ σ ζ µ
≠

+ + +
+ +∑ (23)

Now, multiplying this equation by σj(ζj) + μj, we obtain

( ) ( )2 2( ) ( ) 2 ( ) ( ) 2 ( ) = 0
j j j j j j j n j j j n j j j n j

σ ζ µ σ ζ σ ζ ω σ ζ ω σ ζ ζ ω µ + + + +  (24)

With this operation, the singularity associated to the jth nonviscous eigenvalue can be avoided.
The function  introduced above is defined as

=1

( ) =
N

j j

j
j j
j k

s
s
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µ
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Eq. (24) explicitly defines σj as a function of ζj. Assuming light damping, we can expand σj(ζj)
in terms of the damping parameter ζj, considering the latter as a perturbation parameter within
the equation. Thus,

2

( ) = (0) (0) (0)
2

j

j j j j j j

ζ
σ ζ σ σ ζ σ′ ′′+ + + (26)

The value σj(0) can be obtained evaluating Eq. (24) at ζj =0

( ) ( )2 2(0) (0) 2 (0) (0) = 0
j j j j n j j n

σ µ σ σ ω σ ω + + +  (27)

The eigenvalue associated to the kth hereditary kernel lies closely to the kth relaxation
parameter [15, 21]. Therefore, we are interested in the real solution σj(0)= −μj. The first-order
derivative can be calculated solving for σ ′

j(0) after taking derivatives with respect to ζj in Eq.
(24). The rest of higher-order derivatives σ ″

j(0), σ ‴
j(0), …  are derived following the same
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procedure and using the previously calculated results. In general, it is sufficient to take up the
second-order term since this approximation accurately estimates the nonviscous eigenvalues
within a wide range of the damping ratios, including lightly and moderately damped struc‐
tures [15, 20]. After obtaining the coefficients σ ′

j(0) and σ ″
j(0), the closed-form expression for

σj remains as follows:

(28)

where

=0 1 2
=1 =1

= ( ) = , = =
( )s j

N N
jk k k k

j j j j
k kk j k j
k j k j

s µ

ζ µ ζ µ
η µ η

µ µ µ µ−

≠ ≠

∂
− −

− ∂ −∑ ∑


 (29)

Both Lázaro’s and Adhikari and Pascual’s methods are presented as closed-form expressions.
On one hand, numerical computation of polynomial roots is avoided, and on the other hand
the analytical expressions allow to explicitly observe the dependence of the nonviscous
eigenvalues as functions of the rest of the parameters of the problem.

3. Multiple degrees-of-freedom systems

This section deals with the properties of the nonviscous modes in asymmetric nonproportional
viscoelastically damped vibrating systems. A generalization of the mathematical characteri‐
zation proved for single dof systems in the previous point will be derived. Regarding numer‐
ical analysis, the available methods for computing nonviscous modes will also be presented.
As mentioned in the introduction, we consider an n-dof vibrating structure with mass and
stiffness matrices denoted . No restrictions with respect to the symmetry of these
matrices are imposed and, additionally, it will be assumed that the mass matrix is not singular.
The damping matrix  contains the hereditary functions of the viscoelastic dissipative
model. There are also no restrictions on the symmetry of the damping matrices C j 1≤ j ≤N  and

therefore it will be considered that C j ≠C j
T . Thus, the eigenvalues are the roots of the nonlinear

equation

2det ( ) = 0s s s + + M G K (30)
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The eigenvalues can be separated in n conjugate-complex pairs {sl ,sl
*}l=1

n  with oscillatory nature
and the r  real nonviscous eigenvalues {σj} j=1

r . The number r  of nonviscous eigenvalues and the
range of the damping matrices C j are directly related [12, 13]. In fact, Adhikari and Wagner

[12] proved that  in the context of the state-space approach, proof of which
will be presented in this section.

3.1. Mathematical characterization of eigenmodes

It is assumed that the damping matrix is not proportional, that is, G(s) does not verify the
necessary conditions to be diagonal in the modal space of the undamped problem [22]. As
known, proportional damping matrices allow to reduce an n-dof system to n single dof systems
due to the simultaneous decoupling capability. Thus, for these kinds of structures, the results
of the previous point would apply. Assuming the nonproportionality, each nonviscous mode
is characterized by a real eigenvalue  1≤ j ≤ r , and both right and left real eigenvectors
are denoted by u j and v j, respectively, so that

(31)

We define the following expressions for each nonviscous eigenmode:

= , = , = ,
jT T

j j j j j j j

j

Ωv M u v Ku
K

M K
M

(32)

These values can be interpreted as modal mass and stiffness, respectively, associated to the jth
nonviscous mode. Using these new modal parameters, we can write that

2( ) = ( )T T

j j j j j j j j j j
σ σ σ σ+ +v D u v G uM K (33)

We introduce functions  defined as

( )
( ) =
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T
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j j

s
s

v G u
J
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(34)
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which can be interpreted as the dimensionless modal representation of the damping matrix at
the jth real mode. Introducing this relationship in Eq. (33), we obtain

2 22 ( ) = 0
j j j j j j

σ σ σ+ Ω +ΩJ (35)

We can identify in this equality the same form as that of Eq. (14), derived for single dof
oscillators. Therefore, and using identical mathematical manipulations, we can deduce that

 or equivalently in terms of the damping matrix

( ) 2 , 1T

j j j j j
j rσ ≥ ≤ ≤v G u M K (36)

expression of which represents the generalization for multiple dof systems of the necessary
condition derived for single dof systems in the previous point, Eq. (16). Additionally, Eq. (36)
can also be considered as a generalization of the result published by Lázaro and Pérez-Aparicio
[15] for symmetric systems.

3.2. The state-space approach

In this section, the general state-space representation of the dynamic problem will be described.
This methodology allows to transform the general n-dof system of integro-differential
equations into a system of m >2n first-order differential equations through the introduction of
internal variables. It was developed by Wagner and Adhikari [12] for symmetric systems and
by Adhikari and Wagner [13] for asymmetric system.

It turns out that the final size m of the extended state-space formulation is directly related to
the rank of the damping matrices C j, 1≤ j ≤N . Because of that, it is appropriate to introduce

the algebra associated to the matrix C j. Let us assume that , then there exist

two matrices , such that

1

1 2

=
j jT

j j j T

j j

 
 
  

d O
Y C X

O O
(37)

where  is a diagonal block matrix with the nonzero eigenvalues of C j and the blocks
O1 j and O2 j are null matrices of size rj ×(n − rj) and (n − rj)× (n − rj), respectively. The columns of
matrices X j and Y j form two different bases of space Rn, hence both matrices can be written
in the form
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(38)

where x jk  and y jk  for k =1, …,rj are the right and left eigenvectors of the nonzero eigenvalues
of Ck . These two bases have special relevance in the developments of the state-space method
and it is convenient to group them in the two rectangular matrices

(39)

so that the following relations are straightforward:

=
T

j j j j
L C R d (40)

Let us return now to the system of integro-differential equations presented in Eq. (1) written
in terms of the dof , and let us introduce a set of N + 1 internal variables denoted by 
and w j(t), 1≤ j ≤N  and defined as

( )

0
( ) = ( ) and ( ) = ( ) , 1

tt
j

j j
t t t e d j N

µ τ
µ τ τ

− −
≤ ≤∫w v u u (41)

For our purposes, we need the time derivative ẇ j, which can be calculated using Leibniz’s rule
for differentiation of an integral, yielding

( )
2

0
= ( ) ( ) = ( ) ( )

tt
j

j j j j j j
e d t t t

µ τ
µ τ τ µ µ µ

− −
− + − +∫w w  u u v (42)

With these new variables, Eq. (1) can be expressed as

=1

= ( )
N

j j e
j

t+ +∑M C w K u fv (43)

Viscoelastic and Viscoplastic Materials176



In the above expression, the vector  represents the image via the linear mapping
defined by the matrix C j. The kernel of this mapping is a subspace of Rn  with dimension
n − rj  and characterized by Ker  The vectors x jk ,k = rj + 1,…,n  are a
basis of this subspace. Therefore, only the rj  projections of  onto the rest of eigenvectors,
say ,k =1, …,rj, are representative. Consequently, we can defined the rj  internal variables

 from the rectangular transformation matrix R j

( ) = ( )
j j j
t tw R w (44)

Introducing this transformation into Eq. (43) and premultiplying by M−1

1 1 1

=1

= ( ) ( )
N

j j j e
j

t t− − −− − +∑M C R M K Mv w u f (45)

Now, in order to complete the extended linear system, we need to relate the variables w j(t)

and their time derivatives. For that, let us combine Eq. (44) with (42) resulting in

= ( ) ( )
j j j j j j

t tµ µ− +R Rw w v (46)

Premultiplying by matrix L j
T  and denoting by T j = L j

T R j
−1L j

T , we can write after some

operations

= ( ) ( ) , 1
j j j j j

t t j Nµ µ− + ≤ ≤Tw w v (47)

Eqs. (45) and (47) and the direct relations  can be put in order in the following
extended linear system of ordinary differential equations:

= ( )t+Az z r (48)

where
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A
O T O I O

O T O O I








     


 (49)

{ } { }1

1
1

( ) = ( ), ( ), ( ), , ( ) , ( ) = ,( ) , , ,
TT

T T T T m T T T T m

N n e r r
N

t t t t t t
−∈ ∈0 M 0 0 z u v w w r f  (50)

In these expressions,  and  represent the null matrix and vector (in column)
of their respective spaces and Irj

 the identity matrix of . Since T j represents a full-rank
matrix of order rj, then the total order of the system is

=1

= 2

n

j
j

m n r+∑ (51)

showing that the extra order of the state-space formulation of a nonviscously damped vibrating
system is governed by the rank of the damping matrices. Hence, the total number of nonviscous
eigenvalues is given by r =∑ j=1

n rank (C j). As known, checking solutions of the form z(t)=z e st

in the free-motion equations  leads to the linear eigenvalue problem

( ) =
m m

s−A I z 0 (52)

The complete solution of this problem allows to construct the spectral set of nonviscously
damped systems. On one hand, we have 2n complex modes with oscillatory nature and, on
the other hand, the r  nonviscous eigenmodes with their respective eigenvectors. A detailed
study of the eigenvalue problem of Eq. (52) has been described in the work of Adhikari and
Wagner [13]. From a mathematical point of view, the problem of calculating the eigenmodes
is totally solved. However, we can expose two reasons why it is worth to deepen in the
numerical problem of the nonviscous modes: (a) to solve a linear eigenvalue problem as that
shown in Eq. (52) requires in general  operations, something that affects the computational
efficiency of the problem as we increase the number of hereditary kernels and the number of
degrees of freedom. (b) The physical insight of the problem is somewhat lost with the intro‐
duction of new internal variables in the state-space method. Due to these two arguments,
several numerical methods have been proposed in the bibliography to obtain the n complex
modes with oscillatory nature (see for instance references [2, 18, 23–27]). On the contrary, the
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nonviscous modes have not been studied with so much detail since, obviously, their influence
in the response is much less important. Lázaro published a research focusing on nonviscous
modes of symmetric systems [14] trying, on one hand, to reduce the computational complexity
of computing the nonviscous modes and, on the other hand, to supply a physical interpretation
of the significance of these kinds of modes, closely related to the properties of the damping
model and to the matrices C j, j =1, …,N . In the next point, Lázaro’s method will be described
including a generalization for asymmetric systems.

3.3. Approximate numerical method

As described above, we derive here the numerical method proposed by Lázaro [14] for the
computation of nonviscous modes. We work under the generally accepted assumption of light
damping, something that allows to predict that the nonviscous eigenvalues are close to the
relaxation parameters {−μj} j=1

N . Let us consider the following decoupling of the damping matrix
in the Laplace domain associated to the jth relaxation parameter, μj

=1

( ) = ( )
N

j jk
j k j j

kj k j
k j

s s
s s s

µ µµ
µ µ µ

≠

+ ≡ +
+ + +∑G C C C G (53)

Something similar can be made for the dynamic stiffness matrix, yielding

2 2( ) = ( ) = ( ) ( )
j j

j j j j

j j

s s
s s s s s s s s

s s

µ µ

µ µ
+ + + + + ≡ +

+ +
D M G K M G K C D C (54)

where D j(s)= s 2M + sG j(s) + K∈Cn×n denotes the dynamic stiffness matrix without the jth
hereditary damping function. Note that under this manipulation, the function D j(s) is now

continuous and with continous derivatives at s = −μj. Let us denote by  to any nonviscous

eigenvalue associated to μj and by  the right and left eigenvectors associated to σj,
respectively. The following relations hold:

( ) = ( ) =
j j

j j j j j j

j j

σ µ
σ σ

σ µ

 
+ 

+  
D x D C x 0 (55)

( ) = ( ) =
j jT T T

j j j j j j

j j

σ µ
σ σ

σ µ

 
+ 

+  
D y D C y 0 (56)
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In order not to have to repeat every step for the right and left eigenvalues, the developments
will be carried out only for Eq. (55). Thus, multiplying Eq. (55) by σj + μj

( ) ( ) =
j j j j j j j j

σ µ σ σ µ + + D C x 0 (57)

Let us define the matrix

( ) = ( ) ( )
j j j
s s sµ+A D (58)

and Eq. (57) can be written as

( ) =
j j j j j j
σ σ µ + A C x 0 (59)

Since the damping is assumed to be light, σj is close to −μj and consequently there exists certain
λj∈R, such that σj = −μj + λj, with |λj / μj | ≪ 1. Expanding the matrix A j(σ) around λj =0 and
neglecting second-order terms, we obtain

( ) = ( ) ( ) ( )
j j j j j j j j j j
σ µ λ µ µ λ′− + ≈ − + −A A A A (60)

where (• )′ =∂ (• ) / ∂s. From the definition of A j(s), we have that

( ) = , ( ) = ( )
j j j j j j

µ µ µ′− − −A 0 A D (61)

Substituting this result together with σj = −μj + λj in Eq. (59) and rearranging

=
j j j j

λ − C B x 0 (62)

where

2

( )
=

j j j n n

j

j j

µ

µ µ
×

−
+ ∈

C D
B  (63)

Following the same steps for the left eigenvectors from Eq. (56), we obtain the following
relation between λj and  is fulfilled:
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(64)

From Eqs. (62) and (64), λj, x j, and y j represent an eigensolution of the generalized linear
asymmetric eigenvalue problem of matrix C j with respect to B j. Denoting by rj =rank (C j)≤n,
then λj =0 is eigenvalue of Eq. (26) with multiplicity n − rj. Consequently, there exist other rj no-
null eigenvalues, which will be named λ j ,1 , … ,λ j ,rj

. Hence, the complete spectral set of problem
(64) can be listed as

,1 ,
, , ,0, ,0

n r
j

j j r
j

λ λ
−  

 
  

  (65)

and the rj nonviscous modes associated to the jth relaxation parameter can be denoted by

{ }, , ,
=1

; ;
r
j

j k j k j k
k

µ λ− + x y (66)

We highlight two interesting results from this method: (i) the computation of the nonviscous
modes has been reduced to solve N  linear eigenvalue problems of order n and (ii) there is no
need to previously calculate neither the modal space of the undamped model nor the eigen‐
problem of the matrices C j. We find a limitation because a hypothesis of light damping has
been used in the linearization (60). For vibrating problems under a higher level of damping,
the method can be adapted just taking the second-order term in the expansion of
A j(−μj + λj), that is

2

2A ( ) A ( ) A '( ) A ' ( ) = D ( ) D '( )
2!

i
j j j j j j j j j j j j j j j j

λ
µ λ µ µ λ µ µ λ µ λ′− + ≈ − + − + − − + − (67)

Introducing this expression in Eq. (59) and after some manipulations the resulting right and
left eigenvalue problems are

, ˆT T
j j j j j j j jl lé ù é ù- = - =ë û ë ûH F z 0 H F z 0 (68)

where

2( ) /
ˆ= , = , = , =

j jj n j j j j

j j j j

j j j jn n n n

µ µ
λ λ

    ′  −    
      

              

x yC O B D
H F z z

x yO I I O
(69)
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In general, the second-order approximation will lead to better approximations, although in
this case a larger problem must be solved; this will be confirmed in the numerical example.
The reader who wants to deepen in detail in higher-order approximations and their associated
computational cost can refer to the work of Lázaro [14]. In this paper, it is proved that, from a
computational point of view, it is profitable to increase the order of approximation up to certain
limit order after which it is better to use the state-space approach. That limit value of the
approximation order is  is the number of hereditary damping kernels.

3.4. Numerical example

In this numerical example, the presented computational methods to calculate the nonviscous
modes will be compared. For that, we use a five-degree-of-freedom discrete system with
viscoelastic dampers, shown in Figure 1. Each dof represents the displacement of a mass m =103

kg. The linear stiffness between the masses is k =105 N/m. Two nonviscous dashpots are located
between ground and dof 1 and between dofs 3, 4, and 5, whose constitutive relationships are
expressed as the sum of exponential kernels.

( ) 31 2
1 2 3( ) , ( ) tt t

a a b bt c e e t c e mm mm m m -- -= + =G G (70)

Figure 1. Numerical example: a five-degrees-of-freedom lumped mass system with viscoelastic dampers based on ex‐
ponential kernels.

The damping coefficients are ca =600 Nm−1s and cb =200 Nm−1s and the relaxation parameters
μj = {10, 25, 45} rad/s. Since we have three relaxation parameters, the damping matrix in time
domain yields

31 2
1 1 2 2 3 3

( ) =
tt t

t e e e
µµ µµ µ µ −− −

+ +C C C (71)

and according to the dashpots and rigidities distribution, the damping matrix coefficients and
the stiffness matrix are
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1 2 3

2 0 0 0 1 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0

= , = = , =0 2 0 0 0 0 0 0 0 0 1 1 0

0 0 2 0 0 0 0 0 0 0 1 2 1

0 0 0 2 0 0 0 0 0 0 0 0 1 1

a b

k k

k k k

c ck k k

k k k

k k

     −
     − −     
     − − −
     

− − − −     
     − −     

K C C C (72)

EIGENVALUES

μ1 =10, r1 =1 μ2 =25, r2 =1 μ3 =45, r3 =2

σ1,1    σ2,1    σ3,1    σ3,2   

Exact −9,762536252 −24,539682264 −44,480104306 −44,817181343

1st order approx. −9,767255360 −24,552342078 −44,490259517 −44,818527825

(error, %) (0,04834) (0,05159) (0,02283) (0,00300)

2nd order approx. −9,762478350 −24,539554707 −44,480042888 −44,817178561

(error, %) (0,00059) (0,00052) (0,00014) (0,00001)

EIGENVECTORS

μ1 =10, r1 =1 μ2 =25, r2 =1 μ3 =45, r3 =2

x1,1   x2,1   x3,1   x3,2  

Exact 0,920866633 0,991941304 0,000819770 0,001425705

0,359382674 0,125658720 0,018202462 0,032082433

0,140415976 0,016087932 0,395717303 0,707139978

0,053098476 0,001862474 −0,829159074 0,000761150

0,017681720 0,000209935 0,394424954 −0,706343512

1st order approx. 0,924263325 0,992396067 0,000786787 0,001405038

0,353130865 0,122132136 0,017832254 0,031844687

0,135129270 0,015194058 0,395980865 0,707139245

0,050069699 0,001700855 −0,828890371 0,000749666

0,016401313 0,000185500 0,394742065 −0,706355058

(error, %) (0,94544) (0,36701) (0,06167) (0,02392)

2nd order approx. 0,920823393 0,991936757 0,000819965 0,001425786

0,359460764 0,125693455 0,018204709 0,032082906

0,140482958 0,016096765 0,395715707 0,707139980

0,053137115 0,001864208 −0,829160702 0,000761173

0,017698131 0,000210211 0,394423029 −0,706343488

(error, %) (0,01192) (0,00362) (0,00037) (0,00005)

Table 1. Numerical example: results of nonviscous eigenvalues (rad/s) and eigenvectors.
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The rank of these matrices can easily be calculated obtaining

1 1 2 2 3 3
= rank( ) = 1, = rank ( ) = 1, = rank( ) = 2r r rC C C (73)

The number of nonviscous eigenvalues of this system is r = r1 + r2 + r3 =4. The results of the four
nonviscous eigenvalues and eigenvectors are shown in Table 1. Exact solutions based on the
state-space approach are shown in the first rows. Below, we find the approximated solu‐
tions calculated with Lázaro’s method using both the first- and the second-order approxi‐
mation (see Eqs. (62) and (68), respectively). The relative error is also shown below each result
(in brackets) for both eigenvalues and eigenvectors. For the latter, the relative error is
calculated in terms of the vector norms. Note that in general, the eigenvalues are calculated
more accurately than eigenvectors. Indeed, the relative error of the former is one order of
magnitude lower than that of the latter. As expected, the second-order approximation
improves notably the solution, decreasing the relative errors two or three orders of magni‐
tude respect to those computed from the first-order approximation. In general, since the effect
of the nonviscous modes in the response is not relevant, it is justified to use the first-or second-
order approximations presented in this text, even for moderately or highly damped vibrat‐
ing structures [14].

4. Conclusions

In this chapter, the mathematical modeling of damping materials has been presented. These
materials are characterized by presenting dissipative forces depending on the history of
degrees-of-freedom velocities via exponential kernel functions (or Biot’s model). The free-
motion vibration of these structural systems leads to a nonlinear eigenvalue problem. There
exist two types of eigensolutions: on one hand, the complex eigenmodes, with oscillatory
nature and considered as perturbations of the undamped natural modes, on the other hand,
the so-called nonviscous modes, overcritically damped modes (without oscillatory nature),
characteristic of the type of damping model. These latter modes are the main objective of the
research of the present chapter.

The nonviscous modes behind a viscoelastic exponential-damping-based system are closely
related to the relaxation parameter of the exponential functions. In general, their influence in
the response of the system is several orders of magnitude less important than that of the
complex modes. In this paper, we try to summarize some of the most relevant properties of
these modes, both from a theoretical and from a numerical point of view. Nonviscous modes
for both single and multiple dof systems are studied. For both cases, a necessary condition of
nonviscous modes relating to eigenvector, eigenvalue, and dynamic matrices is provided.
Additionally, numerical methods to extract nonviscous eigenvalues and eigenvectors,

Viscoelastic and Viscoplastic Materials184



assuming asymmetric and nonproportional dynamic matrices, are reviewed. The results have
been compared with a numerical example.
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