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Abstract

The brain is an organ that takes the central role in advanced information processing.
There exist great many neurons in our brain, which build complicated neural net‐
works. All information processing in the brain is accomplished by neural activity in the
form of neural oscillations. In order to understand the mechanisms of information
processing, it is necessary to clarify functions of neurons and neural networks. Although
the current progress of experiment technology is remarkable,  only experiments by
themselves  cannot  uncover  the  behavior  of  only  a  single  neuron.  Computational
neuroscience  is  a  research  field,  which  fills  up  the  deficiency  in  experiments.  By
modeling the essential features of a neuron or a neural network, we can analyze their
fundamental  properties  by  computer  simulation.  In  this  chapter,  one  aspect  of
computational neuroscience is described. At the first, the cell membrane and a neuron
can be modeled by using an RC circuit. Next, the Hodgkin-Huxley model is intro‐
duced, which has the function of generation of action potentials. Furthermore, many
neurons  show  the  subthreshold  resonance  phenomena,  and  the  cell  membrane  is
necessary to be modeled by an RLC circuit. Finally, some simulation results are shown,
and properties of such neuronal behaviors are discussed.

Keywords: cell membrane, action potential, neural oscillation, subthreshold reso‐
nance phenomenon, RLC circuit

1. Introduction

Our brain is an extraordinary microsome and has been completely shrouded in mystery.
However, its mystery has been just a little bit by bit solved owing to recent advances in
experimental technologies and tremendous development of computers. Many people can simply
say “brain,” but it is a general term for a collection of six main regions, that is, cerebrum,
diencephalon, midbrain, cerebellum, pons, and medulla oblongata. The brain is an organ that
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takes the central role in advanced information processing, such as visual, auditory, speech or
language faculties, motion control, recognition, emotion, and so on. According to advances of
experiment and computer technology, the research of brain science or neuroscience has been
made not only in the fields of medicine, biology, biochemistry, pharmacology, and psycholo‐
gy but also in the field of engineering.

The present-day computers have outstanding processing capacity. For example, they can find
the data that satisfy some requirements among huge quantities of data (database) or can
calculate over five trillion figures of pi(π). Therefore, many people are inclined to think that
our brain will be able to be replaced by computer in near future. Surely, computers excel at
processing of digitized data and processing by following a standard algorithm. However, it
can hardly execute processing, such as recognition of ambiguity figures (such as illusionism)
or inference based on imperfect information, which our brain can instantaneously carry out.
Reason for this comes from differences in ways of information processing of the computer and
our brain. The current computers, called von Neumann computer, are grounded in sequential
processing by using central processing units (CPUs) and memory storages, while on the other
hand, our brain bases on parallel and distributed processing through neural networks whose
components are neurons.

There exist tens of billions of neurons in our brain, which build neural networks in complicated
arrangement. All information processing in the brain is accomplished by neural activity in the
form of neural oscillations that cause cortical oscillations (delta, theta, alpha, beta, or gamma
oscillation). In order to clarify the mechanisms of advanced information processing in the
brain, such as learning and memory, it is necessary to understand functions and features of
neurons and neural networks. Although the current progress in experiment technology and
measuring system is remarkable, only experiments by themselves cannot uncover the behavior
of only a single neuron, because even a single neuron has complex biophysical characteristics
and never stops growth. Computational neuroscience is a research field which fills up such a
deficiency in experiments. By modeling the essential features of a neuron or a neural network
at multiple spatial-temporal scales, we can capture and analyze the fundamental properties of
a neuron or a neural network by computer simulation. Moreover, we can even offer some
suggestions to experimental study by taking into account the probable results obtained from
the simulation.

2. Neuron model with a low-pass filter property

2.1. Electrical circuit model of the cell membrane

Neurons play a key role in almost all brain functions. Fundamental function of neurons is to
generate action potentials when they received sufficient stimuli from the environment. Once
action potentials are generated, they are transmitted to other neurons so as to communicate
information from one neuron to another. There exist many types of neurons in the brain, such
as pyramidal neurons in the hippocampus and neocortex (Figure 1(a)), motor neurons in motor
cortex (Figure 1(b)), or Purkinje cells in the cerebellum (Figure 1(c)) [1]. Although their shapes
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are different, they have basically the same structure. As shown in Figure 2(a), a neuron is
composed of three parts, that is, the soma (cell body) where action potentials are generated,
the dendrite that receives inputs from other neurons, and the axon along which action
potentials are transmitted to axon terminals. One thing especially worth mentioning, the
dendrite of a neuron has hundreds to thousands of spines, on which axon terminals of other
neurons connect. This junction is called a synapse, through which information are transmitted
from one neuron to another (Figure 2(b)). Actually, there exist two kinds of synapses, one of
which is an electric synapse and the other is a chemical synapse [1]. The former is a junction
where neurons are directly contacted each other and information are electrically conducted
from one neuron to another. This junction is also called a gap junction. On the other hand, the
latter one is a junction with a cleft, called a synaptic cleft, into which neurochemical transmit‐
ters are released from the axon terminal and they bind to receptors on the spine head. Electrical
synapses are found at the sites that require the fastest possible response, such as nociceptive
reflex, whereas chemical synapses are found in almost all neurons of the brain. Figure 2(b)
shows an example of a chemical synapse. Both synapses have a very important role in signal
processing between neurons.

Figure 1. Various types of neurons. (a) Pyramidal neuron (cortex), (b) motor neuron (spinal cord),and (c) Purkinje cell
(cerebellum).

Figure 2. (a) Schematic neuron (Structure of neuron). (b) Synaptic connection at the synapse.
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Surfaces of a neuron are covered with the cell membrane, which separates the interior of cell
from the exterior environment. The cell membrane is composed of protein, lipid, and carbo‐
hydrate [1]. As shown in Figure 3(a), it is composed of two layers of phospholipid molecules,
each of which has a hydrophilic head (circle) and hydrophobic tail (two waved lined), and
both hydrophobic tails face each other inside the cell membrane. This structure is called lipid
bilayer. Furthermore, the concentration of the extracellular ions, such as Na+, Cl-, or Ca2+, is
higher than the intracellular one. Contrarily, the concentration of intracellular ion, such as K+,
is higher than the extracellular one. In addition, many types of ion channels (protein) are
penetrating the cell membrane. Those ion channels are normally closed. If neurochemical
transmitters released from the presynaptic axon terminal bind to receptors of the correspond‐
ing ion channels on the spine head, those ion channels are activated and open. Subsequently,
specific ion flow occurs according to their ionic gradients. At the resting state, those channels
are closed and no ionic flows occur except for small leakage.

Figure 3. Cell membrane. (a) Cross section of a cell membrane lipid bilayer and (b) equivalent RC circuit model of cell
membrane.

Based on the above properties, the cell membrane has the following electrical properties:

a. It is lipid bilayer, that is, it is composed of two parallel plates. Thus, the cell membrane
has characteristics similar to “capacitance,” C.

b. The difference between intracellular and extracellular ion concentrations corresponds to
“power source,” Ei (i = Na+, K+, Cl− or Ca2+).

c. The ionic flowability of opening ion channels is thought of as “resistance” Ri or “conduc‐
tance” 1/Ri.

d. The corresponding flows of Na+, K+, Cl−, or Ca2+ through ion channels are “current,” INa, IK,
ICl, or ICa.

With these points in mind, the cell membrane can be modeled by an equivalent RC circuit,
which is shown in Figure 3(b). Once an RC circuit is obtained, we can obtain its dynamics by
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using Ohm’s law, Kirchhoff’s law, or other knowledge of electrical circuit theory. From Figure
3(b), the following equation is obtained:

1 1( ) ( ) ,L
L

i inp
i

dVC V E V E I
dt R R

= - × - - × - + (1)

where V is the membrane potential of the cell membrane, C is the membrane capacitance, RL

is the leakage resistance, EL is the reversal potential, Ri is the flowability of ion i(i = Na+, K+,
Cl−, or Ca2+), Ei is the corresponding ionic equilibrium potential, and Iinp is the specific input
current given to the cell membrane. As a neuron is covered with the cell membrane, a synapse
or a soma can be also expressed by using an RC circuit. Accordingly, we can study the
synaptic properties or neuronal characteristics by using computer simulations.

2.2. Generation of action potentials (Hodgkin-Huxley model)

In this section, we give one model that can generate an action potential, which is the basic
function of a neuron. When a dendritic spine receives stimuli from an axon terminal of other
neuron, the membrane potential of a spine head changes depending on that stimulus. Those
potential changes are transmitted to the soma (strictly speaking, the axon hillock in the
neighborhood of the soma) through dendrites and integrated there. If the accumulated
potential of the soma exceeds the threshold, an action potential is generated. Generated action
potentials are transmitted to axon terminals along the axon. Based on this knowledge,
McCulloch and Pitts expressed a neuron as a product-sum threshold element in 1943 [2]. Their
model is a formal neuron model, called McCulloch-Pitts model, and is shown in Figure 4.

Figure 4. Formal neuron model (The McCulloch-Pitts model).

The McCulloch-Pitts model is expressed as follows:
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where xi(t) is an input from ith neuron, wi(t) is a weight from a neuron i, u(t) is a state (potential)
of a neuron, y(t) is its output, and θ is a threshold. In this model, if a state u(t) exceeds a
threshold θ, output 1 is send to other neurons. Notice that, however, McCulloch-Pitts model
does not consider a refractory period, during which neurons cannot or find it hard to generate
the next action potential.

As the McCulloch-Pitts model was a very easy model for engineers to understand the
mechanism of generation of action potentials, many engineers have applied this model to
study basic neuronal behaviors. The most prominent example is the application to the
perceptron, which was known as one of the powerful tools for some kinds of pattern rec‐
ognition problems. Although there exist many variations of the McCulloch-Pitts model,
one of them uses a sigmoid function instead of a step function expressed by Eq. (3). This
kind of model is applied to the back propagation algorithm and recently the deep learn‐
ing method, because a sigmoid function is a differentiable function. However, the practi‐
cal neurons are not so simple as the McCulloch-Pitts model and the back propagation
algorithm. Therefore, more profound considerations were necessary to describe complicat‐
ed neuronal behaviors.

In 1952, Hodgkin and Huxley developed one mathematical model that explains the generation
of an action potential (impulse or spike) based on physiological experiments for a squid giant
axon [3]. As described in the previous section, the extracellular concentration of Na+ is higher
than the intracellular one, and the intracellular concentration K+ is higher than the extracellular
one, and the cell membrane has both Na+ permeable channel (Na channel) and K+ permeable
channel (K channel). Hodgkin and Huxley found that both Na and K channels are voltage-
dependently activated, that is, the activation and inactivation of these channels are affected by
the membrane potential of the cell membrane. They also elucidated that action potentials are
generated by increased or decreased activation and inactivation of Na channel and increased
or decreased activation of K channel. Based on the results of physiological experiments for a
squid giant axon, they showed that an action potential is generated whenever the cell mem‐
brane is depolarized over the threshold. They proposed a schematic electrical circuit model
that can explain the mechanism for generation of action potentials, called the Hodgkin-Huxley
model (HH model).
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Figure 5. The Hodgkin-Huxley model. (a) Conductance-based electrical circuit of the Hodgkin-Huxley model and (b)
simulation result.

Figure 5(a) shows the HH model and its dynamics is given as follows:

,L Na Kinp
dVI C I I I
dt

= + + + (4)

where V is the membrane potential of the cell, C is the capacitance, IL is the leak current, INa

and IK are currents through Na channel and K channel, respectively, and Iinp is the input current.
They proposed the empirical formulae, which appropriately indicate activation and inactiva‐
tion properties of Na channel and activation properties of K channel, that is, the change of ionic
permeability of Na+ and K+. Currents IL, INa, and IK are given as follows [3]:

( ),L L LI g V E= × - (5)

3( , ) ( , ) ( ),NaNa NaI g m V t h V t V E= × × × - (6)

4( , ) ( ),KK KI g n V t V E= × × - (7)

where ḡL is the leakage conductance, ḡ  and ḡK are the amplitude of Na channel conductance
and K channel conductance, respectively, EL is the resting potential, and ENa and EK are
equilibrium potentials of Na channel and K channel. m(V, t) and h(V, t) are activation and
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inactivation variables of Na channel, and n(V,t) is an activation variable of K channel. They
gave the following empirical formula:

d ( , ) ( ) (1 ( , )) ( ) ( , ), ( , , )
d x x
x V t V x V t V x V t x m h n
t

a b= × - - × = (8)

0.1 (25 )( ) , ( ) 4 exp( ),
25 18exp 1
10

m m
V VV V
V

a b-
= = -

-æ ö -ç ÷
è ø

(9)

1( ) 0.07 exp , ( ) ,
3020 exp 1
10

h h
VV V

V
a bæ ö= - =ç ÷ -æ öè ø +ç ÷

è ø
(10)

0.01 (10 )( ) , ( ) 0.125 exp .
10 80exp 1
10

n m
V VV V

V
a b- æ ö= = -ç ÷-æ ö è ø-ç ÷

è ø
(11)

Figure 5(b) shows one example of computer simulation results for the HH model. When a
continuous DC input is given to the HH model, action potentials can be generated at certain
interval, that is, with a refractory period. Regardless of the strength of inputs, action potentials
have the same shape and size. All differential equations were solved by the fourth-order Rung-
Kata method by using C++. Parameters used here were as C = 1μF/cm2,
ḡ L =0.3 mS/cm2, ḡ =0.3 mS/cm2, ḡ K =0.3 mS/cm2, ENa= 115 mV, EK = −12 mV, Iinp = 10 mA/cm2, and
the resting potential = 0 mV.

3. Neuron model with a band-pass filter property

3.1. Subthreshold resonance phenomenon

As described in Section 2.2, neurons can generate action potentials depending on the strength
of DC input stimuli. As shown in Figure 6(a), for small DC inputs (dark blue, light blue, dashed
red lines), action potentials are not generated by reason that membrane potentials do not
exceed the threshold. However, if a larger input (red line) is given to a neuron, the membrane
potential can exceed the threshold and as a result, an action potential is generated. On the
contrary, when AC inputs are given to a neuron, outputs of a neuron are unlike the cases of
DC inputs, apart from whether the membrane potential exceeds the threshold or not. We
consider three AC inputs (blue, red, and green in Figure 6(b)), whose amplitudes are equal
but their frequencies are different (f1<f2<f3). By using an AC input with frequency f1(blue), the
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membrane potential (blue line) is assumed to be obtained under the threshold level, that is, in
a subthreshold level. If the input frequency increases from f1 to f2 (red), the membrane potential
(red line) is still in a subthreshold level, but its amplitude becomes larger than that of frequency
f1 (blue line). However, if the input frequency further increases to f3 (green), the amplitude of
the membrane potential (green line) reduces and becomes smaller than that of frequency f2

(red line). Instead of AC inputs with a single frequency, let an AC input whose frequency
increases with time be given to this neuron. This kind of AC is called a chirp current. Then, its
membrane potential has the shape with an expanded center section as shown in Figure 6(c),
that is, the membrane potential takes the maximum at a specific frequency, however, remains
at a subthreshold level. As its FFT shows, this neuron has a band-pass property, that is,
frequency selectivity. These kinds of oscillatory phenomena in a subthreshold level are called
the subthreshold resonance phenomena.

Figure 6. Subthreshold resonance phenomena. (a) DC inputs with different amplitudes, (b) AC inputs with different
frequencies, and (c) a chirp current input whose frequency increases as time increases.

Subthreshold resonance oscillations have been found in many excitatory and/or inhibitory
neurons in the whole brain. Mauro et al. first reported a subthreshold resonance oscillation in
squid giant axon [4]. Koch discussed these resonance oscillations in relation to the cable theory
[5]. Since then, these resonance phenomena have been observed in many neurons in various
regions of the brain, such as trigeminal root ganglion [6], inferior olive [7], and thalamus [8,
9]. These subthreshold resonance phenomena have been also reported in cortical neurons [10–
14], and in the 2000s, also in hippocampal neurons in CA1 [15, 16]. Although it is suspected
that frequency selectivity of neurons should play an important role in behavioral or perceptual
functions in animals, their practical roles have still been unclear. Recently, Narayanan and
Johnston [17] reported that subthreshold resonance oscillations in hippocampal CA1 neurons
are closely related to the long-term synaptic plasticity, which is currently considered as one of
possible foundations of learning and memory [18, 19]. So, it is very interesting and attractive
to study those resonance oscillatory features, in order to clarify the mechanisms of higher
information processing functions in the brain, such as learning, short-term memory, or
working memory.
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As already described, the cell membrane is usually modeled by an RC circuit. However, if a
chirp current is given to an RC circuit, a membrane potential shows only a property of low-
pass filter shown in Figure 7(a). On electrical circuit theory, resonance circuit must contain
inductive elements, that is, inductance L. Indeed, if a chirp current is given to an RLC circuit,
a membrane potential shows a band-pass property shown in Figure 7(b). Having many
neurons, the subthreshold resonance phenomena indicate that those neurons must have some
kind of inductive factor. So exactly, what is a distinguishing major role of such inductive
characteristics in the cell membrane? By advances of experimental technique, it has been
reported that many kinds of voltage-dependent ion channels have an important role in
subthreshold phenomena. Such ion channels involved in the subthreshold resonance phe‐
nomena are different from neuron to neuron that belongs to brain regions. Among them, slow
non-inactivating K+ channel (Krs channels) [10], hyperpolarization-activated cationic channel
(h channel) [12], and persistent Na+ channels (NaP channel) [13] are well known. In addition
to these channels, voltage-dependent Ca2+ channels in neurons and/or dendritic spines [8] are
also concerned in the subthreshold resonance oscillation.

Figure 7. Calculated membrane potential for a chirp current and its magnitude of FFT. (a) RC circuit and (b) RLC cir‐
cuit.

3.2. Inductive property of voltage-dependent ion channels

A hyperpolarization-activated cation channel (h channel) and a persistent sodium channel
(NaP channel) are known to mediate the subthreshold resonance oscillation observed in
entorhinal cortical neurons [12, 14]. In this section, we show how such voltage-dependent ion
channels have inductive properties. We consider a compartment neuron model with h channel
and NaP channel as shown in Figure 8. Its dynamics are expressed by the following conduc‐
tance-based equations [13]:

d ,
d inpL NaPh
VC I I I I
t
= - - - - (12)
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Figure 8. A compartmental neuron model with h channel and NaP channel.

where V is the membrane potential, IL is the leak current, Ih and INaP are the currents through h
channel and NaP channel, respectively, and Iinp is the input current. The leak current IL is given
by

( ).L L LI g V E= × - (13)

where ḡ L  is the leak conductance and EL is the resting potential. Currents Ih and INaP are given
as follows:

( ) ( ) {0.65 ( ) 0.35 ( )} ( ).hfh h h h hI g V V E g m V m V V E= × - = × + × -hs (14)

( ) ( ) ( ) ( ).NaP NaP N NaP NaP NI g V V E g m V V E= × - = × × - (15)

where gh(V) and gNaP(V) are, respectively, the h channel conductance and the NaP channel
conductance, ḡh  and ḡ  are, respectively, the maximum amplitude of gh(V) and gNaP(V), and Eh

and EN are the equilibrium potentials for K+ through h channel and Na+ for NaP channel,
respectively. mhf(V) and mhs(V) are, respectively, the fast activation and slow activation
variables of h channel, and mNaP(V) is an activation variable of NaP channel. They satisfy the
following equations:

d 1 ( ), ( , , )
d

x
x x

x

m m m x hf hs NaP
t t ¥= × - = (16)

1 0.51, 1 ,
79.2 1.7 3401 exp exp exp

9.78 10 52

hf hfm
V V V

t= = +
+ - +æ ö æ ö æ ö+ + -ç ÷ ç ÷ ç ÷

è ø è ø è ø

� (17)
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71.3 1.7 2601 exp exp exp

7.9 14 43

hf hsm
V V V

t= = +
+ - +æ ö æ ö æ ö+ + -ç ÷ ç ÷ ç ÷

è ø è ø è ø

� (18)

1 , 0.15 ms.
381 exp

6.5

NaPNaPm
V¥ t= =
+æ ö+ -ç ÷

è ø
(19)

3.2.1. Equivalent admittance (impedance) of h channel

Let V* be the equilibrium potential, Ih
* be the h-current at V*. From Eq. (14), Ih

* satisfies the
following relation:

* * * *{0.65 ( ) 0.35 ( )} ( ).hf hsh h hI g m V m V V E= × + × - (20)

When the membrane potential V(t) changes from V* to V* + δV(t), where δV(t) is a small
variation of the membrane potential from V*, the current Ih(t) also changes from Ih

* to

Ih
* + δIh

*(t), where δIh(t) is a small variation of h current caused by δV(t). Ih
* + δIh(t) satisfies the

following relation:

* * * *( ) {0.65 ( ( )) 0.35 ( ( )) } ( ( ) ).h h h hf hf hI I t g m V V t m V V t V V t Ed d d d+ = × + + + × + - (21)

Let mhf(V* + δV) approximate by mhf (V*) + δmhf and mhs(V* + δV) by mhs(V*) + δmhs for a small
variation δV. Then, Eq. (21) can be expressed by the following equation:

* * * *

*

* *

( ) {0.65 ( ) 0.35 ( ) } ( )

{0.65 0.35 } ( )

{0.65 ( ) 0.35 ( ) } ( )

{0.65 0.35 } ( ).

h h h hf hs h

h hf hs h

h hf hs

h hf hs

I I t g m V m V V E

g m m V E

g m V m V V t

g m m V t

d

d d

d

d d d

+ = × + × -

+ × + × -

+ × + ×

+ × + ×

(22)

By subtracting Eq. (20) from Eq. (22) and dropping the higher-order variation terms than the
second, which appeared on the right-hand side of Eq. (22), the following equation is obtained:

* **{0.65 0.35 } ( ) {0.65 0.35 } .hf hs hf hsh h h hI g m m V E g m m Vd d d d» × + × - + × + × (23)
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As an activation variable mhf(V) satisfies Eq. (16), mhf(V*) and mhf(V* + δV) must satisfy the
following equations:

d ( *) 1 { ( *) },
d ( *)
hf

hf hf
hf

m V
m V m

t V ¥t
= × - (24)

( * ) 1 { ( * ) ( * )},
( * )

hf
hf hf

hf

dm V V
m V V m V V

dt V V
d

d d
t d ¥

+
= × + - +

+
(25)

where left terms of Eqs. (24) and (25), dm (V *) / dt  and dm (V * + δV ) / dt , represent the quantity
dm / dt  evaluated at V* and V* + δV, respectively. By approximating also τ (V * + δV ) by
τ (V *) + δτhf, where δτ  is a small variation caused by δV, Eq. (25) is written as follows:

[ ( *) ] 1 { ( *) ( ( *) )}
( *)

1 [1 ...] { ( *) ( ( *) )}.
( *) ( *)

hf hf
hf hf hf hf

hf hf

hf
hf hf hf hf

hf hf

d m V m
m V m m V m

dt V

m V m m V m
V V

d
d d

t dt

dt
d d

t t

¥ ¥

¥ ¥

+
» × + - +

+

» - + × + - +
(26)

By dropping the higher-order variation terms than the second and subtracting Eq. (24) from
Eq. (26), the following equation is obtained:

1 { }.
( *)

hf
hf hf

hf

d m
m m

dt V
d

d d
t ¥» × - (27)

Furthermore, as a small variation δm∞ may be approximately expressed by

dm∞(V *) / dV ⋅δV , Eq. (27) becomes as follows:

( *)1 .
( *)

hf hf
hf

hf

d m dm V
V m

dt V dV
d

d d
t

¥ì üï ï» × × -í ý
ï ïî þ

(28)

Using the differential operator p instead of time derivative (d/dt), Eq. (28) can be written as
follows:

Simulation of Neural Behavior
http://dx.doi.org/10.5772/64028

63



( *)1 1 .
( *) ( *)

hf
hf

hf hf

dm V
m V

V V dV
d d

t t
¥

æ ö æ ö
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From this relation, a small variation δmhf is definitely expressed by δV as follows:

d ( *)1
( *) d

.1
( *)

hf

hf
hf

hf

m V
V V

m V

V

¥

t
d d

t

×
= ×

+p
(30)

Notice that dmhf∞ (V*)/dV in the numerator of the right-hand side can be directly calculated from
Eq. (17), that is, it is given by

2

* 79.2expd ( *) 1 9.78 .
d 9.78 * 79.21 exp

9.78

hf

V
m V

V V
¥

+æ ö
ç ÷
è ø= ×

ì ü+æ ö+í ýç ÷
è øî þ

(31)

Exactly in the same way, a small variation δmhs is expressed by δV as follows:

1 d ( *)
( *) dδ .1
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hs

hs
hs

hs

m V
V Vm V

V

¥

t d

t

×
= ×

+p
(32)

By substituting Eqs. (30) and (32) into Eq. (23), δIh is finally expressed by δV(t) as follows:

* *

*
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( *) d ( *) d0.65 0.35 ( ).1
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As δI (t) / δV (t) represents admittance, Eq. (33) shows an equivalent admittance of h channel
for a small variation δV and its admittance can be expressed by parallel coupling circuits of
one conductance and two admittances. That is, the first term of Eq. (33) represents a conduc‐
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tance of h channel, which is expressed by the inverse of a pure resistance Rh; the second term
is an admittance of a fast activation variable Yhf, which can be expressed by the inverse of series
coupling of an inductance Lhf and a resistance Rhf, that is, Yhf = 1/(Rhf + p ⋅ Lhf); and the third term
is an admittance element of a slow activation variable Yhs, which is also expressed by the inverse
of series coupling of an inductance Lhs and a resistance Rhs, that is, Yhs = 1/(Rhs+ p ⋅ Lhs). Figure
9 shows an equivalent RLC circuit of h channel, where Rh, Rhf, Rhf, Rhs, and Lhs are given as
follows:
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Figure 9. An equivalent RLC circuit for h channel.

3.2.2. Equivalent admittance (impedance) of NaP channel

As in the case of with h channel, let V* be the equilibrium potential and I * be the NaP current
at V*. From Eq. (15), I * satisfies the following relation:

* * *( ) ( ).NaP NaP NaP NI g m V V E= × × - (37)
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When the membrane potential V(t) changes from V* to V* + δV(t), the current INaP (t) also changes
from INaP

*  to INaP
* + δINaP(t), where δINaP(t) is a small variation of NaP current caused by δV(t).

Then, INaP
* + δINaP(t) satisfies the following relation:

( ) ( ( )) ( ( ) ).NaP NaP NaP NaP NI I t g m V V t V V t Ed d d* + = × * + × * + - (38)

Let mNaP(V* + δV) approximate by mNaP(V*) + δmNaP for a small variation δV. Then, Eq. (38) can
be expressed by the following equation:

( ) ( ) ( ) (
( ) ( ) ( ).

NaP NaP NaP NaP N NaP NaP N

NaP NaP NaP NaP

I I t g m V V E g m V E
g m V V t g m V t

d d
d d d

* + = × * × * - + × × * -

+ × * × + × ×
(39)

By subtracting Eq. (37) from Eq. (39) and dropping the higher-order variation terms than the
second, which appeared on the right-hand side of Eq. (39), the following equation is obtained:

*δ *δ ( ) δ .NaP NaPNaP NaP N NaPI g m V E g m V» × × - + × × (40)

By following the same procedure from Eq. (24) to Eq. (26) except that τNaP is constant (0.15 ms),
a small variation δmNaP can be expressed as follows:

d 1 { }.
d 0.15
NaP

NaP NaP
m m m
t

d d gµ» × - (41)

By approximating a small variation δmNaP∞ by [dmNaP∞ (V*)/dV] ⋅ δV, Eq. (41) becomes

d 1 d ( )
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(42)

By using the differential operator p, a small variation δmNaP can be expressed by δV as follows:

1 d ( *)
0.15 dδ δ .1

0.15

NaP

NaP

m V
Vm V
¥×

= ×
+p

(43)

By substituting Eq. (43) into Eq. (40), δINaP is finally expressed by δV(t) as follows:
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Eq. (44) shows an equivalent admittance of NaP channel for a small variation δV, and it can be
expressed by parallel coupling circuits of one conductance and one admittance. That is, the
first term of Eq. (44) represents a conductance of NaP channel, which is expressed by the inverse
of a pure resistance RNaP, and the second term is an admittance of an activation variable YNaP,
which is expressed by the inverse of series coupling of an inductance LP and a resistance RP,
that is, YNaP = 1/(RP+ p ⋅ LP). Figure 10 shows an equivalent RLC circuit of NaP channel, where
RNaP, RP, and LP are given as follows:
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Figure 10. An equivalent RLC circuit for NaP channel.

Figure 11. An equivalent RLC circuit for a compartment model with h channel and NaP channel.
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3.2.3. Equivalent RLC circuit of a neuron with h channel and NaP channel

By combining the results of Sections 3.2.1 and 3.2.2, an equivalent RLC circuit for a neuron
model with h channel and NaP channel is obtained. Figure 11 shows its equivalent RLC circuit.
In this section, we show some simulation results for a compartment neuron model (Figure 8)
and its equivalent RLC circuit(Figure 11). A chirp current given to both a compartment neuron
model and its equivalent RLC circuit is described as follows:

sin ( ( ) ) , ( ) 2 ,inp inp
tI A t t id t f
T

w w p= × + = (47)

where the angular frequency ω(t) increases from 0 to 2πf over the period [0, T]. id is a DC bias
current, which is set to zero in this subsection. The following parameter values were used in
simulations; C = 1.5 μF/cm2, ḡ L =0.15 mS/cm2, EL = −65 mV, ḡNaP =0.5 mS/cm2, ḡh =1.5 mS/cm2,
EN = 55 mV, EK = −90 mV, Eh = −20mV.

Figure 12. Membrane potential and the magnitude and the phase of its FFT. Simulation result for (a) a compartment
model (Figure 8) and (b) its equivalent RLC circuit (Figure 11).

Figure 12(a) shows one simulation result for a compartment model with h channel and NaP
channel. The membrane potential V and the amplitude and the phase of its FFT are shown. As
the magnitude of FFT shows, this neuron model has a band-pass property. Figure 12(b) shows
the simulation result for its equivalent RLC circuit. Comparing Figure 12(a) and (b), the
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membrane potentials and their FFTs are exactly similar. This fact indicates that the derived
RLC circuit represents almost the same properties of a compartment neuron model within a
small variation of the membrane potential. In other words, voltage-dependent h channel and
NaP channel may surely have inductive properties and contribute to the subthreshold
resonance phenomena.

3.3. Properties of voltage responses to oscillatory current inputs

A neuron can generate action potentials whenever its membrane potential exceeds the
threshold except during a refractory period. If the membrane potential of a neuron stays in a
subthreshold level, a neuron cannot generate action potentials. However, as described in the
previous section, many neurons in the brain have the subthreshold resonance properties. This
fact indicates that a neuron may be able to generate an action potential when AC inputs whose
frequencies are close to the resonance frequency of a neuron are given, because the resulting
membrane potential for that input has the potential to exceed the threshold by the effects of
the subthreshold resonance property. Actually, this fact has been observed in neurons of the
brain. For example, Hutcheon et al. studied subthreshold voltage responses to AC inputs in
neurons from the sensorimotor cortex of rats [11]. Figure 13 shows one of their results. Cases
1–3 show effects of the input amplitude: (Case 1) if a chirp current with a small amplitude is
given to a neuron, the membrane potential does not exceed the threshold and no action
potentials are generated; (Case 2) if its input amplitude increases a little bit, the membrane
potential becomes larger but it still stays in a subthreshold level and no action potentials are
generated; and (Case 3) if its amplitude increases more, the membrane potential exceeds for
AC inputs with frequencies close to a resonance frequency of a neuron. As a result, action
potentials are generated around that frequency. Cases 4 and 5 show effects of a DC bias input:
(Case 4) if a DC-bias in the input current increases a little bit from 0μA/cm2, the membrane
potential cannot exceed the threshold and no action potentials are generated and (Case 5) if
the value of a DC bias is raised more, the membrane potential can exceed the threshold and
action potentials are generated.

Figure 13. Experimental results: Subthreshold voltage responses for a chirp current input with different amplitudes
and DC bias currents observed in sensory cortex of rats [11].
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We consider here a compartment neuron model with h channel and NaP channel described in
the previous section, into which the HH model is incorporated in order to generate action
potentials. Figure 14 shows its integrated neuron model, and the following equation is
obtained:

.= - - - - - + inpL NaP Na Kh
dVC I I I I I I
dt

(48)

Figure 14. A compartment model with h channel and NaP channel into which the Hodgkin-Huxley model (the HH-
model) is incorporated.

Eq. (48) is an extension form of Eq. (12), into which two currents IN and IK of the HH model are
added. Detail dynamics of IL, Ih, and INaP are given by Eqs. (13)–(15) in Section 3.2. Dynamics
of INa and IK are also given by Eqs. (6) and (7) in Section 2.2. In addition to parameter values
shown in the previous section, the following values were used in simulations:
ḡNa =52 mS/cm2, ḡ K =52 mS/cm2, EN = 55 mV, and EK = −90 mV.

Figure 15(a) shows the membrane potential for a chirp current input with Ainp = 2.5 μA/cm2

and id = 0 μA/cm2. For this input, the membrane potential cannot exceed the threshold, and no
action potentials are generated. However, if the amplitude of AC input (Ainp) increases, the
situation changes. Figure 15(b) shows the membrane potentials for a chirp current input whose
amplitude increases to 3.3 μA/cm2. In this case, the membrane potential exceeds the threshold
for the input frequency close to the resonance frequency of this neuron model. As shown in
Figure 12, it is 13 Hz in this neuron model. On the other hand, Figure 15(c) shows the membrane
potential for a chirp input with Ainp = 2.5 μA/cm2 and increased id = 1 μA/cm2. Almost the same
response as Figure 12(b) is obtained. However, resulting membrane potentials in Figures 13
and 15 are not completely identical, because neurons used in experiments by Hutcheon et al.
and a neuron model used in this simulations are different. However, simulation results follow
a similar tendency as experimental results by Hutcheon et al.[11].

By computer simulations, effects of the amplitude of AC input, its frequency, and a DC-bias
current on the membrane potential were studied [20]. Some results are shown here. Figure
16 shows the membrane potentials for the AC inputs with a single frequency, setting Ainp = 3.3
μA/cm2. Figure 16(a) shows the results for 2 Hz input frequency. In this case, no action
potentials are generated, because the membrane potential cannot exceed the threshold at all.
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Figure 15. Simulated membrane potential for a chirp current input with different amplitude and DC bias current. (a)
Response for Ainp = 2.5 μA/cm2 and id = 0 μA/cm2. (b) Response for Ainp = 3.3 μA/cm2 and id = 0 μA/cm2. (c) Response for
Ainp = 2.5 μA/cm2 and id = 1 μA/cm2.

Figure 16. Simulated membrane potential for an AC input with a single frequency (Ainp is fixed to 2.5 μA/cm2). (a) Re‐
sponse for id = 0 μA/cm2 and f = 2 Hz. (b) Response for id = 0 μA/cm2 and f = 13 Hz. (c) Response for id = 0 μA/cm2 and f =
30 Hz. (d) Response for id = 1 μA/cm2 and f = 13 Hz. (e) Response for id = 1 μA/cm2 and f = 30 Hz.
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Figure 16(b) shows that action potentials are generated, because the input frequency is 13 Hz,
which is close to the resonance frequency of this neuron model. Thus, the maximum amplitude
of membrane potentials exceeds the threshold by the effect of the subthreshold resonance
property. In the case of Figure 16(c), for 30 Hz input frequency, no action potentials are
generated, because the membrane potential is less than the threshold. On the other hand, if a
DC bias current input increases to 1μA/cm2, as Figure 16(d) shows, more action potentials are
generated for 13 Hz input frequency input than the case of no DC bias input. This indicates
the effect of a DC bias current on generation of action potentials. Comparing Figure 16(b) and
(d), it is clarified that the more spikes are observed than the case of no DC bias current input.
For the case of id= 1 μA/cm2,a neuron model can also generate an action potential for 30Hz
input frequency, as shown in Figure 16(e). As no action potential is generated for the case of
id= 0 μA/cm2, this is also caused by the effect of a DC bias current input.

4. Conclusion

Until now, it has been mainly proposed that the cell membrane and neurons are modeled by
an RC circuit. However, from the fact that many neurons in various regions of the brain have
band pass properties, a neuron should be modeled by an RLC circuit. In this chapter, an
equivalent RLC circuit was developed for a neuron model with h and NaP channels, and it was
clarified that the subthreshold resonance property of this neuron model comes from inductive
properties of h and NaP channels, especially, h channel. Furthermore, by incorporating the
Hodgkin-Huxley dynamics into this neuron model, we showed the relation between the
subthreshold resonance oscillation and the generation of action potentials. By computer
simulations, it was shown that the amplitude of an AC input and a DC bias current input
strongly play a role in the generation of action potentials, coupled with AC input frequencies.

It is presumed that the subthreshold resonance phenomena may relate closely to various
practical neuron activities and behaviors in our brain, such as the sensitivity to external noises
in sensory system. So, it is very important and interesting to study firing patterns of a neuron
or properties of burst oscillations by using computer simulations, in order to clarify the
mechanisms of higher information processing in the brain.

Needless to say, mutual collaboration of experimental research and modeling research is of
large significance, in order to create more sophisticated models based on the most recent
findings from experiments, and in order to develop new experimental methods to verify the
facts suggested from simulation results.
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