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Abstract

This chapter is devoted to the discussion of a hybrid frequency-time CAD tool especially
designed for the efficient numerical simulation of nonlinear electronic radio frequen‐
cy circuits operating in an aperiodic slow time scale and a periodic fast time scale.
Circuits  driven by envelope-modulated signals,  in  which the baseband signal  (the
information) is aperiodic and has a spectral content of much lower frequency than the
periodic carrier, are typical examples of practical interest involving such time evolu‐
tion rates. The discussed method is tailored to take advantage of the circuits and signals
heterogeneity and so will benefit from the time-domain latency of some state varia‐
bles in the circuits. Because the aperiodic slowly varying state variables are treated only
in time domain, the proposed method can be seen as a hybrid scheme combining
multitime envelope transient harmonic balance based on a multivariate formulation,
with a purely time-step integration scheme.

Keywords: partial differential equations, numerical simulation, radio frequency cir‐
cuits, time-frequency analysis

1. Introduction

In the last two decades, radio frequency (RF) and microwave system design has been found as
a significant part of the electronic semiconductor industry’s portfolio. Over the years, the
necessity of continuously providing new wireless systems’ functionalities and higher trans‐
mission rates, as also the need to improve transmitters’ efficiency, has been gradually reshap‐
ing wireless architectures. Heterogeneous circuits combining baseband blocks, digital blocks,
and RF blocks, in the same substrate, are commonly found today. Hence, RF and microwave
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circuit simulation has been conducted to an increasingly challenging scenario of heterogene‐
ous broadband and strongly nonlinear wireless communication circuits, presenting a wide
variety of slowly varying and fast changing state variables (node voltages and branch cur‐
rents). Thus, RF and microwave design has been an important booster for numerical simula‐
tion and device modeling development.

In general, waveforms processed by wireless communication systems can be expressed by a
high-frequency RF carrier modulated by some kind of slowly varying baseband aperiodic
signal (the information signal). Therefore, the evaluation of any relevant information time
window requires the computation of thousands or millions of time instants of the composite
modulated signal, turning any conventional numerical time-step integration of the circuits’
systems of differential algebraic equations highly inefficient. However, if the waveforms do
not require too many harmonic components for a convenient frequency-domain representa‐
tion, this category of circuits can be efficiently simulated with hybrid time-frequency techni‐
ques. Handling the response to the slowly varying baseband information signal in the
conventional time step by time step basis, but representing the reaction to the periodic RF
carrier as a small set of Fourier components (a harmonic balance algorithm for computing the
steady-state response to the carrier), hybrid time-frequency techniques are playing an impor‐
tant role in RF and microwave circuit simulation.

Beyond overcoming the signals’ time-scale disparity, the partitioned time-frequency technique
discussed in Section 3.2 is also able to efficiently simulate highly heterogeneous RF networks,
by splitting the circuits into different subsets (blocks) and computing their state variables with
distinct numerical schemes.

2. Theoretical background material

2.1. Mathematical model of an electronic circuit

Dynamic behavior of an electronic circuit can be modeled by a system of differential algebraic
equations (DAE) involving electric voltages, currents and charges, and magnetic fluxes. The
DAE system can, in general, be formulated as

( ( )) ( ( )) ( ),d t t t
dt

+ =
q x f x b (1)

in which b(t)∈ℝn stands for the excitation vector (independent voltage or current sources) and
x(t)∈ℝn represents the state variable vector (node voltages and branch currents). f(·) models
the memoryless elements of the circuit, as is the case of linear or nonlinear resistors, linear or
nonlinear controlled sources, etc. q(·) models the dynamic elements, as capacitors or inductors,
represented as voltage-dependent electric charges or current-dependent magnetic fluxes,
respectively.
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This system of (1) can be constructed from a circuit description using, for example, nodal
analysis, which involves applying Kirchhoff currents’ law to each node in the circuit, and
applying the constitutive or branch equations to each circuit element. Hence, it represents the
general mathematical formulation of lumped problems. However, as reviewed in [1], this DAE
circuit model formulation can also include linear distributed elements. For that, the distributed
devices are substituted by their lumped-element equivalent circuit models, or are replaced, as
whole sub-circuits, by reduced order models derived from their frequency-domain character‐
istics. It must be noted that the substitution of distributed devices by lumped-equivalent
models is especially reasonable when the size of the circuit elements is small in comparison to
the wavelengths, as is the case of most emerging RF technologies integrating digital high-speed
CMOS baseband processing and RFCMOS hardware in the same substrate.

2.2. Transient simulation

Obtaining the solution of (1) over a specified time interval t0, tFinal  with a specific initial
condition x(t0)=x0 is what is usually known as an initial value problem, and evaluating such
solution is frequently referred to as transient analysis. The most natural way to compute x(t) is
to numerically time-step integrate (1) directly in time domain. So, it should be of no surprise
that this straightforward technique was used in the first digital computer programs of circuit
analysis and is still nowadays widely used. It is present in all SPICE (which means simulation
program with integrated circuit emphasis) or SPICE-like computer programs [2]. In order to
numerically time-step integrate the DAE system of (1) commercial tools use initial value
solvers, such as linear multistep methods (LMM) [3–5], or one-step methods, i.e., Runge-Kutta
(RK) methods [3–5]. Either LMM or RK families can offer a great diversity of explicit and
implicit (iterative) numerical schemes, suitable to compute the numerical solution of different
types of initial value problems with a desired accuracy.

2.3. Steady-state simulation

Although SPICE-like computer programs (which were initially conceived to compute the
transient response of electronic circuits) are still widely used nowadays, RF and microwave
designers’ interest normally resides on the steady-state response. The reason for that is some
properties of the circuits are better described, or simply only defined, in steady-state (e.g.,
harmonic or intermodulation distortion, noise, power, gain, impedance, etc.). Initial value
solvers, as linear multistep methods, or Runge-Kutta methods, which were tailored for finding
the circuit’s transient response, are not adequate for computing the steady-state because they
have to pass through the lengthy process of integrating all transients, and expecting them to
vanish.

Computing the periodic steady-state response of an electronic circuit can be formulated as
finding out a starting condition (left boundary), x(t0), for the DAE system modeling the circuit
that leads to a solution obeying the final condition (right boundary) x(t0)=x(t0+T), with T being
the period. In mathematics, these problems are usually known as periodic boundary value
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problems. Taking into account the formulation of (1), these problems will have here the
following form,

0 0 0 0
( ( )) ( ( )) ( ), ( ) ( ), ,t t t t t T t t t T
dt

+ = = + £ £ +
dq x f x b x x (2)

where the condition x(t0)=x(t0+T) is known as the periodic boundary condition.

In order to numerically solve (2), a solution that simultaneously satisfies the differential system
and the two-point periodic boundary condition has to be computed. A particular technique
has been found especially useful for RF circuit simulation: the harmonic balance (HB) [6–8]
method.

2.4. Harmonic balance

Harmonic balance (HB) [6–8] handles the circuit, its excitation and its state variables in the
frequency-domain. Because of that, it benefits from allowing the direct inclusion of distributed
devices (like dispersive transmission lines), or other circuit elements described by frequency-
domain measurement data. Frequency-domain methods differ from time-domain steady-state
techniques in the way that, instead of representing waveforms as a collection of time samples,
they represent those using coefficients of sinusoids in trigonometric series. As a consequence,
under moderate nonlinearities, the steady-state solution is typically achieved much more
easily in the frequency domain than in the time domain.

In periodic steady-state, any stimulus bs(t) or state variable xv(t) can be expressed as a Fourier
series

0 0( ) , ( ) ,
K K

jk t jk t
s k v k

k K k K

b t B e x t X ew w
+ +

=- =-

= =å å (3)

where ω0 =2π / T  is the fundamental frequency and K is the order adopted for a convenient
harmonic truncation. The HB method consists in converting the DAE system of (2) into the
frequency domain, to obtain the following n(2K+1) algebraic equations system

[ ] [ ] [ ] [ 1] [ ] [ ] [ 1] [ ][ ] [ ] ,r r r r r r r rj j + +W + + W - + - =Q F C X X G X X B (4)

in which the unknowns are the Fourier coefficients of the state variables of the circuit

1 2[ , , , ] ,T T T T
n= ¼X X X X (5)
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where each one of the Xv, v =1, …, n, is a (2K + 1)×1 vector containing the Fourier coefficients

of the corresponding state variable xv(t). F and Q are vectors containing the Fourier coefficients
of f(x(t)) and q(x(t)), respectively, and G and C denote the n(2K + 1)×n(2K + 1) conversion
matrices (Toeplitz) [7,9] corresponding to g(x)=df(x)/dx and c(x)=dq(x)/dx. j is the imaginary
unit and Ω is a diagonal matrix defined as

0 0 0 0 0 0

1 2

diag , , , , , , , , , .
v v v n

K K K K K Kw w w w w w
= = =

æ ö
ç ÷W= - ¼ - ¼ ¼ - ¼
ç ÷
è ø
1442443 1442443 1442443 (6)

The system of (4) can be rewritten as

[ ] [ ]

[ ] [ ] [ ] [ ] [ 1] [ ]

H(x ) J(x )

[ ] 0,
r r

r r r r r rj j +
é ù
ê úW + - + W + - =
ê ú
ë û

Q F B C G X X144424443 1442443 (7)

or, in its simplified form, as

[ ]
[ ] [ 1] [ ]( )( ) | [ ] 0,r
r r r

x x

d
d

+
=

+ - =
H XH X X X
X

(8)

in which

( ) ( ) ( ) 0j= W + - =H X Q X F X B (9)

is known as the harmonic balance system, and the n(2K + 1)×n(2K + 1) composite conversion
matrix

( )( ) ( ) ( )d j
d

= = W +
H XJ X C X G X
X

(10)

is known as the Jacobian matrix of the error function H(X). This system of (9) is iteratively solved
according to (8), until a sufficiently accurate solution X[f] is achieved, i.e., until

[ ] [ ] [ ]( ) ( ) ( ) ,f f fj d= W + - <H X Q X F X B
(11)
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where δ is the allowed residual size, and H(• )  stands for some norm of the error function
H(•).

2.5. Multivariate formulation

The multivariate formulation is a powerful strategy that emerged in the late 1990s, playing an
important role in RF circuit simulation today. It was first introduced by Brachtendorf et al. [10]
as a sophisticated derivation of quasi-periodic harmonic balance, followed by Roychowdhury
[11], who demonstrated that the multivariate formulation can be an efficient strategy to analyze
circuits running on distinct time scales. The multivariate formulation uses multiple time
variables (artificial time scales) to describe the multirate behavior of the circuits. Thus, it is
suitable to describe typical multirate regimes of operation present in RF and microwave
systems, as is the case of circuits handling amplitude and/or phase-modulated signals,
quasiperiodic signals, or any other kind of multirate signals containing a periodic component.

The main achievements of the multivariate formulation are due to the fact that multirate signals
can be represented much more efficiently if they are defined as functions of two or more time
variables (artificial time scales), i.e., if they are defined as multivariate functions [11–16].
Therefore, as we see in Section 2.5.2, circuits will be no longer described by ordinary differential
algebraic equations in the one-dimensional time t, but, instead, by partial differential algebraic
systems.

2.5.1. Multivariate representations

The multivariate (multidimensional) strategy is easily illustrated by applying it to a bi-
dimensional problem (two distinct time scales). So, let us consider, for example, an amplitude-
modulated RF carrier of the form

( ) ( )cos(2 ),Cb t e t f tp= (12)

where e(t) is the envelope (a slowly varying signal), while cos(2π f Ct) is the fast-varying RF
carrier. Simulating a circuit with this kind of stimulus, using conventional time-step integra‐
tion schemes (e.g., Runge-Kutta schemes, or linear multistep methods), is computationally
very expensive. The main reason is that the solution has to be computed during a long time
interval imposed by the slowly varying envelope, whereas the step length is severely con‐
strained by the high-frequency RF carrier.

Consider now the following bidimensional definition for b(t),

( , ) ( )cos(2 ),E C E C Cb t t e t f tp=$ (13)
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where tE is the slow envelope time scale and tC is the fast carrier time scale. In this particular
case, b̂(tE , tC) is a periodic function with respect to tC but not to tE, i.e.,

( , ) ( , ), 1 / .E C E C C C Cb t t b t t T T f= + =$ $ (14)

The univariate form, b(t), with e(t)=2e −80×106t  and f C =2 GHz, is plotted in Figure 1 for the [0, 25
ns] time interval. The corresponding bivariate form, b̂(tE , tC), is depicted in Figure 2 for the
rectangular region [0, 25 ns] × [0, 0.5 ns]. There, it can be appreciated that b̂(tE , tC) does not
have as many undulations as b(t), thus allowing a more compact representation with fewer
samples. Furthermore, due to the periodicity of b̂(tE , tC) in tC, we know that its plot repeats
over the rest of this time axis. Thus, the bivariate form plotted in Figure 2 contains all the
information necessary to recover the original univariate form depicted in Figure 1.

Figure 1. Envelope-modulated signal in the univariate time.

Figure 2. Bivariate representation of the envelope-modulated signal.
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2.5.2. Multirate partial differential algebraic equations’ systems

Let us consider a general nonlinear RF circuit described by the differential algebraic equations’
system of (1), and let us suppose that this circuit is driven by the envelope-modulated signal
of (12). Considering the above stated, we are able to reformulate the excitation b(t) and the
state variables x(t) vectors as bidimensional entities, in which t is replaced by tE for the slowly
varying parts (the envelope time scale) and by tC for the fast-varying parts (the RF carrier time
scale). This bidimensional formulation converts the DAE system of (1) into the following
multirate partial differential algebraic equations’ (MPDAE) system [11]:

µ µ µ $( ( , )) ( ( , )) ( ( , )) ( , ).E C E C
E C E C

E C

t t t t t t t t
t t

¶ ¶
+ + =

¶ ¶
q x q x f x b (15)

The mathematical relation between (1) and (15) establishes that if b̂(tE , tC) and x̂(tE , tC) satisfy
(15), then the univariate forms b(t)= b̂(t , t) and x(t)= x̂(t , t) satisfy (1) [11]. Therefore, univariate
solutions of (1) are available on diagonal lines tE = t , tC = t ,  along the bivariate solutions of
(15), i.e., x(t) may be retrieved from its bivariate form x̂(tE , tC), by simply setting tE = tC = t.
Consequently, if one wants to obtain the univariate solution in the generic [0,tFinal] interval, due
to the periodicity of the problem in the tC dimension we will have

µ( ) ( , mod )Ct t t T=x x (16)

on the rectangular domain 0, tFinal × 0, TC , where t mod TC represents the remainder of
division of t by TC. The main advantage of this MPDAE approach is that it can result in
significant improvements in simulation speed when compared to DAE-based alternatives.

2.5.3. Initial and boundary conditions for envelope-modulated regimes

Dynamical behavior of RF circuits driven by stimuli of the form of (12) can be described by the
MPDAE system of (15) together with a set of initial and periodic boundary conditions. In fact,
bivariate forms of the circuits’ state variables can be achieved by computing the solution of the
following initial periodic-boundary value problem

( )( ) ( )( ) ( )( ) ( )

( ) ( ) ( ) ( )

¶ ¶
+ + =

¶ ¶

= =

q x q x
f x b

x i x x

ˆ ˆ, , ˆˆ , , ,

ˆ ˆ ˆ0, , ,0 , ,

E C E C
E C E C

E C

C C E E C

t t t t
t t t t

t t
t t t t T

(17)
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on the rectangle 0, tFinal × 0, TC . i(·) is a given initial-condition function defined on [0,TC],
satisfying i(0)=i(TC)=x(0), and x̂(tE0)=x̂(tE,TC) is the periodic boundary condition due to the
periodicity of the problem in the tc fast carrier time scale.

The reason why bivariate envelope-modulated solutions do not need to be evaluated on the
entire 0, tFinal × 0, tFinal  domain (which would be computationally very expensive and would
turn the multivariate strategy useless), and are restricted to the rectangle 0, tFinal × 0, TC , is
because the solutions repeat along the tC time axis. The way how univariate solutions are
recovered from their multivariate forms was already defined above by (16).

3. Hybrid time-frequency techniques for computing the solution of
MPDAEs

In this section, we will finally discuss the hybrid time-frequency numerical techniques that
can be used to evaluate the solution of MPDAEs describing the operation of nonlinear
electronic radio frequency circuits running in an aperiodic slow time scale and a periodic fast
time scale. Section 3.1 addresses an efficient technique often referred to as multitime envelope
transient harmonic balance (multitime ETHB). Then, Section 3.2 presents an advanced parti‐
tioned time-frequency technique, which is an improved version of multitime ETHB and has
demonstrated to be even more efficient than this technique.

3.1. Multitime envelope transient harmonic balance

Let us consider the initial-boundary value problem of (17) and let us define a semi-discretiza‐
tion of the rectangular domain 0, tFinal × 0, TC  in the tE slow time dimension described by the
following general non uniform grid

,0 ,1 , 1 , , , , , 10 , ,
EE E E i E i E K Final E i E i E it t t t t t h t t- -= < < < < < < = = -L L (18)

in which KE represents the total number of steps in tE and hE,i denotes the grid size at each time
step i. If we replace the derivatives of the MPDAE in tE with a finite-differences approximation
(e.g., a backward differentiation formula, the modified trapezoidal rule, etc.), then we obtain
for each slow time instant tE,i, from i = 1 to i = KE, a periodic boundary value problem in tC. For
simplicity, and clarity, let us suppose that the Backward Euler rule is used. In such a case, we
obtain

( )( ) ( )( ) ( )( ) ( )( ) ( )
( ) ( )

--
+ + =

=

q x q x q x
f x b

x x

1
,

,

ˆ ˆ ˆ ˆˆ , ,

ˆ ˆ0 ,

i C i C i C
i C E i C

E i C

i i C

t t d t
t t t

h dt
T

(19)
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where x̂ i(tC) is an approximation to the exact solution x̂(tE,i,tC). Thus, once x̂ i−1(tC) is computed,
the solution on the next slow time instant, x̂ i(tC), is evaluated by solving (19). Consequently,
it is straightforward to conclude that we have to solve a set of KE periodic boundary value
problems if we want to obtain the solution x̂(tE , tC) in the entire 0, tFinal × 0, TC  domain. With
multitime ETHB, each one of these periodic boundary value problems is solved using the
harmonic balance method. For each slow time instant tE,i, the resultant HB system is the n(2K
+ 1) algebraic equation system defined by

, , 1
, , ,

,

ˆ ˆ( ( )) ( ( )) ˆ ˆ ˆ( ( )) ( ( )) ( ),E i E i
E i E i E i

E i

t t
j t t t

h
--

+ W + =
Q X Q X

Q X F X B (20)

where B̂(tE ,i) and X̂(tE ,i) are the vectors containing the Fourier coefficients of the excitation
sources and of the solution (the state variables), respectively, at tE = tE,i. F(• ) and Q(• ) are
unknown functions that can be computed by evaluating f(·) and q(·) in the time domain and
then calculating their Fourier coefficients. Ω is the diagonal matrix (6), and the X̂(tE ,i) vector
can be described as

, 1 , 2 , ,
ˆ ˆ ˆ ˆ( ) [ ( ) , ( ) , , ( ) ] ,T T T T

E i E i E i n E it t t t= ¼X X X X (21)

where each one of the state variable frequency components, X̂v(tE ,i), v = 1,…,n, is a (2K+1)×1
vector defined as

, , , ,0 , , ,
ˆ ( ) [ ( ), , ( ), , ( )] .Tv E i v K E i v E i v K E it X t X t X t-= ¼ ¼X (22)

The HB system of (20) can be rewritten as

, , 1
, , , ,

,

ˆ ˆ( ( )) ( ( ))ˆ ˆ ˆ ˆ( ( )) ( ( )) ( ( )) ( ) 0,E i E i
E i E i E i E i

E i

t t
t j t t t

h
--

= + W + - =
Q X Q X

H X Q X F X B (23)

or simply as

,
ˆ( ( )) 0,E it =H X (24)

in which H(X̂(tE ,i)) is the error function at tE = tE,i. In general, the nonlinear algebraic system of
(24) is iteratively solved using Newton’s method
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[ ]
, ,

,[ ] [ 1] [ ]
ˆ ˆ, , ,( ) ( )

,

ˆ( ( ))ˆ ˆ ˆ( ( )) | ( ) ( ) 0,ˆ ( )
r

E i E i

E ir r r
E i E i E it t

E i

d t
t t t

d t
+

=
éë û+ - =ù

X X

H X
H X X X

X
(25)

which requires that we have to solve a linear system of n(2K + 1) equations at each iteration r
to compute the new estimate X̂ r+1 (tE ,i). Consecutive Newton iterations will be computed until
a desired accuracy is achieved, i.e., until H(X̂(tE ,i)) <δ, where δ is the allowed residual size.

The system of (25) requires the computation of the Jacobian matrix J(X̂(tE ,i)), i.e., the derivative
of the vector H(X̂(tE ,i)), with respect to the vector X̂(tE ,i),

1 , 1 , 1 ,

1 , 2 , ,

2 , 2 , 2 ,
,

, 1 2 , ,
,

,

1 ,

ˆ ˆ ˆ( ( )) ( ( )) ( ( ))
ˆ ˆ ˆ( ) ( ) ( )
ˆ ˆ ˆ( ( )) ( ( )) ( ( ))ˆ( ( ))ˆ ˆ ˆ ˆ( ( )) ( ) ( ) ( )ˆ ( )

ˆ( ( ))
ˆ ( )

E i E i E i

E i E i n E i

E i E i E i
E i

E i Ei E i n E i
E i

n E i

E i

t t t
t t t

t t t
d t

t t t t
d t

t
t

¶ ¶ ¶

¶ ¶ ¶

¶ ¶ ¶
= = ¶ ¶ ¶

¶

¶

H X H X H X
X X X

H X H X H X
H X

J X X X X
X

H X
X

L

L

L L L L

, ,

2 , ,

ˆ ˆ( ( )) ( ( ))
ˆ ˆ( ) ( )
n E i n E i

E i n E i

t t
t t

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú

¶ ¶ê ú
ê ú¶ ¶ë û

H X H X
X X

L

(26)

This matrix has a block structure, consisting of n×n square submatrices (blocks), each one with
dimension (2K + 1). The general block of row m and column l can be expressed as

, , , ,

,, , , ,

ˆ ˆ ˆ ˆ( ( )) ( ( )) ( ( )) ( ( ))1 .ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )
m E i m E i m E i m E i

E il E i l E i l E i l E i

d t d t d t d t
j

hd t d t d t d t
= + W +

H X Q X Q X F X
X X X X

(27)

3.2. Partitioned time-frequency technique

Although multitime ETHB can take advantage of the signals’ time rate disparity, it does not
take into account the circuit’s heterogeneities, i.e., it uses the same numerical algorithm to
compute all the circuit’s state variables. Thus, if the circuit evidences some heterogeneity (e.g.,
modern wireless architectures combining RF, baseband analog circuitry, and digital
components in the same circuit), this tool cannot benefit from such a feature. This lack of ability
to perform some distinction between nodes or blocks within the circuit had already been
identified by Rizzoli et al. [17] and is the main limitation of multitime ETHB. To cope with this
deficiency, the partitioned time-frequency technique separates the circuit’s state variables
(node voltages and branch currents) into fast (active) and slowly varying (latent) subsets. That
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implies the MPDAE system of (15) to be first considered as coupled active-latent MPDAE
subsystems

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )

¶ ¶
+ + =

¶ ¶

¶ ¶
+ + =

¶ ¶

q x x q x x
f x x b

q x x q x x
f x x b

ˆ ˆ ˆ ˆ, , , , , , ˆˆ ˆ, , , ,

ˆ ˆ ˆ ˆ, , , , , , ˆˆ ˆ, , , ,

E C E C E C E C
E C E C E C

E C

E C E C E C E C
E C E C E C

E C

t t t t t t t t
t t t t t t

t t
t t t t t t t t

t t t t t t
t t

A A L A A L
A A L

L A L L A L
L A L

(28)

with

ˆ( ) ( , )
ˆ( ) ( , ) , ( ) , ( ) , ,

ˆ( ) ( , )
A LA A n n

A L A L
L L

x t x t t
x t x t t x t x t n n n

x t x t t
=é ù

= = Î Î + =ê ú=ë û
¡ ¡ (29)

where xA(t) and xL(t) are the vectors containing, respectively, the fast-varying and the slowly
varying state variables. As we will see, with this partition stratagem, fast-varying state
variables can be computed with multitime ETHB, while slowly varying ones are being
evaluated with a unidimensional time-step integration scheme. This tactic also allows the
moderate nonlinearities to be treated in the frequency domain, while severe nonlinearities are
appropriately evaluated in the time domain [16].

With the purpose of providing an elucidatory explanation of the partitioned time-frequency
technique, let us consider a typical wireless system, composed of RF and baseband blocks. In
such a case, the state variables in the RF block can be described as fast carrier envelope
modulated waveforms defined as

2
, ,( ) ( ) ( ) , 1, ,C

K
jk f t

A A v k v A
k K

x t x t X t e v np

=-

= = = ¼å (30)

while state variables in the baseband block can be seen as slowly varying aperiodic functions
of the form

,( ) ( ) ( ), 1, , .L L v v Lx t x t t v ny= = = ¼ (31)

In (30), Xk,v(t) represents the Fourier coefficients of xA,v(t), which are slowly varying in the
baseband time scale, and fC is the high-frequency carrier. As stated above, signals of the form
xA,v(t) will be denoted as active, whereas signals of the form xL,v(t) will be designated as latent.
The latency (slowness) of xL,v(t) indicates that these variables belong to a circuit block where
there are no fluctuations dictated by the fast carrier. Thus, it is straightforward to conclude
that all of the xL,v(t) can be efficiently represented with much less sample points than any of
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the xA,v(t). Moreover, since the xL,v(t) state variables do not evidence any periodicity, they cannot
be evaluated in the frequency domain. In contrast, if the number of harmonics K is not too
large, the fast carrier oscillation components of xA,v(t) can be efficiently computed with
harmonic balance. Taking the above into account we can easily conclude that distinct numer‐
ical strategies will be required if we want to simulate, in an efficient way, circuits having such
signal format disparities.

In the following we provide a brief theoretical description of the partitioned time-frequency
technique fundamentals. For that, let us now consider the bivariate forms of xA,v(t) and xL,v(t),
denoted by x̂ A,v(tE , tC) and x̂ L ,v(tE , tC), and defined as

2
, ,( ) ( )ˆ , C C

K
jk f t

A v E C k v E
k K

t t ex X t p

=-

= å (32)

and

,ˆ ( , ) ( ),L v E C v Ex t t ty= (33)

where tE and tC are, respectively, the slow envelope time dimension and the fast carrier time
dimension. As can be seen, since the x̂ L ,v(tE , tC) state variables have no dependence on tc, they
have no fluctuations in the fast time axis. The reason is that they belong to a circuit block where
there are no carrier frequency oscillations. As a result, for each slow time instant tE,i defined
on the grid of (18), each of the x̂ L ,v(tE ,i, tC) is merely a constant signal that can be simply
represented by the k = 0 component. Therefore, there is no necessity to perform the conversion
between time and frequency domains for x̂ L ,v(tE ,i, tC), which means that these state variables
can be processed in a purely time-domain scheme. In contrast, for each slow time instant tEi,
each of the x̂ A,v(tE ,i, tC) is a waveform that has to be represented as a Fourier series adopting a
convenient harmonic truncation at some order k = −K,…,K, i.e., each of the x̂ A,v(tE ,i, tC) is a
waveform that requires a total of 2K + 1 harmonic components for a convenient frequency
domain representation. In summary, while active state variables have to be represented by a
set of 2K + 1 Fourier coefficients arranged in (2K + 1)×1 vectors of the form

, , , , , , ,0 , , , ,
ˆ ( ) [ ( ), , ( ), , ( )] , 1, , ,T
A v E i A v K E i A v E i A v K E i At X t X t X t v n-= ¼ ¼ = ¼X (34)

latent state variables can be represented as 1×1 scalar quantities, i.e., they can be simply
represented as

, , , ,0 ,
ˆ ( ) ( ), 1, , .L v E i L v E i Lt X t v n= = ¼X (35)
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By considering this, we can easily deduce that the size of the X̂(tE ,i) vector defined by (21) will
be significantly decreased, as well as the total number of equations in the HB system of (23).
Furthermore, another crucial aspect is that we are no longer forced to carry out the conversion
between time and frequency domains for the latent state variables expressed in the form of
(35), as well as for the components of H(X̂(tE ,i)) corresponding to latent blocks of the circuit.
Given that the k = 0 order Fourier coefficient Xv,0(tE,i) is exactly the same as the constant tC time
value x̂v(tE ,i), components of the HB system of (23) that have no dependence on active state
variables will not be required for any direct or inverse Fourier transformation operations.

Considerable Jacobian J(X̂(tE ,i)) matrix size reductions will also be achieved with this technique.
Indeed, by considering the latency of state variables in some parts of the circuit, some blocks
of the Jacobian matrix (26) are simply reduced to 1×1 scalar elements. These scalar elements
contain the dc sensitivity of H(X̂(tE ,i)) to the latent components of X̂(tE ,i).

With the state variable X̂(tE ,i) and the error function H(X̂(tE ,i)) vector size reductions, as also
the resulting Jacobian J(X̂(tE ,i)) matrix size reduction, it is possible to avoid dealing with large
linear systems in the iterations of (25). Thus, a less computationally expensive Newton-
Raphson iterative solver is required to solve (23). In conclusion, partitioning the circuit into
active and latent sub-circuits (blocks) can lead us to significant computation and memory
savings when computing the solution.

4. Efficiency of the partitioned time-frequency technique

The effectiveness of the multitime ETHB technique is nowadays widely recognized by the RF
and microwave community. The efficiency of the partitioned time-frequency simulation
technique described in the previous section was also already established, as a consequence of
the considerable reductions in the computational effort required to obtain the numerical
solution of several RF circuits with distinct topologies and levels of complexity [16]. Even so,
a brief comparison between this method, the previous state-of-the-art multitime ETHB and a
conventional univariate time-step integration scheme (SPICE-like simulation), is included in
this section. This will help the reader to get a perception of the potential of the partitioned
hybrid technique. For that, we considered the RF mixer (frequency translation device) depicted
in Figure 3 as the illustrative application example. The circuit was simulated in MATLAB with
three different techniques: (i) the partitioned time-frequency simulation technique, (ii) the
multitime ETHB, and (iii) the Gear-2 multistep method [5] (a time-step integrator commonly
used by SPICE-like commercial simulators).

Numerical computation times for simulations in the [0, 1.0 μs] and [0, 10.0 μs] intervals are
presented in Table 1. For simplicity, in the hybrid time-frequency techniques we assumed a
uniform grid in the tE slow time scale (we have chosen hE = 10 ns as the step size in that
dimension) and we considered K = 11 as the maximum harmonic order for the HB evaluations
in the tC fast carrier time scale.
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By comparing the CPU times obtained with the methods, we can attest the superiority of the
partitioned time-frequency method. Indeed, speedups of more than two times were obtained
with this method in comparison to multitime ETHB. We can also attest the inefficiency of
univariate time-step integration when dealing with RF problems. Finally, it must be noted that
the efficiency gain of the partitioned time-frequency technique was achieved without com‐
promising accuracy. Indeed, the maximum discrepancy between solutions computed with this
technique and multitime ETHB was in the order of 10−7 for all the state variables of the circuit.

Figure 3. Simplified schematic diagram of a mixer (frequency translation device).

Simulation
time
interval

Partitioned
time-frequency
technique

Multitime
ETHB

Univariate time-step
integration
(Gear-2 method)

[0, 1.0 μs] 00:00:04.9 00:00:11.3 00:19:21

[0, 10.0 μs] 00:00:39.6 00:01:35.1 02:47:33

Table 1. CPU time (h:min:sec)—simulation of the circuit depicted in Figure 3.

5. Conclusions

In this chapter, we have presented a partitioned time-frequency numerical technique espe‐
cially designed for the efficient simulation of RF circuits operating in a periodic fast time scale
and an aperiodic slow time scale. This technique can be viewed as a wise combination of
multitime ETHB based on a multivariate formulation, with a conventional univariate time-
step integration scheme. With this technique fast changing (active) state variables are com‐
puted in a bivariate mixed time-frequency domain, whereas slowly varying (latent) state
variables are evaluated in the natural one-dimensional time domain. By partitioning the
circuits into active and latent parts and exploiting the fact there is no obligation to perform
conversion between time and frequency for latent blocks, considerable reductions in the
computational effort can be achieved without compromising the accuracy of the results.
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Although the speedups obtained with the simulation of the illustrative application example
presented in Section 4 are already notable, it must be noted that higher efficiency gains should
be expected when simulating RF networks containing a number of latent blocks larger than
the active ones.
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