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Abstract

In  this  chapter,  artificial  neural  networks  (ANNs)  inverse  model  is  applied  for
estimating the thermal performance ( )  in parabolic  trough concentrator (PTC).  A
recurrent neural network architecture is trained using the Kalman Filter learning from
experimental database obtained from PTCs operations. Rim angle (φr), inlet (Tin), outlet
(Tout)  fluid  temperatures,  ambient  temperature  (Ta),  water  flow  (Fw),  direct  solar
radiation (Gb) and the wind velocity (Vw) were used as main input variables within the
neural network model in order to estimate the thermal performance with an excellent
agreement (R2=0.999) between the experimental and simulated values. The optimal
operation conditions of parabolic trough concentrator are established using artificial
neural network inverse modeling. The results, using experimental data, showed that
the recurrent neural network (RNN) is an excellent tool for modeling and optimization
of PTCs.

Keywords: solar concentrating, thermal efficiency, neural networks, Kalman training
optimization, solar energy

1. Introduction

About 80% of the energy consumed worldwide come from conventional energy sources, where
more than 50% is used by the industry being a large part of this demand for the generation of
heat industrial process [1, 2]. However, the use of fossil fuels to satisfy this demand has led to
severe environmental impacts, which together with the decline of this resource has led to global
energy policies focus on replacing fossil fuels with sustainable energy sources. The use of solar
thermal systems could help to reduce CO2 emissions and other pollutants in the atmosphere.
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Solar energy is one of the renewable energies that attract more attention due to its abundance,
cleanliness, and the fact that it does not generate any pollution [3]. On the other hand, in the
industries exist several processes that require thermal energy with temperature range between
60 and 250 °C for heat process generation; industries such as dairies, plastics, canned food,
textile, paper, etc. employ this kind of energy to process such as drying, sterilizing, cleaning,
evaporation, steam and conditioning warehouses space for both heating and cooling [4]. This
energy could be easily supplied by solar collectors using photothermal conversion. The
thermal storage process is used to supply the required power loading when there is no sunlight.
Amongst the middle-temperature solar collectors are the parabolic trough, Fresnel, compound
parabolic collectors (CPCs) and evacuated tubes. In this work, we consider parabolic trough
solar concentrators (PTCs) that could yield the heat within the temperature between 90 and
400 °C. Parabolic trough solar concentrators (PTCs) are one of the most mature technologies
developed in this area [5]. Nevertheless, the use of this technology entails certain difficulties
because of a large number of operational and environmental parameters. This becomes an
extremely complicated study on these systems, creating complex nonlinear equations for
compression, which results in the employment of sophisticated control systems to operate and
optimize the PTC performance, in order to maximize its cost-benefit during the operation. The
modeling and simulation of these systems should take into account the collector, the thermal
load, and the losses to the environment and the power auxiliary supply.

In the last decades, in the area of renewable energy, the employ of computational intelligence
methods such as artificial neural networks (ANN) has been rising to perform modeling and
optimization process [6] because all the information based on renewable energy systems is
very volatile and it has too much noise and also the behavior does not present a linear trend.
In recent years, one of the most promising approaches for modeling and control of the highly
nonlinear processes is the use of recurrent neural network. For most applications on time series
forecasting, recurrent neural network (RNN) using the back-propagation learning algorithm
has presented good results. However, this learning law is based on the gradient descent
method and its convergence speed could not meet the requirements when fast responses are
needed. Another well-known training algorithm is the Levenberg-Marquardt whose main
disadvantage is that it does not guarantee finding the global minimum and its learning speed
could be slow since it depends on the initialization values. To overcome the learning speed
and uncertainties issues, recently, the extended Kalman Filter (EKF)-based algorithms have
been implemented to train neural networks. With the EKF-based algorithm, the learning
convergence is improved [6]. Using the EKF training on recurrent neural networks drives to
improve results mostly in control, identification and predictions applications where the critical
variables are subject to uncertainties and unmodeled dynamics. However, the EKF training
requires the heuristic selection of some design parameters, which is not always an easy task.

This chapter is focused on presenting the methodology used to conduct the process of
modeling the thermal efficiency of an array of PTCs, in order to bring the system to optimal
operating conditions through a desired efficiency by using ANN. The chapter is divided into
five sections: Section 2 describes the experimental system composed by parabolic trough solar
concentrations; Section 3 details the artificial neural network as modeling tool; Section 5
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presents the development of the inverse modeling for optimization; and Section 6 describes
the conclusions.

2. Experimental system: parabolic trough solar concentrations

2.1. Experiment description

The experimental system corresponds to a low enthalpy steam generation plant built according
to the ASHRAE 93-1986 (RA 91) standard [7]; it is composed by:

• three PTCs (with 90° rim angle) with a length of 2.44 m and an aperture of 1.06 m;

• two storage thermic tanks of 120 L capacity which cover two functions: the first is to preheat
the water for the characterization of PTC employing electrical resistances inside the tanks
(the first with 3 kW and second with 6 kW) and the second is to store the energy produced
by PTCs;

• a hydraulic circuit and two centrifugal water pumps of ½ HP is employed to recirculate the
preheated water to PTCs and then return it to the tanks;

• a set of sensors consisting in a Hedland HB2800 flow meters, pressure and temperature
meters at the storage thermic tanks outlet, such as pressure and temperature meters at the
outlet of PTCs.

For the measurement of environmental conditions, a pyranometer, an anemometer and
temperature sensors were employed. Figure 1 shows the diagram of the experimental system.

Figure 1. Operation diagram of parabolic solar concentration experimental system.
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2.2. Performance of parabolic trough solar collector (PTC)

A parabolic trough solar concentrator consists of a shaped channel sheet with parabolic cross-
section whose surface must have a high reflectance value (ρ); at the focus of parabola (f) is
situated an absorber metal tube covered with a selective surface with high absorptivity (α) and
low emissivity (ε). A glass tube with high transmissivity (τ) is placed concentric to the absorber
to minimize the convective losses; in the same way, the space between both tubes must be
evacuated to avoid the conduction losses. Inside the absorber tube, the working fluid gains
energy due to the concentration of solar irradiation at the focal line resulting in the temperature
increase of the working fluid [8]. Figure 2 shows cross-section of a PTC.

Figure 2. Parabolic trough solar concentrator.

Rim angle (φr) a B c

40°  2  1.5795  1.4927 

50°  2  1.7404  1.5199 

60°  18  14.420  5.6055 

70°  2  2.3000  1.5974 

80°  2  2.7846  1.6485 

90°  2  2.8284  2.4142 

Table 1. Constant values respect the rim angle.

One of the most practical ways to calculate the dimensions of a PTC by considering the
curve length S of the reflective surface is given by:
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( )2
2 ln( ) ln( )f a

aS b f a cf= - + (1)

where the coefficients a, b and c are determinates by the angle that form the parabolic surface
with respect to the focal line which is called rim angle (φr). Table 1 shows the values of this
these coefficients for different rim angles.

Another important parameter related to the rim angle (φr) is the aperture of the parabola (Wa).
From Figure 2 and simple trigonometry, it can be found [9] that:

( )p4 t 2anaW f h= (2)

where hp is the latus rectum of the parabola.

2.2.1. Optical performance

The optical efficiency (η0) of a PTC is defined as the ratio of solar energy that falls on the surface
of the absorber tube and that which falls on the reflective surface of the collector. It is commonly
given as [10]:

( )( ) ( )f1 tan coso Ah rtag q qé ù= -ë û (3)

where θ is the factor intersection receptor, θ is the sun rays incident angle and Af is the ratio
of the area of loss and opening area of the PTC (called geometric factor).

There are two types of errors associated with the parabolic surface: random and no random.
The first type of errors is apparent changes in the sun width, scattering effects caused by
random slope errors and associated with the reflective surface; these can be represented by
normal probability distributions. The second class of errors depends on the manufacturing
and operation of the collector. These errors are due to the reflector profile imperfections,
misalignment and receiver location errors [11]. Random errors are modeled statistically to
calculate the standard deviation of the distribution of the total energy reflected at normal
incidence [12]:

2 2 2
Tot sol pend ref4s s s s= + + (4)

where σsol is the standard deviation of the distribution of solar form, σpend is the standard
deviation of the slope errors and σref is the standard deviation of the distribution of the errors
of the reflective surface.

2.2.2. Thermal performance

The experimental evaluation for thermal performing of PTC is realized according to the
ASHRAE 93-1986 (RA 91) standard [7]. This standard provides a widely known method to
obtain the thermal efficiency of solar energy collector that uses single phase fluids, in order to
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be compared with the similar solar collectors [13]. Therefore according to the standard, the
thermal instantaneous efficiency (ηg) on a PTC is evaluated experimentally by considering:

p o i

a b( )
( )

g

mC T T
A G

h
¢ -

= (5)

where Ti and To are the inlet and outlet temperatures, respectively, �′ is the mass flow rate, Cp
is the specific heat, Aa is the aperture area of the collector and Gb is the direct solar irradiation
component in the aperture plane of the collector. To avoid the phase change in the water that
is used as thermal fluid, Ti is restricted between 20 and 90°C.

On the other hand, the PTC thermal efficiency (ηT) employing the first law of thermodynamic
is given by [8]:
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(6)

where (ΔT=Ti Ta) is the temperature rise across the receiver, and Ta is the environmental
temperature. As can be seen, Eq. (6) has the form of an equation of line, where FRUL/CO

represents the pediment and FRηo represents the interception. This relation can be applied to
obtain experimentally the heat removal factor FR and the overall heat loss coefficient UL for a
PTC.

3. Artificial neural network as modeling tool

3.1. Artificial recurrent neural networks

Artificial neural networks (ANN) are adaptive systems developed in the form of computational
algorithms or electrics circuits, which are inspired in the biological neuron system operation.
An ANN is composed of a large number of interconnected units called neurons that have a
certain natural tendency for learning information from the outside world [14]. These structures
are used to estimate or approximate functions that may depend on a lot of variables, which
are generally unknown reason for why the ANN have been used in many practical applications
such as pattern recognition, estimation of series time and modeling of nonlinear processes [15].

A model of ANN can be seen as a black box to which is entered a database composed of a series
of input variables; each of these input variables is assigned an appropriate weighting factor
called weight (W). The sum of the weighted inputs and the use of bias (b) for adjustment
produce an input value applied to a transfer function to generate an output (Figure 3). The
main feature of these models is that they do not require specific information on the physical
behavior of the system or how they were obtained data [16].
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Figure 3. Artificial neuron with n inputs.

Figure 4. Recurrent neural network.

Among the many existing ANN models the most widely used is known as multi-layer
perceptron (MLP) [17], which is used to solve multivariable problems by nonlinear equations
using a process called training. The training process is performed through specific learning
algorithms, where the most widely used is known as back-propagation through time [18]. The
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architecture of an MLP is usually divided into three parts known as: input layer, hidden layer
and output layer. During the training process, the MLP learns from past errors to get a model
that describes as closely as possible to the nonlinear phenomenon. To carry out this, during
the training phase they adapt the weight and bias parameters until the approximation error is
minimized [19].

A recurrent neural network responds temporally to an external input signal where the
feedback allows the RNN to have a representation in state space; this versatility makes them
convenient for diverse applications for modeling, optimization and control. The order in an
RNN refers to the form in which the neuron activation potential is defined [20]. When the local
activation potential is combined with products of signals coming from of the feedback or when
products are made between the later and the external input signals to the network, a neural
network of order emerges, where the order represents the number of signals that are multi-
plied. In this work, in order to carry out modeling of the process, a high order recurrent neural
network is designed. The structure is composed by an input vector, one hidden layer and an
output layer composed of just one neuron with a linear activation function. In Figure 4, the
designed recurrent neural network architecture is depicted.

According to Figure 4, ρi(k) is the input i to the neural network, vj(k) is the neuron j activation
potential, yj(k) represents the neuron j output, v(k) is the output neuron activation potential,�(�) is the neuron output in the output layer (neural network output), φ(vj(k)) represents the
neuron j activation function, φ(v(k)) is the activation function of the output layer neuron, wji(k)
is the weight connecting the input i to the neuron j input, wj(k) is the weight connecting neuron
j output to the neuron input in the output layer, and s and A are the inputs total number to the
neurons in the hidden and output layers, respectively.

For the set of weights, we construct a weight vector that will be estimated by means of the
Kalman Filtering. The Kalman Filtering (KF) algorithm was first designed as a method to
estimate the state of a system under noise on the process and on the measurement. Consider
a linear, discrete-time dynamical system described by

1, 1( 1) ( ) ( )kw k F w k v k++ = + (7)

2( ) ( ) ( ) ( )y k H k w k v k= + (8)

Eq. (7) is known as the process equation; Fk+1,k is the transition matrix taking the state w(k) from
iteration k to iteration k+1 and υ₁(k) is the process noise. On the other hand, Eq. (8) is known
as the output measurement, which represents y(k) i.e. the observable part of the state at iteration
k, H(k) is the measurement matrix and υ₂(k) is the measurement noise. Both the process noise
υ₁(k) and the measurement noise υ₂(k) are assumed as white noise with covariance matrices
given by E[υ₁(l)υ₁T(l)]=δk,lQ(k) and E[υ₂(l)υ₂T(l)]=δk,lR(k). To deal with the nonlinear structure
of the recurrent neural network mapping, an EKF algorithm is developed. The learning
algorithm for the recurrent neural network based on the EKF is described as
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where P(k) and P(k+1) are the prediction error covariance matrices, w(k) is the neural weight
vector, y(k) is the measured output vector, y(k) is the neural network output, K(k) is the Kalman
gain matrix, and Q and R are the state and measurement noise covariance matrices. The
matrices P, Q and R are assumed to be diagonal and are initialized using random values P₀,
Q₀ and R₀, respectively.

The H(k) matrix is defined with each derivative of one of the neural network output, (yi), with
respect to one neural network weight, (wj), as follows:

ˆ( ) ( 1)

( )( )
( )

ˆ
1, ,o; 1, ,NWi

ij
j w k w k

y kH k i j
w k

= +

¶
= = ¼ = ¼
¶

where NW is the total number of neural network weights and o is the total number of outputs.

4. ANN inverse model

In order to solve the optimization problem proposed, a computational intelligence methodol-
ogy is developed. The proposed approach is divided into two parts: first is the generation of
a mathematical model by RNN and the second part is responsible for performing inverse
neural network for the optimization process. Figure 5 displays the methodology divided into
three steps: (i) the first step consist in generate a database with the most important parameters

Figure 5. Optimization by neural network methodology.
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that could affect the desired output, which is schematized in Figure 6, which in our case is the
thermal efficiency, (ii) in the second step an RNN model is trained to obtain the best approxi-
mation error that relates the inputs with desirable outputs; (iii) in the last step one of the RNN
inputs is selected to function as a control variable to perform the optimization process by an
inverse neural network architecture.

Figure 6. Neural network architecture for the mathematic model of thermal efficiency.

Parameters Min Max Units

Input 

Operational variables 

Inlet flow temperature (Tin)  27.75  86.30  [°C] 

Outlet flow temperature (Tout)  34.70  100.2  [°C] 

Flow working fluid (Fw)  0.94  6.11  [L/min] 

Environmental variables 

Ambient temperature (Tamb)  24.26  33.99  [°C] 

Direct solar radiation (Gb)  830.0  1014  [W/m2] 

Wind velocity (Vw)  0.95  3.98  [m/s2] 

Output       

Thermal efficiency (Eff)  0.16  0.63  [–] 

Table 2. Parameters employed at the ANN prediction model.

Experimental database provided by Jaramillo et al. [13], consists of different  values calculated
from the thermodynamic parabolic trough concentrator model (Eqs. (5) and (6)). The parameter
measurements are divided into two categories: operational variables conformed by inlet
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temperature (Ti) and outlet temperature (To) working fluid, as well as flow working fluid (Fw);
and environmental variables composed by ambient temperature (Ta), direct solar radiation
(Gb) and wind velocity (Vw). Table 2 shows the six parameters that form the database and the
minimum and maximum ranges of each one.

The development of predictive mathematical model of the experimental database was divided
into two processes; the main process (in these case 80%) was destined to RNN learning and
testing process and the other part (20%) was employed for the validation of the results, in order
to obtain a good representation of the data distribution.

At the training process, a normalized database was entered into a MLP architecture, where the
number of neurons at the input and output layers was given by the number of input and output
variables in the process, respectively. The Kalman Filter training algorithm in Eq. (9) was
employed to obtain the optimum weights and bias for the RNN model as the one displayed in
Figure 4.

Figure 7. Thermal efficiency validation. (a) Experimental thermal efficiency not included at training and (b) simulate
thermal efficiency from RNN model.
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To validate the MLP model, a comparison was carried out employing the data not included in
the training process. The output values comparison (thermal efficiency) was made in function
of two variables, the heat loss parameter (ΔT/Gb) and the working fluid flow. Figure 7a shows
the real behavior of the thermal efficiency of the system in function of both parameters (heat
loss parameter and fluid flow) and where can be seen a trend to decrease when ∆T increases
[21]. Furthermore, Figure 7b represents the values of thermal efficiency obtained from the
mathematical model generated with MLP where an appropriate reproduction of the real
efficiency curves can be seen, demonstrating that the model is capable of adapting to the
variations of flow and heat losses.

4.1. Optimization of the inverse artificial neural network

Once generated the desired mathematical model and proven effective, an optimization process
is applied. To perform the optimization analysis, an input variable must be selected as control
input. The selected variable in the present application was the water flow since it can be
manipulated and quickly impact the system behavior. For the optimization process, the output
generated by the ANN model (thermal efficiency) acts as input to a process modeled from
experimental values, generating as output a control variable that minimizes the difference for
the desired thermal efficiency. Figure 8 displays the inverse ANN architecture.

Figure 8. Inverse artificial neural network.
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5. Conclusions

The aim of this chapter was to design an artificial neural network algorithm to predict the
thermal performance of a parabolic trough concentrator, in order to develop a new approach
for the estimation of the optimal operation condition of PTCs for a desired efficiency. A
recurrent neural network was applied to model the nonlinear characteristics of the process
with an excellent approximation of the thermal efficiency.
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