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Abstract

Polypropylene  fibres  have  been  applied  for  reinforcement  of  cement  mortars  and
concrete for many years. The fibres restrict crack propagation and positively affect
several concrete parameters.  To improve the adhesion of polypropylene to cement
matrix, geometrically deformed or modified fibres are commonly used. Good results
are obtained by application of fibrillated fibres with the net-like structure obtained from
the polypropylene types. The fibrillated polypropylene fibres were produced. The fibres
were chopped to specified lengths and used for the reinforcement of concrete and
cement  mortars.  The  parameters  of  fresh  concrete  and  mechanical  parameters  of
reinforced concrete and mortar were determined. It was stated that the fibres do not
affect the compressive strength of the reinforced concrete and mortar. The beneficial
effect of fibres on the compressive strength of concrete is revealed after freezing and
thawing cycles. The fibres influence the bending strength of the mortars. For mortars
reinforced  with  fibrillated  fibres  a  significant  increase  in  the  bending  strength  is
observed.  The  increase  in  the  bending  strength  results  from  enhanced  interfacial
adhesion  and  mechanical  anchoring,  which  results  from  opening  of  the  network
structure and splitting of fibrillated fibres.

Keywords: polypropylene fibrillated fibres, concrete, mortar, adhesion, compressive
and bending strength

1. Introduction

The application of fibres in improving the mechanical properties of construction materials has
been known for a long time. In the ancient times the primitive mud huts were built of clay doped
with straw. In the next centuries bricks baked from clay with straw and later lime and cement
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mortars with horse bristle were used. In the nineteenth century the concrete with addition of
asbestos fibres became very popular. In the beginning of the twentieth century the first attempts
of reinforcing the concrete with steel fibres were undertaken. Few decades later natural and
chemical fibres for reinforcement of concrete came into use. The literature on the subject describes
the successful attempts of applying various natural, as well as glass, carbon, polyaramide and
other typical synthetic fibres [1–7].

From the group of synthetic fibres the polypropylene fibres are the most frequently applied
[8, 9]. The great interest in polypropylene fibres results from their relatively low price,
abundant availability and several valuable properties [10, 11]. The fibres are safe and easy to
use and compatible with all concrete chemical admixtures. The fibres are chemically inert and
possess high chemical and biological resistance, including very good resistance in concrete’s
alkaline environment [12]. Thanks to high resistance the fibres are rust free and do not corrode
during the utilisation of concrete. The fibres are hydrophobic, show practically no wet
absorption and do not absorb water during the mixing of cement paste. Due to low density of
fibres, much lower than the density of steel, the reinforcement is light and does not load the
constructions additionally.

Short polypropylene fibres distributed uniformly in the whole capacity of concrete sew lips of
cracks and restrict their propagation [13–15]. The reduction of cracking is of great importance
especially in the first hours after pouring, when the concrete possesses low tenacity and low
Young’s modulus, and the stresses arising as a result of shrinkage exceed its strength [16].

Fibres effectively restrict the propagation of contraction cracks through dispersing the internal
stresses. In the moment when the crack is formed some fibres break, some, after the breaking
of bonds connecting them with the concrete, are partially pulled out and some bridge the
widening cracking [17]. All these processes lead to dissipating stresses occurring at the ends
of the crack. Although the ability of single fibres to dissipate the stresses is not high, with
greater amount of fibres the accumulation of the effect is observed and effective restriction of
spreading the cracks occurs.

Apart from reducing crack propagation, the addition of fibres positively affects other concrete
parameters. Concrete reinforced with polypropylene fibres possesses high strength and high
resistance to cracking at bending, high resistance to dynamic loads, improved fatigue resist‐
ance and lower grindability comparing to the classical concrete [18–22]. Fibres improve the
fire resistance of the concrete and its thermal resistance to sudden temperature changes. In
higher temperatures fibres are melted and partially absorbed by the cement matrix. The fibres
generate a permeable network that allows the outward gas migration, decreasing the pore
pressure in the material and, consequently, eliminating the possibility of explosive spalling
occurrence [23, 24]. Adding fibres improves also the freeze resistance of concrete. In this way
fibres prolong significantly the concrete durability [25, 26].

In recent years fibre-reinforced concrete is getting widely used for the construction of roads
and highways, airport pavements, watersides and many other engineering objects [27–29].

The performance of the fibre-reinforced concrete depends on interaction between the cement
matrix and the fibres, which depends on the adhesion and the friction forces [30–33]. By weak

High Performance Concrete Technology and Applications190



stresses the adhesion forces ensure the cohesion of interfacial area. In this circumstance, the
internal stresses are transferred by both composite ingredients, and the displacements of the
fibres and the matrix at the phase border are compatible. At larger stresses, in a view of
significant difference of fibres’ and matrix’ elastic moduli, breaking of adhesive bonds between
the fibres and the matrix occurs. After the break of such bond the process of pulling the fibres
out begins, during which the friction forces play the main role [34–36].

Polypropylene fibres, due to their chemical structure and low surface energy, show extremely
low wettability and poor adhesion to cementitious matrix. The literature describes various
methods for modification of fibres, aimed at increasing the wettability and improving their
adhesion capacity. One method consists in introducing polar groups on the surface of the fibres
through reactions occurring during the plasma treatment or other reactions initiated by UV or
γ radiation [37–42]. The second method of improving the adhesive properties consists in the
increase of roughness of fibres’ surface by chemical and physical treatment [43]. This method
includes chemical etching, flame treatment, corona discharge or microwave radiation [44]. The
significant improvement of adhesive capacity is obtained by the deformation of the fibres by
crimping or twisting [45, 46]. Other interesting option is application of fibrillated fibres with
the net-like structure obtained from the polypropylene types [47–49].

Figure 1. The network structure of polypropylene fibrillated fibres.

The fibrillated polypropylene fibres are produced since the early 1960s [50]. Because of
relatively simple and inexpensive procedure as well as good mechanical properties, the
production of such fibres became quickly a reasonable alternative for classical melt spinning.
In next years, the technology was often used in the industrial practice and the fibres found a
broad application on a large-scale production of sack cloth, ropes and carpet backing fabrics
as well as agro-, geo- and different technical textiles.

The production of the fibrillated fibres is a multistage process. The process starts from the
extrusion of the polypropylene melt through a flat die. The film is solidified by water quench‐
ing and then uniaxially drawn and thermally stabilised. Efficient quenching in liquid media
allows higher stretching in subsequent proceedings steps. After stabilisation the film is cut into
narrow tapes of width in the range of 1–20 mm and then split into fibrous material by needle
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roller fibrillation unit. Finally, the fibres are taken-up on the winding device. By cutting and
splitting of fibres regular network-like structure is achieved (Figure 1). The particular opera‐
tions and processing conditions have a considerable influence on the structure and final
properties of the fibres [51]. By the change of the formation parameters fibres with various
mechanical and thermal parameters can be obtained [52].

For the reinforcement of concrete the fibrillated fibres chopped to the specific length between
few mm and tens mm are used. The thickness of commercially available fibres corresponding
to the thickness of the film ranges from 15 to 100 μm. For fibres the width of the individual
fibrils equals 100–600 μm. The fibres have the specific surface area in the range of 80–
600 mm2/mm3. The Young’s modulus of fibres is in the range of 3–5 GPa, what is many times
lower than the modulus of cementitious materials (15–40 GPa). The tensile strength of used
fibres is about 140–690 MPa [8].

2. Experimental study

2.1. Samples

Two series of polypropylene fibrillated fibres were obtained. Fibres were produced in
industrial conditions in Bezalin SA (Bielsko-Biala, Poland). For the production DPM and
Starlinger StarEx 1500 production lines were used. The fibres were formed from the commer‐
cial polypropylene resin Moplen HP 456 J (Orlen Polyolefins, Poland) characterised by melt
flow index 3.4 g/10 min with addition (2%) of polyethylene Bralen FB 2-30 (Slovnaft Petro‐
chemicals, Slovakia).

Polypropylene films were extruded through a flat die into water and then were cut into narrow
strips. After drawing and heat stabilisation, the strips were locally cut with a needle roller and
split with the final stretching unit. The fibres with the linear density of 1000 tex were produced.

For the first series produced on DPM line two draw ratios: 8.66 and 9.83 and three velocities
of the needle roller: 150, 180 and 200 [m/min] were applied. For the second series produced on
Starlinger StarEx 1500 line, two draw ratios: 10 and 12 and four velocities of the needle roller:
155, 175, 195 and 215 m/min were used.

Selected fibres from the first series characterised by the best mechanical parameters: the highest
tenacity and the highest Young’s modulus were cut into segments with the length of 19 mm
and were used for the preparation of samples of reinforced of concrete. The standard cubic
samples with dimensions 150 mm × 150 mm × 150 mm were prepared. The fibres were mixed
with the concrete in proportion 0.9 kg of fibres per cubic metre of concrete. After formation
the samples were cured for 28 days.

The fibrillated fibres selected from the second series were chopped to specified lengths of 5,
10 and 15 mm and were mixed with the cement mortar. The cement mortars were prepared
using Portland cement CEM I 42,5 R, sand and tap water in accordance to EN 197-1:2002 and
EN 197-2:2002 standards. The mixtures with different content of fibres: 0.25, 0.5, 0.75 and 1%
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by weight were obtained. The components were mixed with the laboratory mixer Multiserw.
Wet mortars were poured into the rectangular prism moulds with dimensions
40 mm × 40 × 160 mm and allowed to harden in the open space. Then the samples were cured
in water for 28 days.

2.2. Methods

The morphology of fibres and their mechanical properties were investigated. The morphology
of fibres was studied using a scanning electron microscope JEOL JSM 5500 LV. Observations
were carried out for the fibres sputtered with gold in JEOL 1200 ionic sputter.

The mechanical parameters of the fibrillated fibres: tenacity, elongation at break and Young’s
modulus were determined according to PN-EN ISO 5079 standard. The measurements were
performed using a tensile machine INSTRON 1026.

Workability of the fresh concrete, density and air content were investigated according to the
Polish standards PN-EN 12350-2:2001, PN-EN 12350-6:2001 and 12350-7:2001, respectively.
According to the Polish norm PN-EN 12390-3-2002, the compressive strength of concrete before
and after 150 freeze-thaw cycles was measured. According to the Polish norm PN-88/B the
investigations of water absorbability were performed.

Basic mechanical parameters of mortars: the compressive and bending strength were deter‐
mined according to the norm EN 196-1:2006. The measurements were carried out by the
TECNOTEST KE 200/A tensile machine. For comparison the plain mortar specimen without
fibres was tested.

After mechanical tests the morphology of the interfacial area of broken samples was analysed.
The studies were performed with scanning electron microscope JEOL JSM 5500 LV.

3. Results

3.1. The morphology, supermolecular structure and properties of fibrillated fibres

Figure 2 presents SEM microphotographs of the surface of the fibres. Figure 2a presents
longitudinal cuttings on the polypropylene strips produced by the needle roller mounted
before the final drawing unit. At higher magnifications on the surface of the strips the fibrillar
structure is clearly visible (Figure 2b). Fibrils are closed packed and well oriented along the
strips. The diameter of the fibrils equals ca. 0.1 μm.

After cutting the strips with the needle roller and drawing, the splitting of the fibrils is
observed. Due to weak intermolecular forces in polypropylene the cuttings propagate easily.
As a result, strips partially disintegrate into fibres connected together in a network-like
structure formed from flat fibres with the rectangular cross section and the diameter approx‐
imately of 500 μm. Between the adjacent fibres many links are still observed (Figure 2c). By
intense drawing the number of links between the fibres decreases (Figure 2d).
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For the fibres drawn at ratio 9.83 the tenacity is slightly higher. For both series of fibres, drawn
at 8.66 and 9.83, the largest tenacity exhibit the fibres produced at the smallest needle roller
velocity 150 m/min. With the increase in roller velocity the tenacity of fibres slightly decreases.
In comparison to the fibres drawn at 8.66, elongation at break for the fibres drawn at 9.83 is
higher. For both series of fibres elongation at break does not change with the change in the
needle roller velocity. Fibres drawn at lower ratio 8.66 possess lower value of the Young’s
modulus, which is independent of the needle roller velocity. For the fibres drawn at ratio 9.83
the value of Young’s modulus is higher. The fibres produced at low needle roller velocity
possess the highest value. With the increase in the roller velocity the Young’s modulus
decreases.

Figure 2. Surface morphology of fibrillated fibres: (a) longitudinal cuttings of polypropylene strips, (b) fibrillar struc‐
ture of the strips, (c) links between adjacent fibres, and (d) splitting of fibres.

Table 1. presents mechanical parameters determined for the first series of investigated fibres.

Draw ratio Needle roller velocity [m/min] Tenacity [cN/tex] Elongation at break [%] Young’s modulus [cN/tex]

8.66 150 37.5 32 1.92

180 36.9 28 1.95

200 34.7 30 1.89

9.83 150 38.0 21 3.2

180 37.0 23 2.9

200 37.0 23 2.7

Table 1. Mechanical parameters of fibrillated fibres produced on DPM line.
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Table 2. presents mechanical parameters determined for the second series of fibres produced
on Starlinger StarEx 1500 line.

Draw ratio Needle roller velocity [m/min] Tenacity [cN/tex] Elongation at break [%] Young’s modulus [cN/tex]

10 155 42.3 24.7 2.61

175 41.7 24.9 2.55

195 41.4 25.0 2.70

215 39.0 25.3 2.40

12 155 49.0 22.8 3.55

175 47.7 23.1 3.20

195 42.5 21.6 3.40

215 41.0 21.5 2.95

Table 2. Mechanical parameters of fibrillated fibres produced on Starlinger StarEx 1500 line.

For this series larger tenacity exhibits fibres drawn at ratio 12. The largest tenacity possesses
fibres fibrillated at 155 m/min. With the increase in the needle roller velocity the tenacity of
fibres decreases. The elongation at break for fibres drawn at the higher ratio 12 is minimally
lower in comparison to fibres drawn at the ratio 10. The elongation at break does not signifi‐
cantly change with the change in the needle roller velocity. The Young’s modulus of fibres
drawn at the ratio 12 is higher than the modulus of fibres drawn at the ratio 10. By the increase
in the needle roller velocity the Young’s modulus decreases.

3.2. Reinforcement of concrete

Table 3 presents parameters determined for the fresh concrete.

Sample Workability [cm] Density [kg/m3] Air content [%]

Without fibres 13 2329 1.9

With fibres 10 2315 2.3

Table 3. Parameters of fresh concrete for samples prepared with and without fibres.

The workability of the fresh concrete with fibres is lower in comparison to the sample without
fibres. Addition of fibres results in a decrease in the concrete density and an increase in the air
content.

Table 4 presents parameters determined for the unreinforced concrete and concrete reinforced
with fibres.
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Sample Compressive strength [MPa]  Strength decrement
[%] 

Water absorbability 

Before freezing  After 150 freeze-thaw
cycles 

Without
fibres

45.4 33.3 26.7 6.5

With
fibres

43.7 35.7 18.3 4.7

Table 4. Parameters of concrete for samples unreinforced and reinforced with fibrillated fibres.

For the concrete reinforced with fibres the compressive strength is minimally lower.

The influence of fibres on concrete compressive strength was repeatedly investigated. It was
revealed that the compressive properties of fibre-reinforced concrete are relatively less affected
by the presence of fibres as compared to the properties under tension and bending [53]. Studies
of Naaman et al. [54] showed that with the addition of fibres there is an almost negligible
increase in strength for mortar mixes. Richardson [55] stated that the compressive strength of
concrete containing polypropylene fibres is significantly reduced. Mindess [56] reported that
the compressive strength of concrete reinforced with fibrillated fibres is increased by 25%.
Parveen and Sharma [57] observed the increase in the compressive strength of concrete at low
fibres dosage up to 0.2% and the reduction in compressive strength above 0.2%. Alhozaimy et
al. [18] suggested that polypropylene fibres have no statistically significant effect on compres‐
sive strength of concrete. Similarly, Aulia [58] revealed that the use of a certain amount of fibres
in the concrete does not influence detrimentally its main mechanical parameters.

After freeze-thaw treatment the compressive strength of the concrete decreases significantly.
For the reinforced concrete the decrement of the compressive strength is much lower. After
150 cycles the compressive strength of reinforced concrete becomes higher in comparison to
the unreinforced concrete. Simultaneously, after freezing and thawing cycles the water
absorbability of the reinforced concrete becomes considerably lower. On the surface of the
unreinforced concrete many cracks are observed. In contrast, on the surface of the fibre-
reinforced concrete microcrackings are not visible.

The obtained results clearly show that addition of fibres delays the concrete deterioration
caused by repetitive freeze/thaw cycles.

It is known that freezing is harmful to porous and brittle materials as concrete. The influence
of freezing on the concrete was repeatedly investigated and some freezing and thawing
theories of concrete were proposed [59]. In investigations the positive effect of polypropylene
fibres on the concrete compressive strength after freeze/thaw action was documented [55, 60,
61].

The resistance of fibre-reinforced concrete to freeze/thaw cycles is explained by the formation
of air void system. The fresh concrete, which contains fibres, reveals lower density and higher
air content. When the paste dries out, due to retained water, or low bleed characteristics, in
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the concrete small water voids are created. Formation of fibres’ water voids provides an air
entrained system, which ensures subsequent freeze/thaw protection. Additionally in compar‐
ison to the surrounding concrete the fibres exhibit lower modulus of elasticity and lower
density. When subject to freeze/thaw action the polypropylene yields under hydrostatic
pressure before the concrete, thus providing further pressure relief. Richardson stated that
fibres assist in blocking capillaries [60]. In this way fibres reduce water ingress, which
contributes to lower water absorption of fibre-reinforced concretes.

3.3. Reinforcement of cement mortar

Table 5 shows the determined values of compressive and bending strength of cement mortars
with fibres by different fibres’ length and different fibres’ dosage. For all fibres, regardless of
the length of the fibres and their content, the compressive strength does not significantly
change. The determined values are close to the compressive strength of the plain mortar [62].

Similarly as for reinforced concrete the influence of fibres on the compressive strength of
mortars is less visible.

Figure 3. The SEM microphotographs of the fracture of mortars reinforced with fibrillated fibres. (a) Fibres anchored in
the matrix, (b) the hole in the cement matrix after pulling out the fibres, (c) splitting of fibres, and (d) fibrillation of
fibres.

The effect of fibres is more pronounced in the case of the bending strength. For mortars
reinforced with the short and medium length fibres the bending strength is higher than the
strength of the plain mortar. For these fibres with the increase in the fibre content till 0.75%
the bending strength increases and then at the highest content decreases. For the longest fibres
the bending strength is comparable with the strength of the plain mortar. At the lowest dosage
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the bending strength is the highest. At medium dosages the bending strength is lower and
then at the highest dosage is higher again.

In Figure 3, SEM microphotographs of fractures of samples after the mechanical tests are
presented. In the pictures, the fibres’ ends with different lengths, which protrude in different
directions from the cement matrix, are visible (Figure 3a). Particular fibres are well separated
and evenly distributed throughout the volume of the sample. The protruding ends are well
anchored and cannot be manually pulled out from the mortar. In the second microphotograph
the hole in the matrix, which remains after pulling out of fibres, is visible (Figure 3b).

One can observe that in the concrete the network structure of the fibrillated fibres is partially
opened. Simultaneously further splitting into smaller particular fibrils is observed (Figure 3c).
As a result of these processes the specific surface area of fibres increases, what significantly
enhances their adhesion ability.

Length [mm] Content [%] Compressive strength [MPa] Bending strength [MPa]

No fibres – 16.3 5.5

5.0 0.25 16.5 5.8

0.50 16.3 6.0

0.75 16.4 5.6

1.00 16.0 5.4

10.0 0.25 16.2 5.2

0.50 16.3 6.0

0.75 16.1 6.2

1.00 16.3 5.8

15.0 0.25 16.2 5.9

0.50 16.1 5.5

0.75 16.1 5.3

1.00 16.2 5.6

Table 5. The compressive and bending strength of reinforced mortars by different fibres’ content and lengths.

Moreover, it is seen that the mortar ingredients can penetrate in the mesh between the
individual fibrils and create additional mechanical bonds between fibres and matrix
(Figure 3d).

In previous investigations it was revealed that the opening of the network structure and
splitting contribute to the fibres matrix interaction and support mechanical anchoring of fibres
in the matrix [63]. Bentur et al. stated that by the use of fibrillated fibres two effects contribute
to the fibre-matrix interaction: interfacial adhesion and mechanical anchoring. The first is
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apparently due to the intimate contact at the interface and the dense matrix developed in the
transition zone. The second is associated with a combination of filamentising, where the fibres
separate into multifilament strands, branching of fibrils and forming tiny fibrillations on the
fibres’ surface [64].

On the basis of obtained results one can conclude that during bending the pulling out of fibres’
ends occurs. At the beginning of bending the interfacial zone is deformed. Due to the high
difference in Young's modulus, deformations of the fibres and the surrounding cement matrix
are not compatible. As a result, the adhesive connections linking fibres with cement mortar
are disrupted. By further bending one end of a fibre stays firmly anchored in the mortar, while
the other is pulled out from the cement matrix (Figure 4).

The highest bending strength was registered for fibre length of 10 mm and the fibre content
of 0.75%. By this length, during mixing of the mortar, the fibres remain straight and do not
bend or tangle. Fibres of this length have relatively large contact surface to form a sufficient
number of adhesive connections with the mortar components and to provide high friction
forces during pulling fibres’ ends out of the matrix. For shorter fibres the contact area is smaller,
what consequently leads to the lower number of adhesive connections and lower friction.
Fibres longer than 10 mm exhibit greater contact surface, but have a tendency to bend and
tangle. Such tendencies reduce efficiency of reinforcement and leads to the decrease in the
bending strength of the mortar. The fibre content of 0.75% ensures the sufficient number of
connections sewing lips of the crack.

Figure 4. The mechanism of fibres/matrix interaction during bending.

4. Conclusions

The mechanical parameters of fibrillated polypropylene fibres are strongly influenced by the
formation parameters. High draw ratio and low needle roller velocity promote formation of
fibres with high tenacity and high Young’s modulus. By optimizing the formation parameters,
the appropriate fibres for the reinforcement of concrete can be produced.

Fibres added to the concrete improve the parameters of a fresh concrete. Fibres have a relatively
little effect on the compressive strength of concrete before freezing. The beneficial effect of
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fibres is revealed after freezing and thawing cycles. After multiple freeze/thaw cycles the
compressive strength of reinforced concrete exceeds the strength of plain concrete. Simulta‐
neously, the reinforced concrete exhibits lower water absorbability.

The fibrillated fibres do not affect the compressive strength of the reinforced cement mortars.
Independently on the fibres’ length and their dosage the compressive strength of the reinforced
mortar does not change and is equal to the strength of the plain mortar. The fibres cause the
change of the mortar bending strength. The increase in the bending strength results from
enhanced interfacial adhesion and mechanical anchoring, which results from opening of the
network structure and splitting of fibrillated fibres.
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