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Abstract

Wind energy forecasting is particularly important for wind farms due to cost-related
issues, dispatch planning, and energy market operations. Thus, improving forecasting
accuracy becomes an urgent task for researchers in the field of wind energy. Howev‐
er, there is limited research to discuss an overall comparison among various forecast‐
ing types, which is a foundation for future works with respect to wind energy prediction
because  this  comparison  may reveal  whether  there  is  a  best  model  for  a  specific
forecasting  type  or  specific  data  in  this  field.  For  the  purpose  of  laying  a  strong
foundation for wind energy research, this chapter introduces five basic forecasting
models, which are Autoregressive Moving Average Model (ARMA), Back-Propaga‐
tion Neuron Network (BPNN), Support Vector Regression (SVR), Extreme Learning
Machine (ELM), and Adaptive Network-Based Fuzzy Inference System (ANFIS) with
implement codes before comparing the forecasting effectiveness of five different models
in three wind farms based on five forecasting types. Comparison results indicate that
each model has great divergent forecasting results in different wind farms and every
forecasting type has its own “best model.”

Keywords: wind power, AI-based models, forecasting, comparison, Matlab codes

1. Introduction

The important environmental advantages of renewable energy sources have been significant‐
ly  noticed,  which  results  in  most  industrialized  countries  committed  to  developing  the
installation of wind power plants [1]. The share of total installed capacity of wind power in
China has reached approximately 27% in the global capacity, which is 96.37 GW, due to the
historically high installation of new wind power capacity.1 Moreover, a renewable-energy-

1 N.E. Administration, http://www.nea.gov.cn/2015-02/12/c_133989991.htm (2015).
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oriented power system was proposed as the fundamental aim of China’s energy transforma‐
tion during the Asia-Pacific Economic Cooperation (APEC) Conferences.2 Advanced prediction
techniques are urgently needed to integrate wind energy into the electrical power grid in a
manner that benefits both Transmission System Operators (TSOs) and Independent Power
Producers (IPPs) [2,3].

Since wind energy has the inherently intermittent nature and stochastic nonstationarity, it
brings significant levels of uncertainty to system operators [4]. Thus, accurate wind forecasts
are of primary importance to solve operational, planning, and economic problems in the
growing wind power scenario [4,5]. Current wind power forecasting research has been divided
into point forecasts (also called deterministic predictions) [6–8] and uncertainty forecasts
[9,10]. Deterministic forecasts deliver specific amounts of wind power and focus on reducing
the forecasting error [11]. By contrast, it is essential to decision-making processes and electricity
market trading strategies [12] that uncertainty forecasts provide uncertainty information for
system operators to manage the wind power generation of wind farms [11,13].

The existing approaches published in the literature with respect to wind energy prediction can
be divided into three categories—artificial intelligent model, physical model, and statistical
model—and sometimes a hybrid one, which integrates advantages of different categories, is
involved. Researchers often utilize them to forecast various types of wind speed and wind
power by various types including the multi-step forecasting, long-term wind speed (power)
forecasting, and so on. However, few literature exist to discuss an overall comparison among
various forecasting types, which is a foundation for future works of wind energy prediction
because this comparison may reveal whether there is a best model for a specific forecasting
type or specific data in the field of wind energy.

The following parts in this paper are demonstrated by four sections: methodology briefly
introduces forecasting approaches that this paper adopts; data collection specifically illustrates
three types of wind data; simulation and result displays and evaluates the final results of
forecasting effectiveness of each model; and conclusion draws the main results that this paper
investigates.

2. Methodology

In this section, we will introduce five basic models including Autoregressive Moving Average
Model (ARMA), Back-Propagation Neuron Network (BPNN), Support Vector Regression
(SVR), Extreme Learning Machine (ELM), and Adaptive Network-Based Fuzzy Inference
System (ANFIS) as forecasting methods in this paper to predict wind speed. For the purpose
of clearly demonstrating procedures of forecasting wind speed using these methods, this
chapter will attach the Matlab code after introduction of each model and the wind speed series
is defined as follows:

2 N.E. Administration, http://www.nea.gov.cn/2015-06/08/c_134305870.htm (2015).
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( )1 2 NWs ws , ws , ,ws= L (1)

where N is a positive integer and wsn∈ (0, + ∞)⊂ℝ represents the wind speed of time n.

2.1. Autoregressive moving average model

2.1.1. Brief introduction of ARMA

This section displays ARMA model and the ARMA(p, q) model can be expressed as follows [14]:

1 1

p q

t i t i j t j t
i j

y y e ed j f- -
= =

= + + +å å (2)

Where δ is the constant term of the ARMA model, φi is the ith autoregressive coefficient, ϕj is
the jth moving average coefficient, et is the error term at time period t, and represents the value
of wind speed observed or forecasted at time period t. Thus, the first step in applying ARMA
model to forecast wind speed is to identify p and q, which is related to the stationarity of the
time series, which means that the stationarity assumption of observed series should be checked
first. For this purpose, inspection of the run plots and Auto Correlation Function (ACF) plots
can be used for deciding on the order of differencing.

2.1.2. Implement for wind speed forecasting

Since the Matlab has the ARMA package, we will implement this model to forecast wind speed
using five steps as follows:

1. Identify the domain of p and q. In this chapter, we set p∈ {1, 2, 3, 4, 5} and
q∈ {1, 2, 3, 4, 5}.

2. For each pair (p, q), calculate corresponding model’s AIC value.

3. Select the pair (p, q), which makes corresponding model’s AIC value to be minimum one
among all of pairs of (p, q) as the best (p, q) and denote this pair as (p_test, q_test).

4. Apply (p_test, q_test) to establish ARMA model.

5. Forecast m steps using the model established in step (4).

The detailed Matlab codes are listed in Code 1.

Code 1. Matlab Codes of ARMA.
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function [y_output,p_test,q_test] = arma_dynmc(Ws,m)

z = Ws; step = m;

test = [];

for p = 1:5

    for q = 1:5

      m = armax(z,[p,q]);

      AIC = aic(m);

      test = [test;p q AIC];

    end

end

[min_aic,min_i] = min(test(:,3));

p_test = test(min_i,1);q_test = test(min_i,2);

m = armax(z,[p_test,q_test]);

P = predict(m,z,step);

y_output = P(end-step+1:end,1)';

2.2. Back-propagation neuron network

2.2.1. Brief introduction of BPNN

Mccelland and Rumelhart developed the BP neural network model in 1985. There are three
layers in a particular network: the input, hidden, and output layers. Each layer has designed
nodes, whose functions aim to calculate the inner product of the input vector and weight vector
by the transfer function [15]. The process of BPNN is demonstrated by the following steps:

1. Initialize. Assume that the input layer has n nodes, and hidden layer has l nodes, and
output layer has m nodes. Let the network distribute values randomly for each threshold
value θj, γt and the connection weight wij, vjt, i = 1, 2, …, n, j = 1, 2, …, l, and t = 1, 2, …, m.

2. Calculate  the  output  of  hidden  layer.  Assume X⊂ −1, 1 n  is  the  input  space  and
Y⊂ −1, 1 m  is  the  output  space,  which  means  X  is  an  n-dimensional  space  and  Y
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is  an  m-dimensional  space.  We  denote  each  element  in  as  xi  and  each  element  in
Y  is  yt.  Thus,  the  output  of  hidden  layer  can  be  calculated  using  the  following
function:

1
1 2

n

j ij i j
i

H f w x , j , , ..., lq
=

æ ö
= - =ç ÷

è ø
å (3)

f (• )  is  the  transfer  function  and  is  expressed  as  follows:

( ) 1
1 zf z

e-
=

+

3. Calculate the output of the network. Using Hj, vjk, and γt, the output of the network can
be calculated as follows:

1
1 2

l

t jk j t
j

O v H , t , , ..., mg
=

= - =å (4)

4. Error calculation. The error between yt and Ot can be expressed as et = Ot – yt.

5. Weights updating. According to back-propagation algorithm, the weights wij, vjt can be
updated by using the following functions:

( )
1

1
m

ij ij j j i jt t
t

w w H H x w eh
=

= + - å (5)

jt jt j tv v H eh= + (6)

where η is the learning rate and i = 1, 2, …, n, j = 1, 2, …, l, and t = 1, 2, …, m.

6. Biases updating. Similarly, the biases θj, γt can be updated by using the following
functions:

( )
1

1
m

j j j j jt t
t

H H w eq q h
=

= + - å (7)

t t teg g= + (8)

7. Iteration.  If  the  error  is  more  than  the  expected  value,  then  execute  steps  (2)–(6).
Otherwise,  denote  θj,  γt,  wij,  and  vjt  as  the  optimized  parameter  of  this  network
with  respect  to  X  and  Y.
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2.2.2. Implement for wind speed forecasting

In this part, how to apply BPNN to forecast wind speed will be introduced in detail and the
MATLAB code for predicting wind speed will be attached. There are six steps to forecast wind
speed applying BPNN as follows:

1. Design forecasting mode. In this chapter, AI-based model will apply the following mode
to forecast wind speed of different wind databases

( )1 2
forecast

t t tws , ws ws- - ¾¾¾¾® (9)

Eq. (8) indicates that the input space X for BPNN model is a two-dimensional space and
the output space Y is a one-dimensional space, meaning that n = 2 and m = 1 as described
in Section 2.2.1.

2. Assign training samples. Based on step (1), the input and output of training samples are
expressed as follows:

1 2 2

2 3 1

N

N

ws ws ws
Train _ input

ws ws ws
-

-

æ ö
= ç ÷
è ø

L
L (10)

( )3 4 NTrain _output ws ws ws= L (11)

The Matlab codes of this step are listed in Code 2.

Code 2. Matlab codes to construct training samples.

n = length(Ws);

for i = 1:2

    Train_input(i,:) = Ws(i:n+i-3);

End

Train_output = Ws(3:n)

3. Normalize Train_input and Train_output. Since X⊂ −1, 1 n and Y⊂ −1, 1 m, Train_input
and Train_output need to be adjusted to satisfy this condition. First, the maximum and
minimum values of each row in Train_input need to be calculated using the following
functions:
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( ) { }row ini th
inputMin min i Train _ input= (12)

( ) { }row ini th
inputMax max i Train _ input= (13)

Let Dinput
(i) =Maxinput

(i) −Mininput
(i)  and normalized Train_input can be obtained by the following

equation (i = 1, 2):
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Similarly, normalized Train_output can be obtained by the following equations:

( ) { }row ini th
outputMin min i Train _output=

( ) { }row ini th
outputMax max i Train _output=

( ) ( ) ( )i i i
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æ ö- - -
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ç ÷
è ø

L (15)

The Matlab codes of this step are listed in Code 3.

Code 3. Matlab codes to normalize training samples.

[Train_inputm, inputs] = mapminmax(Train_input);

[Train_outputm, outputs] = mapminmax(Train_output);

4. Assign parameters and train the network. We assign that the network has three layers and
the input layer has two nodes, the hidden layer has two nodes and the output layer has
one node. Thus, according to Section 2.2.1, the optimized weights and biases of this
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network can be calculated and denoted by θj, γt, wij, vjt, i = 1, 2, j = 1, 2, and t = 1. The Matlab
codes of this step are listed in Code 4.

Code 4. Matlab codes to build and train BPNN.

Net = newff(Train_input, Train_output, 2);

Net = train(Net, Train_input, Train_output);

Net is the trained network and can be applied to forecast wind speed in the following
steps:

5. Forecast wsN +1. Based on the forecasting mode in step (1), we need to apply wsN −1 and wsN

to forecast wsN +1, which means that the Test_input is (wsN −1, wsN )T . Then,
Dinput

(i) , Maxinput
(i) and Mininput

(i)  obtained in step (3) will be applied to normalize Test_input and
the normalized Test_input can be expressed using Test_inputm as follows:

( )
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( )
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-ç ÷
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è ø
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Applying Eqs. (3) and (4) in Section 2.2.1, we can obtain the output of the network and
denote it by O∈ℝ. Thus, the forecasting value of wsN +1 is Ws_forecast =
O × Doutput

(1) + Minoutput
(1) .

The Matlab codes of this step are listed in Code 5.

Code 5. Matlab codes to forecast using established BPNN (single step ahead)

Test_inputm = mapminmax(‘apply’, Test_input, inputs);

O=sim(Net, Test_inputm);

Ws_forecast= mapminmax(‘reverse’, O, outputs);

6. Forecast wsN +2. Based on the forecasting mode in step (1), we need to apply wsN  and
forecasting value of wsN +1, Ws_forecast, to forecast wsN +2, which means that the Test_in‐
put2 is (wsN , Ws _ forecast)T . Then, Dinput

(i) , Maxinput
(i) and Mininput

(i)  obtained in step (3) will be
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applied to normalize Test_input2 and the normalized Test_input2 can be expressed using
Test_inputm2 as follows:

( )

( )

( )

( )
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1

2

2

2

N input

input

input

input

ws Min
D

Test _ inputm
Ws _ forecast Min

D
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= ç ÷
-ç ÷

ç ÷ç ÷
è ø

(17)

Applying Eqs. (3) and (4) in Section 2.2.1, we can obtain the output of the network and
denote it by O2∈ℝ. Therefore, the forecasting value of wsN +2 is Ws_forecast2 =

O2 × Doutput
(1) + Minoutput

(1) .

The Matlab codes of this step are listed in Code 6.

Code 6. Matlab codes to forecast using established BPNN (two-step ahead).

Test_inputm2 = mapminmax(‘apply’, Test_input2, inputs);

O2=sim(Net, Test_inputm2);

Ws_forecast2= mapminmax(‘reverse’, O, outputs);

2.3. Support vector regression

2.3.1. Brief introduction of SVR

SVR is the most common application of support vector machines (SVMs) and constructs a
hyperplane that separates examples with maximum margin, to categorize or forecast series
[16]. Given the training data {(x1, y1), …, (xl , yl)}⊂ Χ ×ℝ, where Χ =ℝd  denotes the space of
input patterns, then the goal of SVR is to find a function f (x) that is as flat as possible with at
most ε deviation from the actually obtained targets yi for all the training data. The simplest,
linear formula for the output of a linear SVR is defined as [17]

( )f x w,x b, w X ,b= + Î Î¡ (18)

where w, x  denotes the dot product in Χ. One way to get the largest flatness is to minimize
the w in Eq. (18) and this problem can be written as Eq. (19) by introducing slack variables ξi ,

ξi
*  into a convex optimization problem function:
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The constant C >0 determines the trade-off between the flatness of f and the amount up to
which deviations larger than ε are tolerated.

To figure out the support vector regression function, the dual problem of Eq. (19) is defined
in Eq. (20) by constructing a Lagrange function from the objective function:
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With the solution of (α, α *) from Eq. (20), the support vector regression function can be written
as follows:

( ) ( )*1
,l

i ii
f x x x ba a

=
= - +å (21)

When it comes to the nonlinear regression problem, the training patterns xi can be mapped
into a high-dimensional space, where the nonlinear regression problem is transformed into a
linear one. The expansion of Eq. (21) is defined as Eq. (22):

( ) ( ) ( )*
1

, ;N
i i ii

f x k x x g ba a
=

= - +å (22)

where αi
* and αi are Lagrange multipliers and k (xi, x; g) is the kernel function, in which g is a

parameter and generally set as 1/d.

2.3.2. Implement for wind speed forecasting

We use the libsvm package (Version 3.17) to implement forecasting task of wind speed using
SVR. There are six steps and steps (1)–(3) are same as in steps (1)–(3) in Section 2.2.2. Thus, we
start to introduce from step (4).
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(4) Assign parameters and train the SVR model. We assign that C is 4 and g is 0.5. Thus,
according to Section 2.3.1, the optimized solution (α, α *) can be calculated. The Matlab codes
of this step are listed in Code 7.

Code 7. Matlab codes to establish and train SVR.

Model = svmtrain(Train_output’, Train_input’, ‘-C 4 –g 0.5’);

Model is the trained SVR model and can be applied to forecast wind speed by the following
steps:

(5) Forecast wsN +1. Based on the forecasting mode in step (1), we need to apply wsN −1 and wsN

to forecast wsN +1, which means that the Test_input is (wsN −1, wsN )T . Then,
Dinput

(i) , Maxinput
(i) and Mininput

(i)  obtained in step (3) will be applied to normalize Test_input and the
normalized Test_input can be expressed using Test_inputm as follows:
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N input

input
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ws Min
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-
æ ö-
ç ÷
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= ç ÷
-ç ÷

ç ÷ç ÷
è ø
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Applying Eqs. (3) and (4) in Section 2.2.1, we can obtain the output of the network and denote
it by O∈ℝ. Thus, the forecasting value of wsN +1 is Ws_forecast = O × Doutput

(1) + Minoutput
(1) . The Matlab

codes of this step are listed in Code 8.

Code 8. Matlab codes to forecast using established SVR (single step ahead).

Test_inputm = mapminmax(‘apply’, Test_input, inputs);

O=svmpredict(0, Test_inputm’,Model);

Ws_forecast= mapminmax(‘reverse’, O, outputs);

(6) Forecast wsN +2. Based on the forecasting mode in step (1), we need to apply wsN  and the
forecasting value of wsN +1, Ws_forecast, to forecast wsN +2, which means that the Test_input2 is

(wsN , Ws _ forecast)T . Then, Dinput
(i) , Maxinput

(i) and Mininput
(i)  obtained in step (3) will be applied to

normalize Test_input2 and the normalized Test_input2 can be expressed using Test_inputm2 as
follows:

Comparison Study of AI-based Methods in Wind Energy
http://dx.doi.org/10.5772/63716

37



( )

( )

( )

( )

1

1

2

2

2

N input

input

input

input

ws Min
D

Test _ inputm
Ws _ forecast Min

D

æ ö-
ç ÷
ç ÷

= ç ÷
-ç ÷

ç ÷ç ÷
è ø

(24)

Applying Eqs. (3) and (4) in Section 2.2.1, we can obtain the output of the network and denote
it by O2∈ℝ. Therefore, the forecasting value of wsN +2 is Ws_forecast2 = O2 × Doutput

(1) + Minoutput
(1) .

The Matlab codes of this step are listed in Code 9.

Code 9. Matlab codes to forecast using established SVR (two-step ahead).

Test_inputm2 = mapminmax(‘apply’, Test_input2, inputs);

O2=svmpredict(0,Test_inputm2’,Model);

Ws_forecast2= mapminmax(‘reverse’, O, outputs);

2.4. Extreme learning machine

2.4.1. Brief introduction of ELM

Huang et al. [18] investigated the ELM, which is an effective and efficient learning algorithm.
The ELM aims to randomly initialize the weights and biases of SLFN and then to explicitly
calculate the hidden layer output matrix and hence the output weights. Because of the nature
of non-adjusted weights and bias, the network can be established using a very low computa‐
tional cost [19]. Then, the ELM with l hidden neurons and transfer function φ( · ) can approx‐
imate the N samples with zero error as

( )
1

1 2
l

j j k j k
j

b y , k , , ..., Nb j
=

+ = =å w x (25)

which can be written as HB=Y, with
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where wi is the weight vector connecting the ith hidden neuron and the input nodes, βi is the
weight vector connecting the ith hidden neuron and the output neurons, and bi is the threshold
of the ith hidden neuron, and B = (β1

T …βl
T )T , Y = (y1

T … yN
T )T

Then, the output weights B can be calculated from the hidden layer output matrix H and the
target values Y as B^ = H†Y, where H† is the Moore-Penrose generalized inverse of the matrix
H.

2.4.2. Implement for wind speed forecasting

We use Matlab to compile ELM model and provide two *.m files, which are Elmtrain.m and
Elmpredict.m, in Appendix. Elmtrain function is similar to train function for BPNN and
svmtrain function for SVR and Elmpredict function is similar to sim function for BONN and
svmpredict function for SVR. In detail, there are six steps for forecasting wind speed using
ELM model and steps (1)–(3) are same as in steps (1)(3) in Section 2.2.2. Thus, we start to
introduce them from step (4).

(4) Assign parameters and train the ELM model. We design that the input layer of ELM model
has two nodes, and the hidden layer of ELM has two nodes, and the output layer of ELM model
has one node. Thus, according to Section 2.4.1, the optimized B can be calculated. The Matlab
codes of this step are listed in Code 10.

Code 10. Matlab codes to establish and train ELM.

[W,b,B,TF,TYPE] = elmtrain(Train_input, Train_output, 2);

W is the weight matrix of the input layer and hidden layer, and b is the bias vector of input
layer and hidden layer, and B is B^ in Section 2.4.1, and TF is the transfer function φ( · ), and
TYPE is model’s functions (classification or regression). We select sigmoid function as the
transfer function φ( · ) of ELM, which is same as that of BPNN.

(5) Forecast wsN +1. Based on the forecasting mode in step (1), we need to apply wsN −1 and wsN

to forecast wsN +1, which means that the Test_input is (wsN −1, wsN )T . Then,
Dinput

(i) , Maxinput
(i) and Mininput

(i)  obtained in step (3) will be applied to normalize Test_input and the
normalized Test_input can be expressed using Test_inputm as follows:
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Applying Eqs. (3) and (4) in Section 2.2.1, we can obtain the output of the network and denote

it by O∈ℝ. Thus, the forecasting value of wsN +1 is Ws_forecast = O × Doutput
(1) + Minoutput

(1) . The Matlab

codes of this step are listed in Code 11.

Code 11. Matlab codes to forecast using established ELM (single step ahead).

Test_inputm = mapminmax(‘apply’, Test_input, inputs);

O=elmpredict(Test_inputm, W,b,B,TF,TYPE);

Ws_forecast= mapminmax(‘reverse’, O, outputs);

(6) Forecast wsN +2. Based on the forecasting mode in step (1), we need to apply wsN  and

forecasting value of wsN +1, Ws_forecast, to forecast wsN +2, which means that the Test_input2 is

(wsN , Ws _ forecast)T . Then, Dinput
(i) , Maxinput

(i) and Mininput
(i)  obtained in step (3) will be applied to

normalize Test_input2 and the normalized Test_input2 can be expressed using Test_inputm2 as
follows:

( )

( )

( )

( )
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input
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ws Min
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Applying Eqs. (3) and (4) in Section 2.2.1, we can obtain the output of the network and denote

it by O2∈ℝ. Therefore, the forecasting value of wsN +2 is Ws_forecast2 = O2 × Doutput
(1) + Minoutput

(1) .

The Matlab codes of this step are listed in Code 12.

Code 12. Matlab codes to forecast using established ELM (two-step ahead).

Test_inputm2 = mapminmax(‘apply’, Test_input2, inputs);

O2=svmpredict(Test_inputm2, W,b,B,TF,TYPE);

Ws_forecast2= mapminmax(‘reverse’, O, outputs);
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2.5. Adaptive network-based fuzzy inference system

2.5.1. Brief introduction of ANFIS

ANFIS is introduced to compensate for the disability of conventional mathematical tools to
address uncertain systems, such as human knowledge and reasoning processes. There are two
contributions of FIFs restructured: proposing a standard method for transforming ill-defined
factors into identifiable rules of FIS and using an adaptive network to tune the membership
functions. We assume that there are two fuzzy if-then rules contained in the system, two inputs
(x and y) and one output (z), and the processes of ANFIS are described in Figure 1 [20–21].

Figure 1. Five processes included in this figure. In an ANFIS architecture, circles are fixed nodes without parameters
and squares represent adaptive nodes whose parameters are determined by training data and a gradient-based learn‐
ing procedure.

Layer I: Mapping a certain input x to a fuzzy set Oi
(1) for every node i by the member functions

μA, which is usually bell-shaped with a parameter set {ai, bi, ci}, as is y
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Layer II: In this layer, each circle node performs the connection “AND” and multiplies inputs,
as well as sends the product out:

( ) ( ) ( )2
i i A BO x xw m m= = ´ (30)

Layer III: Every circle node in this layer calculates a normalized firing strength, namely a ratio
of the rule’s firing strength to the sum of all rules’ firing strengths:
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( )3 i
i i

i

O ww
w

= =
å (31)

Layer IV: Assume the rules of this system are as follows:

Rule 1: If x is A1 and y is B1, then f 1 = p1x + q1y + r1

Rule 2: If x is A2 and y is B2, then f 2 = p2x + q2y + r2

Then, the outputs of the adaptive nodes in this layer are computed by

( ) ( )4
1 1 1i i i iO f p x q y rw w= = + + (32)

Layer V: The overall output is the weighted average of all incoming signals:

( )5 i ii
i i i

i ii

f
O f

w
w

w
= =åå å (33)

Particularly, in this case,

( ) ( ) ( )
2 2

5

1 1
i i i i i i i i i

i i
O f x p y q rw w w w

= =

= = + +å å (34)

2.5.2. Implement for wind speed forecasting

We use the genfis3 function and ANFIS function in Matlab to implement forecasting task of
wind speed using ANFIS. There are six steps and steps (1)–(3) are same as in steps (1)–(3) in
Section 2.2.2. Thus, we start to introduce from step (4).

(4) Assign parameters and train the ANFIS model. We set the number of iteration of ANFIS as
100. Thus, the optimized parameters can be calculated. The Matlab codes of this step are listed
in Code 13.

Code 13. Matlab codes to establish and train ANFIS.

fismat = genfis3(Train_input’, Train_output’);

out_fis1 = anfis([Train_input’ Train_output’],fismat,100);

The out_fis1 is the trained ANFIS and can be applied to forecast wind speed.
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(5) Forecast wsN +1. Based on the forecasting mode in step (1), we need to apply wsN −1 and wsN

to forecast wsN +1, which means that the Test_input is (wsN −1, wsN )T . Then,

Dinput
(i) , Maxinput

(i) and Mininput
(i)  obtained in step (3) will be applied to normalize Test_input and the

normalized Test_input can be expressed using Test_inputm as follows:
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Applying Eqs. (3) and (4) in Section 2.2.1, we can obtain the output of the network and denote
it by O∈ℝ. Thus, the forecasting value of wsN +1 is Ws_forecast = O × Doutput

(1) + Minoutput
(1) . The Matlab

codes of this step are listed in Code 14.

Code 14. Matlab codes to forecast using established ANFIS (single step ahead).

Test_inputm = mapminmax(‘apply’, Test_input, inputs);

O=evalfis(Test_inputm’, out_fis1);

Ws_forecast= mapminmax(‘reverse’, O, outputs);

(6) Forecast wsN +2. Based on the forecasting mode in step (1), we need to apply wsN  and
forecasting value of wsN +1, Ws_forecast, to forecast wsN +2, which means that the Test_input2 is

(wsN , Ws _ forecast)T . Then, Dinput
(i) , Maxinput

(i) and Mininput
(i)  obtained in step (3) will be applied to

normalize Test_input2 and the normalized Test_input2 can be expressed using Test_inputm2 as
follows:
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Applying Eqs. (3) and (4) in Section 2.2.1, we can obtain the output of the network and denote
it by O2∈ℝ. Therefore, the forecasting value of wsN +2 is Ws_forecast2 = O2 × Doutput

(1) + Minoutput
(1) .

The Matlab codes of this step are listed in Code 15.
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Code 15. Matlab codes to forecast using established ANFIS (two-step ahead).

Test_inputm2 = mapminmax(‘apply’, Test_input2, inputs);

O2=evalfis(Test_inputm2’, out_fis1);

Ws_forecast2= mapminmax(‘reverse’, O, outputs);

3. Data collection

We select three types of wind data to train and test forecasting models, which are 10-minute
wind speed data in wind farm A (this database is denoted by WFD1), 15-minute wind speed
data in wind farm B (this database is denoted by WFD2), and 15-minute wind speed data in
wind farm C (this database is denoted by WFD3), and wind farms B and C are in the same city
in China.

Figure 2. Descriptive information and histograms of three wind farm databases.

In this section, the descriptive information of each database will be provided and we will test
the similarity between WFD2 and WFD3 using Friedman test. In the beginning, Figure 2 shows
the three databases and their histograms.

From Figure 2, this is apparent that WFD1 and WFD2 have similar maximum and minimum
values because they are in the same city. However, WFD1 and WFD2 have different mean and
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variance values. Thus, we use Friedman test to figure out whether both of two time series are
significantly different, which is shown in Table 1. In Table 1, the p-value of Friedman test is
very small (2.46e–11), which indicates that WFD1 and WFD2 have a significant difference.

Source SS df MS Chi-squared Prob>Chi-squared

Columns 73.3 1 73.2825 44.57 2.46e–11

Interaction 61568.7 17,085 3.6037

Error 22,649 34,172 0.6628

Total 84,291 68,343

Table 1. The result of Friedman test between WFD1 and WFD2.

For WFD3, its mean value is significantly different from others and the histogram of WFD3 is
also different from those of other databases. From the description of these three databases, it
can be seen that they are very different, which lays a strong foundation for the comparison
study.

4. Simulation and results

For these different databases, we will test 1-h-ahead, 4-h-ahead, 1-h average, 4-h average, and
1-day average wind speed forecasting effectiveness by using five methods separately, which
is to say that we conduct five experiments of different time scales or time horizons in this
comparison study. To test the overall forecasting effectiveness of each model, the testing period
is 30 weeks in 2014 and we apply three criteria to evaluate forecasting error, which are the
mean absolute percent error (MAPE), root-mean-squared error (RMSE), and mean absolute
error (MAE). The formulas of three criteria are expressed as follows:

t t tˆe y y= - (37)

1

1 100
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t

t t

e
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N y=

= ´å (38)
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where t represents the time t, yt  is the actual value in time t, ŷ t  is the forecasting value in time
t, and N is the length of testing period.

4.1. Experiment I: 1-h-ahead wind speed forecasting

In this experiment, we will test the 1-h-ahead forecasting effectiveness of five models. It should
be pointed that 1-h-ahead prediction means a four-step forecast for WFD1 and WFD2 and a
means six-step forecast for WFD3 because WFD3 is constructed by 10-min wind speeds. The
main results are shown in Table 2, which contains MAPE, RMSE, and MAE of each model
when forecasting 1-h-ahead wind speed.

Wind farms Criteria ANFIS BPNN ELM SVM ARMA

WFD1 MAE 1.4193 0.8066 0.8335 0.9471 1.4293

MAPE 43.67% 19.25% 19.51% 30.74% 30.96%

RMSE 1.5092 0.9083 0.9375 1.0521 1.5574

WFD2 MAE 1.8110 0.7651 0.7649 0.8590 2.9846

MAPE 49.82% 20.21% 19.76% 28.11% 83.01%

RMSE 1.8837 0.8611 0.8607 0.9550 3.0937

WFD3 MAE 1.2618 0.9781 0.8571 0.9055 3.0764

MAPE 25.22% 20.26% 16.29% 19.05% 64.92%

RMSE 1.3735 1.1019 0.9797 1.0290 3.1724

Table 2. The forecasting results of Experiment I.

From Table 2, it is apparent that BPNN has the best performance among these five models in
WFD1 and ELM outperforms others in WFD2 and WFD3 by three criteria. By contrast, the
forecasting accuracy of ANFSI and ARMA is poor and even cannot be accepted in some wind
farms, such as the performance of ARMA in WFD1 and WFD2 and the performance of ANFIS
in WFD1 and WFD2. These results show that each wind farm has the corresponding best
forecasting model and there is no single model that can perform best in every wind farm by
three criteria.

4.2. Experiment II: 4-h-ahead wind speed forecasting

Experiment II shows the 4-h-ahead forecasting effectiveness of wind speed, and the 4-h-ahead
forecasting is equal to a 16-step forecast for WFD1 and WFD2 and is a 24-step forecast for
WFD3. Table 3 descripts forecasting results of five models in three wind farms.

In Table 3, BPNN is the best model in WFD1 and WFD2 by three criteria and outperforms
other models in three databases by MAE and RMSE. ANFIS has the lowest MAPE in WFD3
among these models but has high MAPE, MAE, and RMSE in WFD1 and WFD2. It is similar
to Experiment I that ARMA does not have a decent forecasting results in three wind farms.
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These results indicate that model’s forecasting effectiveness varies a lot when the wind farm
changes (such as the effectiveness of ANFIS).

Wind farms Criteria ANFIS BPNN ELM SVM ARMA

WFD1 MAE 1.9441 1.4385 1.4725 1.6147 2.4799

MAPE 54.41% 35.36% 36.67% 52.28% 55.59%

RMSE 2.1531 1.6664 1.7062 1.8376 2.7478

WFD2 MAE 1.9937 1.3251 1.3492 1.4246 2.8887

MAPE 54.96% 34.71% 36.36% 45.85% 78.64%

RMSE 2.1770 1.5440 1.5647 1.6301 3.1138

WFD3 MAE 1.3250 1.3176 1.3575 1.3951 2.6248

MAPE 26.04% 26.80% 27.20% 30.12% 53.30%

RMSE 1.5494 1.5347 1.5924 1.6122 2.8495

Table 3. The forecasting results of Experiment II.

4.3. Experiment III: 1-h average wind speed forecasting

In Experiment III, we will forecast 1-h average wind speed in three wind farms using ANFIS,
BPNN, ELM, SVM, and ARMA, and 1-h average wind speed forecasting is a one-step forecast
for three wind farms.3 Table 4 shows the forecasting effectiveness of each model in this
experiment.

Wind farms Criteria ANFIS BPNN ELM SVM ARMA

WFD1 MAE 1.5664 0.8586 0.8315 0.9069 1.2883

MAPE 44.82% 20.15% 19.33% 24.92% 27.58%

RMSE 2.0981 1.2376 1.1882 1.2805 1.8759

WFD2 MAE 1.7780 0.7924 0.7607 0.7919 2.5731

MAPE 47.44% 20.30% 19.35% 21.92% 80.67%

RMSE 2.3788 1.1838 1.1298 1.1712 3.3596

WFD3 MAE 0.8873 0.7964 0.7943 0.7914 1.1274

MAPE 16.90% 15.07% 14.95% 14.91% 20.75%

RMSE 1.1568 1.0568 1.0548 1.0539 1.4833

Table 4. The forecasting results of Experiment III.

3 It should be pointed that every day has 24 1-h average wind speed.
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From Table 4, ELM and SVM have decent forecasting accuracy in WFD3, but ELM is better
than SVM and other models in WFD1 and WFD2. ANFIS has a good performance in WFD3
and cannot forecast 1-h average wind speed with a reasonable accuracy. Similarly for ARMA,
it works well in WFD1 and WFD3 but has a high MAPE in WFD2.

4.4. Experiment IV: 4-h average wind speed forecasting

It is similar to Experiment III, but this experiment shows the one-step-ahead wind speed
forecasting effectiveness of each model. Table 5 demonstrates the results of five models
obtained in three wind farms.

Wind farms Criteria ANFIS BPNN ELM SVM ARMA

WFD1 MAE 2.0516 1.6435 1.6209 1.5747 2.1725

MAPE 55.75% 41.64% 38.76% 36.76% 48.81%

RMSE 2.6411 2.1411 2.1478 2.1241 2.8977

WFD2 MAE 2.1538 1.4282 1.3489 1.3422 2.4222

MAPE 55.53% 36.02% 34.27% 30.86% 74.71%

RMSE 2.8318 1.9498 1.8597 1.8933 3.1035

WFD3 MAE 1.2564 1.2015 1.1483 1.1689 1.6348

MAPE 23.37% 22.33% 21.13% 21.19% 29.41%

RMSE 1.5951 1.5249 1.4856 1.5074 2.0953

Table 5. The forecasting results of Experiment IV.

The analyzing results in Table 5 are quite different from that in Table 4. Specifically, SVM
model has better performance in WFD1 and WFD2 than other models, and ELM is the best
forecasting model in WFD3. For each model, wind speed in WFD3 can be forecasted more
accurately than that in WFD1 and WFD2, and AI-based models (ANFIS, BPNN, ELM, and
SVM) outperform ARMA in WFD3.

4.5. Experiment V: 1-day average wind speed forecasting

In this experiment, we will test the one-step-ahead forecasting effectiveness based on 1-day
average wind speed database. Similar to other experiments, Table 6 demonstrates each model's
forecasting effectiveness.

Table 6 shows that SVM has the best forecasting performance on three criteria in three wind
farms. By contrast, ARMA and ANFIS have the higher MAPE, MAE, and RMSE than other
models.
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Wind farms Criteria ANFIS BPNN ELM SVM ARMA

WFD1 MAE  2.1001  1.9069  1.8377  1.7675  2.5753 

MAPE  52.78%  42.99%  45.70%  36.81%  60.59% 

RMSE  2.5729  2.3784  2.3053  2.2692  3.1655 

WFD2  MAE  1.9384  1.9710  1.9038  1.7653  1.9271 

MAPE  51.81%  47.82%  48.19%  38.04%  52.61% 

RMSE  2.4685  2.4758  2.3848  2.3573  2.4679 

WFD3  MAE  1.9288  1.8385  1.5886  1.5487  1.8763 

MAPE  32.30%  30.40%  26.39%  24.79%  30.47% 

RMSE  2.4229  2.3061  1.9152  1.9159  2.2568 

Table 6. The forecasting results of Experiment V.

5. Conclusion

The inherently intermittent nature and stochastic nonstationarity of wind sources bring great
levels of uncertainty to system operators and are an urgent problem in the wind-forecasting
field. This chapter introduces some basic forecasting approaches and corresponding proce‐
dures to forecast wind speed (detailed codes are attached). After simulating these methods
(the testing period is 30 weeks) in MATLAB based on three databases, conclusions can be
drawn as follows:

1. None of ANFIS, BPNN, ELM, SVM, and ARMA has the best forecasting performance in
all experiments.

2. Based on the experimental results of different forecasting types (1-h-ahead forecasting, 4-
h-ahead forecasting, 1-h-average-ahead forecasting, 4-h-average-ahead forecasting, and
1-day-average-ahead forecasting), the best model varies in time scales and time horizons.

3. The forecasting effectiveness differs a lot from database to database (in Experiment II,
ANFIS is the best model of which MAPE is 26.04% in WFD3 but has a high MAPE, 54.41%,
in WFD1).

4. AI-based models are more suitable for wind speed forecast than ARMA.

According to these conclusions, it is obvious that wind speed forecasting models or systems
need to be built up under specific conditions in wind farms and model selection in wind speed
forecasting plays a significant role to improve the accuracy.
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Appendices

In the appendix, we will provide two functions which are coded by Matlab to implement
training process (elmtrain.m) and predicting process (elmpredict.m) of ELM. The elmtrain.m
is expressed as follows:

Code A1. Matlab function file to establish and train ELM.

function [IW,B,LW,TF,TYPE] = elmtrain(P,T,N,TF,TYPE)

% ELMTRAIN Create and Train a Extreme Learning Machine

% Syntax

% [IW,B,LW,TF,TYPE] = elmtrain(P,T,N,TF,TYPE)

% Description

% Input

% P—Input Matrix of Training Set (R*Q)

% T—Output Matrix of Training Set (S*Q)

% N—Number of Hidden Neurons (default = Q)

% TF—Transfer Function:

% ‘sig’ for Sigmoidal function (default)

% ‘sin’ for Sine function

% ‘hardlim’ for Hardlim function

% TYPE—Regression (0,default) or Classification (1)

% Output

% IW—Input Weight Matrix (N*R)

% B—Bias Matrix (N*1)

% LW—Layer Weight Matrix (N*S)

% Example

% Regression:
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% [IW,B,LW,TF,TYPE] = elmtrain(P,T,20,‘sig’,0)

% Y = elmtrain(P,IW,B,LW,TF,TYPE)

% Classification

% [IW,B,LW,TF,TYPE] = elmtrain(P,T,20,‘sig’,1)

% Y = elmtrain(P,IW,B,LW,TF,TYPE)

% See also ELMPREDICT

% Yu Lei,11-7-2010

% Copyright www.matlabsky.com

% $Revision:1.0 $

if nargin < 2

    error(‘ELM:Arguments’,‘Not enough input arguments.’);

end

if nargin < 3

    N = size(P,1);

end

if nargin < 4

    TF = ‘sig’;

end

if nargin < 5

    TYPE = 0;

end

if size(P,2) ∼= size(T,2)

    error(‘ELM:Arguments’,‘The columns of P and T must be same.’);

end
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[R,Q] = size(P);

if TYPE == 1

    T = ind2vec(T);

end

[S,Q] = size(T);

% Randomly Generate the Input Weight Matrix

IW = rand(N,R) * 2–1;

% Randomly Generate the Bias Matrix

B = rand(N,1);

BiasMatrix = repmat(B,1,Q);

% Calculate the Layer Output Matrix H

tempH = IW * P + BiasMatrix;

switch TF

    case ‘sig’

      H = 1 ./(1 + exp(-tempH));

    case ‘sin’

      H = sin(tempH);

    case ‘hardlim’

      H = hardlim(tempH);

end

% Calculate the Output Weight Matrix

% find(isnan(T) == 1)

LW = pinv(H') * T';
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The elmpredict.m is expressed as follows:

Code A2. Matlab function file to forecast using establish ELM.

function Y = elmpredict(P,IW,B,LW,TF,TYPE)

% ELMPREDICT Simulate an Extreme Learning Machine

% Syntax

% Y = elmtrain(P,IW,B,LW,TF,TYPE)

% Description

% Input

% P–Input Matrix of Training Set (R*Q)

% IW—Input Weight Matrix (N*R)

% B—Bias Matrix (N*1)

% LW—Layer Weight Matrix (N*S)

% TF—Transfer Function:

% ‘sig’ for Sigmoidal function (default)

% ‘sin’ for Sine function

% ‘hardlim’ for Hardlim function

% TYPE—Regression (0,default) or Classification (1)

% Output

% Y—Simulate Output Matrix (S*Q)

% Example

% Regression:

% [IW,B,LW,TF,TYPE] = elmtrain(P,T,20,‘sig’,0)

% Y = elmtrain(P,IW,B,LW,TF,TYPE)
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% Classification

% [IW,B,LW,TF,TYPE] = elmtrain(P,T,20,฀sig’,1)

% Y = elmtrain(P,IW,B,LW,TF,TYPE)

% See also ELMTRAIN

% Yu Lei,11-7-2010

% Copyright www.matlabsky.com

% $Revision:1.0 $

if nargin < 6

    error(‘ELM:Arguments’,‘Not enough input arguments.’);

end

% Calculate the Layer Output Matrix H

Q = size(P,2);

BiasMatrix = repmat(B,1,Q);

tempH = IW * P + BiasMatrix;

switch TF

    case ‘sig’

      H = 1 ./(1 + exp(-tempH));

    case ‘sin’

      H = sin(tempH);

    case ‘hardlim’

      H = hardlim(tempH);

end

% Calculate the Simulate Output

Y = (H' * LW)';
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if TYPE == 1

    temp_Y = zeros(size(Y));

    for i = 1:size(Y,2)

      [max_Y,index] = max(Y(:,i));

      temp_Y(index,i) = 1;

    end

    Y = vec2ind(temp_Y);

end
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