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Abstract

Oxidants are constantly generated in a biological system as a result of physiological
processes. However, an imbalance between oxidants and antioxidants can lead to a
pathophysiological  condition  known  as  oxidative  stress.  Natural  compounds  as
inducers of oxidative stress are able to modulate physiological functions of cancer cells
leading to cell death or survival. This chapter aims at providing an overview of pro-
and antioxidant activities of natural compounds related to cancer and related therapies.

Keywords: natural compounds, cancer, oxidative stress, clinical use

1. Natural compound anticancer agents

In  the  search  of  improved  cytotoxic  agents  against  cancer,  natural  compounds  possess
advantages with regard to availability, low toxicity, and suitability for oral application and
metabolite likeliness [1]. Moreover, new technologies of combinatorial chemistry and high-
throughput screening are used to design different synthetic drugs with natural compounds
that  serve  as  templates  for  development  of  novel  molecules  with  enhanced  biological
properties.

In 1960, the National Cancer Institute (NCI) began a large-scale screening program for anti-
tumor agents, and 35,000 plant species samples were tested primarily on mouse leukemia
cells [2, 3]. The most promising drug to emerge from this program was paclitaxel, a microtu-
bule disruptive agent obtained from the bark of the Pacific yew Taxus brevifolia. This finding
served as the springboard for further investigations with natural compounds, and in the late
1960s, vinblastine and vincristine were reported from Catharanthus roseus. Both drugs major-
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ly contributed to long-term remission and cures for childhood leukemia, Hodgkin’s lympho-
ma, testicular teratoma, etc. Other anticancer agents to enter clinics, which are derived from
natural sources, include etoposide, which has been proven as an effective treatment against
testicular teratoma and small cell lung cancer, whereas teniposide was shown to be effective
against acute lymphocytic leukemia (ALL) and neuroblastoma in children and non-Hodg-
kin’s lymphoma [1]. A comprehensive study published on new medicines approved by US
Food and Drug Administration between 1981 and 2010 revealed that 34% of those medi-
cines based on small molecules were either natural products or a direct derivative which
mainly included statins, immunosuppressant, and tubulin-binding anticancer drugs [4, 5].

Natural compound constituents demonstrated anticancer activity according to a combination
of epidemiological and experimental studies [6]. Mechanistic insights underlined that the
chemotherapeutic potential of these agents may be a combination of antioxidant, anti-
inflammatory, immune-promoting, cytostatic, differentiating, and cytotoxic effects. Altogeth-
er, natural compounds efficiently prevent initiation, promotion, and progression of cancer
development thus interfering with all 10 hallmarks and enabling characteristics of cancer [7–
10].

Increasing technological advancements led to the development of better purification techni-
ques with defined molecular assays, which can efficiently exclude “distracting molecules” such
as tannins and saponins, thereby increasing the chances of identifying the critical agent with
specific anticancer activity. The diverse bioactivity potential of natural compounds can be
related to the huge structural diversity existing in nature. This compound repertoire is
available for further modifications to improve the therapeutic potential of lead compounds. In
addition, combinatorial biosynthesis further modulates the functional groups of lead com-
pounds and can be complemented with high-throughput screening, computational chemistry,

Figure 1. Molecular scaffolds of plant anticancer agents. Molecular structures were drawn with ChemDraw13 (Perkin
Elmer).
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and bioinformatics to generate structural analogues with improved pharmacological activity
and reduced toxicity [1] (Figure 1).

2. Natural compounds as scavengers of free radicals

Oxidants are constantly generated in a biological system as a result of physiological processes.
However, an imbalance between oxidants and antioxidants can lead to a pathophysiological
condition known as oxidative stress [11]. In light of this knowledge, oxidative stress has been
defined as perturbations in redox homeostasis. Broadly, the cellular redox level is regulated
by three different systems, two of which are dependent on glutathione that includes gluta-
thione (GSH), glutathione reductase (GR), glutathione peroxidases (GPX), and glutathione S-
transferases (GST) [12–14]. Glutathione undergoes oxidation to form glutathione disulfide
(GSSG), thereby reducing the disulfide bonds of cytoplasmic proteins to cysteine and protects
the cell against oxidative stress [15]. Under normal conditions, GSH exists in reduced form
due to constitutive activity of GR. GSTs act as detoxifying enzymes that conjugate GSH to
various electrophilic compounds [16].

Reactive oxygen species (ROSs) have been reported in both solid and hematopoietic cancers
where they are associated with tumor development and progression [17, 18]. However, cancer
cells also express antioxidant proteins to detoxify ROS, suggesting that the fine-tuning of
intracellular ROS signaling is critical for cancer. Therefore, understanding the susceptibility of
cancer cells to oxidative signals could open new therapeutic window for rational design of
new anticancer agents [19]. In addition to their well-characterized effects on cell division and
viability, cytotoxic agents can induce oxidative stress by modulating levels of ROS such as the
superoxide anion radical, hydrogen peroxide, and hydroxyl radicals. Eukaryotic cells have
highly organized pathways to orchestrate the many extracellular stimuli received and convert
them into specific physiological processes. This classical cascade also termed as signal
transduction pathways includes a series of events occurring constitutively and initiated by
interaction of a ligand with its receptor on the cell membrane. ROS in this cascade have been
proposed as second messengers in the activation of signaling events that lead to survival or
death [20]. Moreover, redox-sensitive cysteine residues are known to sense and transduce
changes in cellular redox status caused by ROS production and the presence of oxidized thiols.
Various dietary phytochemicals have been shown to exhibit beneficial effects including the
prevention of cancer by modulating the cellular redox status by acting as either an antioxidant
or pro-oxidant. They function as detoxifying enzyme inducers, which mainly include phenolic
and sulfur-containing compounds. Phenolic compounds are classified as polyphenols or
flavonoids, whereas sulfur-containing compounds may be classified into isothiocyanates and
organosulfur compounds. Epigallocatechin-3-gallate (EGCG) from green tea, curcumin [21–
24] from turmeric, and resveratrol [25, 26] from grapes are the classical examples of polyphe-
nols, whereas flavonoids include quercetin from citrus fruits [26–28] and genistein from soya.
Isothiocyanates represent a group of compounds such as sulforaphane from broccoli and
phenethyl isothiocyanate from turnips. Organosulfur compounds mainly include diallylte-
trasulfide derived from garlic [29–34]. Cells respond to these phytochemicals by a non-classical
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receptor-sensing mechanism of electrophilic chemical stress characterized as “thiol-modulated
cellular signaling” events leading to gene expression commending the pharmacological
activity (Figure 2).

Figure 2. Natural compounds as scavengers of free radicals. Molecular structures were drawn with ChemDraw13 (Per-
kin Elmer).

3. Survival pathways activated by free radicals

ROSs are tumorigenic as elevated levels of ROS-sensitive signaling pathways have been
implicated in various cancers where they are involved in sustenance of cell growth, prolifer-
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ation, survival, migration, and by inducing DNA damage leading to formation of genetic
lesions initiating tumorigenesis [35, 36]. Low levels of hydrogen peroxide (H2O2) stimulation
have been shown to propagate cell proliferation in an array of cancer cell types. Role of
hormones in endocrine cancers is well documented. In hormone-dependent breast cancer cells,
one of the functions of estrogen is to translocate to mitochondria, thereby initiating mitochon-
drial ROS production that can be impaired by inhibition of mitochondrial uniporter, which
prevents estrogen-induced cell proliferation [37, 38]. Sodium arsenic in MCF-7 was shown to
mimic the effect of estrogen and potentiated S phase progression and proliferation by inducing
ROS production and ROS-related depolarization of the mitochondrial membrane [39].
Moreover, estrogen-induced cell proliferation of MCF-7 was strongly inhibited by antioxidants
such as N-acetyl-L-cysteine (NAC) or mitochondrial blockers of protein synthesis such as
chloramphenicol [40]. ROS generation was shown to augment G1/S transition by increasing
the expression levels of cyclins D1, D3, E1, E2, and B2 [41]. In contingent to these finding,
cytochrome P450B1-mediated conversion of estrogen to a putative carcinogenic metabolite 4-
hydroxyestradiol in human mammary epithelial cells MCF-10 leads to intracellular ROS
production and neoplastic transformation. ROS overproduction was shown to activate IκB
kinase (IKK) signaling with increased nuclear translocation and NF-κB activity [42].

Since deregulation of NF-κB is related to increased cell survival, proliferation, and develop-
ment of drug resistance in different cancers, series of work conducted in this direction showed
that NF-κB is a redox-regulated sensor for oxidative stress and is activated by low doses of
H2O2 [43, 44]. In MCF-7 cells, interleukin (IL)-1β stimulation of NF-κB is partially regulated
by H2O2-mediated activation of NF-κB inducing kinase (NIK)-mediated phosphorylation of
IKKα [45]. Moreover, overexpression of manganese superoxide dismutase (MnSOD) in MCF-7
cells completely abolished tumor necrosis factor (TNF) α-mediated NF-κB activation, IκBα
degradation, p65 nuclear translocation, and NF-κB-dependent reporter gene expression [40].
In other forms of cancer such as oral squamous carcinoma, a mild difference in endogenous
ROS functions as a physiological signaling modulator of the NF-κB signaling cascades through
its ability to activate NIK [46]. Besides solid tumors, redox regulation of NF-κB has also been
implicated in hematopoietic cancers. Our group for the first time reported that in U937 cells,
melatonin a pineal hormone might induce ROS generation, which ultimately is involved in
transactivation of NF-κB-promoting survival of these cells [47–50]. Moreover, myeloid
leukemia, which often maintains a high intracellular ROS level and uses redox signal for
survival, is sensitive to NF-κB inhibition since NF-κB is involved in moderating the ROS level,
which prevent activation of c-Jun N-terminal kinase (JNK) and cell death [51–54] (Figure 3).

Apart from NF-κB, ROS-mediated regulation of tyrosine phosphatases, protein tyrosine
kinases, and receptor tyrosine kinases, which is critical for cell survival and cancer such as
mitogen-activated protein (MAP) kinase/extracellular-regulated kinase (Erk) cascade and
phosphoinoside-3-kinase (PI3K)/Akt-regulated signaling cascade, is well documented in the
literature [55, 56]. Activation of MAPK/Erk1/2, which is mediated through growth factors, and
K-ras is functionally linked to increased cell proliferation. Several studies have shown how
ROS activate Erk1/2 pathway by modulating and activating its upstream target such as Ras.
For instance, oxidative modification at its cysteine 118 residue leads to the inhibition of GDP/
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GTP exchange [57]. Moreover, ROS activates p90RSK that acts as an upstream kinase of Erk1/2
[58, 59]. In ovarian cancer, sustained Erk1/2 activity was linked to increased concentration of
endogenous ROS resulting from ubiquitination and loss of endogenous mitogen-activated
protein kinase phosphatase 3 (MKP3), which negatively regulates Erk1/2 [58, 59].

Figure 3. Molecular scaffolds of physiological antioxidants Molecular structures were drawn with ChemDraw13 (Per-
kin Elmer).

Oxidative stress regulation of PI3K/Akt pathway has been implicated in different cancers. In
ovarian cancers, H2O2 produced in response to epithelial growth factor signaling (EGF)
activates Akt and p70 S6k1, a substrate of Akt involved in regulating protein synthesis [60]. In
pancreatic cancer PANC-1 cells, NADPH oxidase (NOX)-4-mediated generation of intracellu-
lar ROS was related to survival of these cells, which undergo apoptosis in response to diphe-
nylene iodonium (DPI), an inhibitor of NOX that inhibited superoxide production and
impaired levels of phosphorylated Akt [61]. Moreover, benzo(a)pyrene (BaP), a known
mammary carcinogen in rodents, increased cell proliferation in human mammary epithelial
cells MCF-10A through H2O2 generation and activation of epidermal growth factor receptor
(EGFR), Akt, and ERK phosphorylation, which was strongly inhibited by NAC treatment
[62].

4. Reactive oxygen species contribute in tumor progression

Intracellular redox status aids tumor progression by modulating the processes of metastasis,
angiogenesis, survival of cells under hypoxic conditions, and maintenance of cancer stem cell
(CSC) subpopulation [63]. Decreased cell adhesion to extracellular matrix, anchorage-
independent survival, and invasion of tumor cells are well documented to be influenced by
ROS [64]. Perturbation of mitochondrial respiratory chain in breast cancer cells leads to
generation of a cellular subpopulation with increased levels of ROS, which are highly meta-
static and maintain increased invasive property in vivo [65]. ROS induction was shown to
influence overexpression of chemokine CXCL14 through the activator protein (AP)-1-signaling
pathway and promote cell motility through elevation of cytosolic Ca2+ by binding to the inositol
1,4,5 triphosphate receptor on the endoplasmic reticulum [65]. DNA methylation and histone
modification leading to epigenetic silencing of superoxide dismutase (SOD)-2 alter the
expression of antioxidant enzyme MnSOD, which promotes invasion of breast cancers [66].
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Moreover, a decreased MnSOD level was also associated with increased pancreatic tumor
invasion [67]. Degradation of the extracellular matrix (ECM) and activated matrix metallo-
proteinases (MMPs) are a prerequisite of cancer cell migration and invasion. Binding of several
integrins to the ECM results in increased expression of several MMP proteins. Since integrins
signal by a vast array of kinases, phosphatases, GTPases, and transcription factors, it is likely
that an elevated level of ROS has an effect on integrin-mediated signaling. Several studies
reported the inactivation of critical phosphatases such as protein tyrosine phosphatase (PTP)-
PEST (PTPN12), SHP-2 (Src homology 2 [SH2] domain-containing non-transmembrane PTP),
and low molecular weight protein tyrosine phosphatases (LMW-PTPs) by oxidation [68].
Catalase, a H2O2 scavenger, binds SHP-2 and growth factor receptor-bound protein-2 (Grb2)
adapter protein upon integrin ligand binding and therefore protects them against H2O2-
mediated oxidation [69]. In non-transformed intestinal epithelial cells, elevated ROS increased
the expression of α2β1-integrin, which subsequently increased the levels of cyclooxygenase-2
(COX-2) and promoted cell migration [64]. These results also suggest a mechanism where ROS-
induced modulation of ECM promotes cancer formation in intestinal epithelial cells. ROSs
have also been implicated in promoting tumor progression by modulating the processes
involved in epithelial mesenchymal transition (EMT). Several transcription factors, which
promote metastasis such as AP-1, Ets, Smad, and Snail, are regulated by ROS, inducing an
effect on upstream target molecules involved in activation of these transcription factors such
as protein kinase (PK) C and PTPs [70].

Figure 4. Molecular mechanisms of hypoxia affected by natural compounds. Scheme was drawn with ScienceSlides
Suite 2105 (Visiscience).
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In a given tumor mass, cancer cells often are exposed to an environment with reduced
levels of tissue oxygen, a condition known as hypoxia. Prolonged limitation in oxygen
supply can result in cell death. Therefore, cancer cells often undergo genetic and adaptive
changes that contribute to a malignant phenotype and adopt characteristics of an aggres-
sive tumor. Cancer cells mimic a phenomenon known as the “Warburg effect” that is to
switch to anaerobic glycolysis when adequate oxygen supply is absent [71]. ROSs have
been implicated to facilitate the tumor survival under hypoxic conditions by modulating
different transcription factors involved. Hypoxia inducible transcription factor (HIF)-1 is
most widely studied for its role in tumor promotion under hypoxic conditions. HIF-1 is a
heterodimer that consists of hypoxic response factor HIF-1α and constitutively expressed
aryl hydrocarbon receptor nuclear translocator (ARNT) also known as HIF-1β [72]. Under
reduced oxygen levels, HIF-1 binds to hypoxia response elements, thereby activating hy-
poxia response genes such as the pro-angiogenic vascular endothelial growth factor
(VEGF) [73]. Moreover, HIF-1 has been shown to regulate expression of all enzymes of the
glycolysis pathway as well as glucose transporters GLUT1 and GLUT3 [74]. In human
breast carcinoma, increased MnSOD activity is reported to inhibit HIF-1α along with sup-
pression VEGF protein that impaired tumor metastasis [75]. Suppression of endogenous
ROS by NADPH oxidase inhibitor DPI and mitochondrial electron chain inhibitor rote-
none decreased HIF-1 induction and VEGF expression in ovarian and prostate cancer cells
[75]. Moreover, growth factor such as epidermal growth factor (EGF)-induced ROS pro-
duction may lead to activation of AKT/p70S6K1 pathway resulting in increased expression
of VEGF stimulating tumor angiogenesis [60] (Figure 4).

In any given tumor, subpopulations of cells have the ability to self-renew and drive tu-
morigenesis. This population of cells is termed as cancer stem cells (CSCs), which are iso-
lated from most cancers such as hematopoietic, breast, lung, colon, etc. CSCs are
characterized by the expression of specific stem cell markers and are of clinical relevance
as they are highly drug resistant and mostly initiate recurrence after chemo- or radiother-
apy [76]. Studies have shown that normal hematopoietic and epithelial stem cells main-
tained a lower level of ROS than mature progeny to prevent cellular differentiation and
maintain long-term cellular self-renewable. Similarly, CSCs unlike cancer cells have re-
duced level of ROS. Moreover, compared to tumor cell counterparts, CSCs showed in-
creased expression of enzymes, which are associated with ROS scavenging [76].
Particularly, glutathione synthetase that is involved in glutathione synthesis is upregulat-
ed along with Forkhead transcription factor (FOXO)-1 to confer resistance to oxidative
stress in hematopoietic stem cells [77]. Also, activation of antioxidant response that is fre-
quently reported in CSCs prevents DNA damage in these cells exposed to ionizing radia-
tions, thereby protecting CSCs against irradiation-induced cell death [78]. Based on these
findings, it is widely accepted that cancer recurrence in response to withdrawal of con-
ventional therapies is majorly dependent on existence of a resistant CSC subpopulation
within the patients. Therefore, further identification of key molecular drivers that regulate
the redox balance in CSCs might provide a possibility to eliminate these cells, which may
contribute in overcoming the limitations of cancer relapse in future.
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5. Cell death pathways activated by reactive oxygen species

As mentioned above, cancer cells in particular generate increased ROS levels; now severe
accumulation of cellular ROS in response to chemotherapy may induce cell cycle arrest,
senescence, or lethal toxicity inducing apoptosis [79]. Electrons leaking from the respiratory
complexes in mitochondria are a major source for ROS production [80]. For instance, As2O3

which impair the function of respiratory chain increases the production of superoxide ions
[65]. Alternatively, drugs, which act as redox cyclers such as anthracyclines daunorubicin and
doxorubicin, react with cytochrome p450 reductase and NAD(P)H dehydrogenase [quinone]
1(NQO1) in the presence of reduced NADPH to generate superoxide in the presence of
oxygen [81].

Apoptosis is linked to an increase in mitochondrial oxidative stress that causes a series of
hallmark events such as release of cytochrome c followed by caspases activation ultimately
leading to cell death. Sodium salicylate and non-steroidal anti-inflammatory drugs were
reported to induce apoptosis in cancers such as colon, breast prostate, and leukemia through
ROS production and activation of intrinsic cell death pathway measured by cleavage of
caspase-9 and caspase-3 [82]. However, apoptosis was subsequently that a Rac1-NADPH
oxidase-dependent pathway is activated in response to treatments that produce ROS and
triggers apoptosis [82]. Mitochondrial release of H2O2 has been associated with activation of
different stress kinases such as c-Jun N-terminal kinase (JNK) and p38. In response to ROS
production, JNK mediates phosphorylation and downregulation of anti-apoptotic proteins B-
cell lymphoma (Bcl)-2 and Bcl-extra large (xL) [79]. Moreover, several studies reported that
both Bcl-2 and Bcl-xL antagonize ROS generation and protect cells against apoptosis [44, 83].
p38 MAPKs are also implicated in apoptosis induction in response to increased ROS produc-
tion [84]. p38 is activated through apoptosis signal regulating kinase (Ask)-1. Activity of Ask-1
is dependent on a redox-regulated protein thioredoxin that in its reduced form binds to and
conserves Ask-1 in an inactivated form. Increased ROS production uncouples thioredoxin from
Ask-1 leading to its activation and phosphorylation of p38 required for TNFα-mediated
apoptosis [84]. Studies conducted on L929 fibrosarcoma cells revealed that mitochondrial ROS
play a key role in inducing TNFα cytotoxicity presumably by ROS-mediated caspase activation
and cell death [85]. Moreover, TNF receptor associated factor 4 (TNFR4), a component of the
TNF signaling chain, binds to NADPH and activates JNK suggesting different mechanisms by
which death receptors induce ROS activation in cells [86]. Additionally, different studies have
reported the significance of ROS-mediated signaling pathway regulated by protein kinase D1.
PDK1 is activated by direct binding to Src and by phosphorylation, which promotes prolifer-
ation [35]. Inhibition of this pathway sensitizes cancer cells to ROS. Furthermore, beyond the
conventional therapy to induce cytotoxicity to cancer cells and overcome the limitations
associated with therapy resistance and risk of developing metastatic phenotype, recent
advancement is made to explore the phenomenon of senescence, which inhibits the prolifer-
ation of cancer cells and restricts them in a dormant phase [87]. Senescence in cancer cells is
mainly characterized by increased activity of β-galactosidase along with modulation of several
cell cycle regulators such as cyclin-dependent kinases (CDKs), p16, and p27 [87]. Different
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polyphenolic compounds extracted from artichokes (Cynara cardunculus) or ginseng (Panax
ginseng) were described to trigger ROS-dependent senescence.

6. Pathological alterations triggered by free radicals

Intracellular ROS generation may lead to damage of cellular macromolecules such as DNA,
proteins, and lipid bilayer. Studies have indicated that H2O2 is not very reactive towards DNA;
however, the damage to DNA is mainly caused by hydroxyl ions that are generated by the
Fenton reaction where transition metals such as iron or copper donate or accept free electrons
during intracellular reactions [88]. H2O2 acts as a catalyst in the reaction in the formation of
free radicals. The generated hydroxyl ions are highly diffusible and lead to DNA damage like
oxidation, single-, and double-strand breakage. Under normal physiological conditions, such
DNA defects are repaired by base excision repair (BER) or nucleotide excision repair (NER).
Cells unable to repair the DNA lesions undergo apoptosis to ensure that the mutations are not
passed on during cell division. However, failure in either process of DNA repair or apoptosis
may harbor the possibility of formation of cancerous growth.

Figure 5. Molecular mechanisms of ROS-induced macromolecule damage. Scheme was drawn with ScienceSlides Suite
2105 (Visiscience).

ROS-mediated damage of proteins is mainly associated with modifications in specific amino
acid residues leading to altered function [89]. Beside, some ROS-mediated modifications of
protein also includes increased protein carbonylation, nitration of tyrosine and phenylalanine
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residues or formation of cross-linked and glycated proteins [89]. The oxidized amino acid
residues in proteins may influence their activity in a signal transduction pathway. For instance,
oxidation of phosphatases within the catalytic sites impairs their enzymatic activity [90].

Moreover, ROSs react with polyunsaturated or polyunsaturated fatty acids to trigger lipid
peroxidation that has also been used as a tumor biomarker in clinical studies [91]. For instance,
in colorectal cancer patients, the presence of thiobarbituric acid reactivates has been linked to
high levels of lipid peroxidation [63] (Figure 5).

7. Natural compounds as pharmacological antioxidants

It has been reported in several studies that dietary phytochemicals can interfere with every
stage of cancer development. Therefore, antioxidant functions of phytonutrients have been
investigated thoroughly for their role in pathophysiology associated with cancer. Dietary
antioxidant compounds with significant anticancer activity mainly include anthocyanidins
(and their glycosides termed anthocyanins) from berries [92], catechins from green tea,
curcumin from turmeric, genistein from soy, resveratrol from grapes and red wine, all-trans
lycopene from tomatoes [93], indole-3-carbinol from broccoli, sulforaphane from asparagus,
quercetin from red onions and apples. Beside this, carotenoids, flavonoids, and isothiocyanates
have also exhibited strong antioxidant properties.

Figure 6. Pharmacological antioxidants of plant origins. Molecular structures were drawn with ChemDraw13 (Perkin
Elmer).

Epigallocatechin gallate (EGCG) is the most abundant catechin found in green tea and
curcumin-induced anticancer activity promoting cell cycle arrest, polyamine synthesis, and
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affecting transglutaminase (TG) activity along with regulation of signaling pathways mediated
by NF-κB, AP-1, and MAPKs [94]. In a recent study, EGCG was shown to inhibit cell prolifer-
ation of cervical carcinoma Hela cells by promoting depolymerization of cellular microtubule
and disrupting tubulin-microtubule equilibrium. Spectroscopic analysis revealed that EGCG
bound to the α-subunit of tubulin at the interphase of α- and β-heterodimers preventing
colchicine binding to the colchicine-binding site [95]. Also, in osteosarcoma cells, EGCG
treatment induced cell cycle arrest, promoted apoptosis, and inhibited growth of transplant-
ed tumors in vivo by regulating miR1/c-MET interaction [96] (Figures 6 and 7).

Figure 7. Molecular mechanisms involved in ROS-triggered survival. Scheme was drawn with ScienceSlides Suite 2105
(Visiscience).

Eugenol (4-allyl-2 methoxyphenol) is a naturally occurring phenolic compound that exhibits
antioxidant properties. The antioxidant activity of eugenol was evaluated by the extent of
protection offered against free radical-mediated lipid peroxidation using both in vitro and in
vivo studies [97]. The chemopreventive and anticancer role of eugenol was evaluated on N-
methyl-N’-nitro-N-nitrosoguanidine (MNNG)-induced gastric cancer in Wistar rats by
analyzing the markers of apoptosis, invasion, and angiogenesis. Rats exposed to MNNG
developed gastric cancer with upregulation of pro-invasive and angiogenic factors. Eugenol
inhibited cell proliferation by suppression of NF-κB signaling. Apoptosis in these cells
following eugenol treatment was mitochondrial pathway mediated that decreased the
expression of Bcl-2, following release of cytochrome c and caspases activation. Anti-angiogenic
and inhibition of invasion was evidenced by decreased expression of VEGF, its receptor
VEGFR1 changes in the activities of MMPs and the expression levels of MMP-2 and MMP-9,
VEGF, VEGFR1, tissue inhibitor of metalloproteinases (TIMP)-2 and reversion-inducing
cysteine-rich protein with kazal motifs (RECK), a metastasis inhibitor [97].

Several studies aim toward proving the anticancer properties of flavonoids on an array of
cancer cell types. Hirano and co-workers tested the anticancer activity of 28 flavonoids on
human acute myeloid leukemia (AML) cell line HL-60. Eight of these flavonoids showed strong
inhibition of cell proliferation with IC50 values in a nanomolar range [98]. In contingent to this
finding, Kuntz et al. showed strong inhibition of proliferation induced by flavonoids on two
colon cancer cell models with Caco-2 displaying features of small intestinal epithelial cells and

Free Radicals and Diseases98



HT-29, resembling colonic cryptic cells [99]. Moreover, in vivo studies on mice strongly
inhibited the growth and metastatic potential of melanoma cells B16-BL6 in response to
flavonoid treatment [100].

Epigenetic modifications resulting in heritable changes into gene expression without changing
the DNA sequence have been marked as key player in promoting cancer [101]. The most
common types of epigenetic modifications that may contribute to tumor promotion are DNA
methylation and histone acetylation or methylation. Antioxidant compounds mainly isofla-
vones, flavonols, and catechins have shown to modulate epigenetic features, thereby showing
antitumor activity [102–104]. EGCG was shown to affect DNA methyltransferase by inhibiting
DNMT and reactivating tumor suppressor genes RARα, p16, and O6-methylguanine methyl-
transferase in esophageal cancer KYSE 510 cells [105]. Treatment with caffeic acid (3,4-
dihydroxycinnamic acid) or chlorogenic acid [106] of hormone-dependent MCF-7 and
hormone-independent MDA-MB-231 breast cancer cell lines partially inhibited the methyla-
tion of promoter region of the RARβ gene, thereby restoring its function [107]. Furthermore,
studies also indicated that dietary antioxidants such as genistein, quercetin, parthenolide, and
lycopene may affect DNA methylation status of different genes associated with cancer [108–
111].

In addition to this, synergistic or additive effects of phytochemicals could be achieved when
administered along with conventional chemotherapy or radiation therapy. This could be
explained due to the fact that phytochemicals, which target different biochemical pathways,
may enhance the efficacy of conventional therapies. Moreover, different studies have reported
the synergistic cytotoxicity on different cancers when phytochemicals are administered
together. Apple extracts and quercetin 3-β-D-glucoside combination showed synergistic
antiproliferative effect on MCF-7 breast cancer cells [112]. Genistein a major phytoestrogen
which has higher affinity for ERβ compared to ERα showed synergistic cytotoxicity in
combination with indole-3-carbinol in HT-29 cells by simultaneously inhibiting Akt phos-
phorylation and progression of autophagic process [113]. Combination of δ-tocopherol and
resveratrol showed strong inhibition of HMC-1 mastocytoma cell proliferation. The two
compounds together strongly inhibited Ser473-phosphorylation of Akt, thereby reducing its
activity compared to individual treatment [114]. Gagliano et al. suggested that the use of
quercetin in combination with other antioxidants such as resveratrol or sulforaphane might
be a novel approach for the treatment of human glioma, which has poor clinical prognosis in
both adults and children [115].

Additionally, pharmacological implications of polyphenols have also been explored with
respect to inhibition of cancer stem cells and self-renewal. It has been demonstrated that
polyphenols can efficiently target pathways such as Wnt/β-catenin, Hedgehog, and Notch,
which are critical for cancer stem, cells self-renewal [116]. Sulforaphane has been demonstrated
to target cancer stem cells by modulating the pathways such as NF-κB, Hedgehog, and Wnt/
β-catenin in different cancers such as breast, pancreas, and prostrate and has been proposed
as an adjuvant of chemotherapy in different pre-clinical studies [117, 118]. As discussed earlier,
cancer stem cells are characterized by a glycolytic metabolism with lower mitochondrial
respiration compared to the tumor cells. Therefore, a proposed strategy to counteract CSCs
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population is to impair their metabolism by inhibiting glycolysis or by forcing CSCs into
mitochondrial metabolism and oxidative phosphorylation. To this purpose, polyphenols have
been implicated to regulate the cancer metabolism. For instance, EGCG in human breast cancer
have been shown to target the 5’ adenosine monophosphate-activated protein kinase (AMPK)
pathway, which is involved in maintaining cellular energy status, cell cycle, and protein
synthesis [119] (Figures 8 and 9).

Figure 8. Pharmacological antioxidants of plant origins. Molecular structures were drawn with ChemDraw13 (Perkin
Elmer).

Figure 9. Molecular mechanisms involved in Wnt signaling. Scheme was drawn with ScienceSlides Suite 2105 (Visis-
cience).
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8. Natural compounds as pharmacological pro-oxidants

As discussed earlier, cancer cells produce high levels of ROS that allow these cells to maintain
a state of increased basal oxidative stress. The increased state of oxidative stress promotes
survival but on the other hand makes the cancer cells vulnerable to further increase in ROS
levels over a cancer-specific threshold. Accordingly, pro-oxidant agents and increased
oxidative stress levels could then selectively target cancer cells. Different compounds of natural
origins modulate the intracellular ROS levels and induce both chemopreventive and anticancer
effect in different cancer types.

Polyphenolic extracts from artichokes (Cynara cardunculus) at high doses induce apoptosis and
decrease the invasive potential of human metastatic breast cancer. Apoptosis was regulated in
a caspase-independent manner. Additionally, sublethal concentrations of artichoke increased
ROS and induced significant increase in senescence-associated β-galactosidase along with
upregulation of tumor suppressor genes p16INK4 and p21Cip1//Waf1. Altogether, NAC attenuated
the antiproliferative effect induced by artichoke extracts, which suggests that induction of
premature senescence and apoptosis is regulated in a ROS-dependent manner [120].

20(S)-ginsenoside Rg3 [20(S)-Rg3], a chemical compound extracted from Panax ginseng,
induced senescence in glioma cells at sublethal concentrations, which was abrogated by NAC
treatment suggesting involvement of ROS. Moreover, depletion of Akt and inactivation of the
p53/p21 pathway attenuated the compound-induced senescence. These results suggest that
ROS is playing a role in activation of Akt and p53/p21, which leads to growth arrest in human
glioma cancer [121].

Figure 10. Molecular scaffolds involved ROS generation. Molecular structures were drawn with ChemDraw13 (Perkin
Elmer).
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Bisdemethoxycurcumin, a curcuminoid from turmeric, demonstrated potential chemothera-
peutic activities by inhibiting proliferation and decreasing the cell viability of hormone-
dependent breast cancer. Bisdemethoxycurcumin treatment leads to increased ROS
production, which disrupted mitochondrial membrane potential assessed using mitochondri-
al potential sensor JC-1. Moreover, the compound induced increased expression of pro-
apoptotic protein p53 and its downstream effector p21 along with cell cycle regulator p16 and
its downstream regulator retinoblastoma protein (pRb). The results overall suggested bisde-
methoxycurcumin-induced ROS accumulation, which leads to inhibition of hormone-
dependent breast cancer [122].

We have previously reported that garlic-derived organosulfur compounds including diallyl-
tetrasulfide induce growth arrest and apoptosis in colon cancer cells by disrupting the redox
status in the cells. Drug-induced cell cycle arrest in G2/M phase followed by apoptosis was
further associated with decreased Cdc25c expression, one of the key enzymes responsible for
G2/M transition [32]. Moreover, we have also shown that plumbagin, a plant naphtoquinone,
reduces cell viability and induces apoptosis in a series of hematopoietic cancer cell lines
including HL-60, Jurkat, K562, Raji, and U937 with a most pronounced effect on AML U937
cells by 10-fold increase in ROS production. This was followed by decreased expression of anti-
apoptotic proteins Mcl-1 and Bcl-2 along with activation of caspases-8, caspases-9, caspases-7,
and caspases-3 [123]. Recently, we have also demonstrated ROS induction in neuroblastic and
stromal neuroblastoma cells by hemisynthetic cardenolide UNBS1450. ROS induction was
followed by autophagic response eventually leading to apoptosis or necroptosis. Time-
dependent increase in ROS affected lysosomal integrity of the cells inducing lysosome-
associated membrane protein (LAMP)-2 degradation leading to cathepsin B and L activation
[124] (Figure 10).

9. Conclusion

Natural compounds or their derivatives comprise of more than 50% of cancer chemothera-
peutic agents available in the clinics. Information encoded by the human genome project would
definitely lead to identification of several gene products, which could potentially be targeted
by novel anticancer drugs. Due to various advantages associated with the use of natural
compounds such as high availability and reduced toxicity, it is likely that the natural products
templates combined with chemistry will allow the generation of novel analogues with
enhanced pharmacological benefits to enter clinics.

Malignant cells, which often exhibit increased ROS generation that is associated with tumor
proliferation and drug resistance, highlight the crucial role of ROS stress in cancer. Therefore,
targeting the redox-modulated biochemical properties of cancer cell may allow to develop a
feasible therapeutic approach to overcome challenges associated with cancer treatment.
Furthermore, not critically explored unique redox biology of cancer stem cells suggests the use
of redox modulating strategies to eradicate these cells.
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