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Abstract

In countries with high standard of living, lowered risk of infectious diseases is parallel
to increased incidence of autoimmune diseases. One of the autoimmune disorders,
multiple sclerosis, affects genetically susceptible individuals. Genetic susceptibility is
supposed to interact with lifestyle and environmental factors in developing autoim‐
munity in MS. From this point of view, epigenetics provides the bridge between the
external environment and the internal genetic system. In MS, environmental burden
can modulate gene expression by epigenetic modification of chromatin components,
microRNAs or by subtle changes in DNA methylation. Our paper focuses on describ‐
ing the epigenetic mechanisms linking environmental  factors with pathogenesis of
multiple sclerosis. We summarise current knowledge about the role of over-nutrition
and obesity as epigenetic factors in multiple sclerosis.

Keywords: multiple sclerosis, epigenetics, early life environmental factors, obesity,
microRNA, DNA methylation, histone acetylation

1. Introduction

The genomewide association study (GWAS) conducted by International Multiple Sclerosis
Genetics Consortium has identified genes conferring susceptibility to multiple sclerosis (MS)
[1]. Many of these genes play a role in the immune system with a prominent role for major
histocompatibility complex (MHC) class II molecules in particularly defined HLA-DRB1 alleles.
GWAS found complete concordance between the rs 3135388A SNP and the HLA-DRB1*1501
genotype [1].

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



In most cohorts, especially in Caucasian population, genetic burden for MS has been found to
be associated with gene clusters in chromosome 6p21.3 [2]. Evident genetic heterogeneity of
MS makes identification of single candidate gene impossible. This highlights the role of
molecular markers rather than MS-susceptibility genes in indicating the disease status [3]. As
the genetic background determines only about 26–30% of the risk of developing MS [4, 5], other
factors have been considered to determine heterogeneity of clinical course and MS symptoms
[6].

Epigenetics is defined as heritable changes in gene expression that are not due to any alteration
in the primary DNA sequence. The changes are responsible for organisation and reading of
genetic information [7]. The term epigenetics has evolved to define mechanisms underlying
phenotype plasticity due to environmental influences, parent-of-origin effects, gene-dosage
control, imprinting, and X-chromosome inactivation. At the molecular level, epigenetics
includes modification of DNA base pairs, post-translational modification of histones, and the
effects of non-coding RNAs [8]. Moreover, it was found that epigenetic alterations accumulate
in time; consequently they can exert their effect on expressed genes longitudinally [9].

Our paper focuses on describing the epigenetic mechanisms linking environmental factors
with pathogenesis of multiple sclerosis. We summarise current knowledge about roles of over-
nutrition and obesity as epigenetic factors in multiple sclerosis.

1.1. Molecular epigenetic mechanisms

In human DNA, cytosines in the CpG dinucleotide are commonly methylated, and methylation
is well-balanced. DNA methylation is involved in normal development and sustaining of
cellular homeostasis and functions in adult organisms (particularly for X-chromosome
inactivation in females, genomic imprinting, silencing of repetitive DNA elements, regulation
of chromatin structure, and control of gene expression). CpG sites are concentrated in short
regions of the genome [7, 10, 13]. Another common mechanism that regulates chromatin
structure inside a cell involves histone modification. In general, histone acetylation and
phosphorylation act as activators of gene expression, whereas histone deacetylation, biotiny‐
lation and sumoylation inhibit gene expression [10, 12]. Other described mechanisms of
epigenetic regulation of gene function are mediated by miRNAs. They are small non-coding
RNAs, 16–29 nucleotides-long, that function primarily as negative gene regulators at the post-
transcriptional level. Recently, novel microRNAs (miR) have been identified to be human-
specific as well as tissue-specific [7, 11].

Different authors have suggested that epigenetic mechanisms could be directly controlled by
metabolic and dietary constituents, metabolic state, or endocrine unbalances [10, 40].

1.2. Early life period and potential epigenetic risks

Recently, studies on humans have indicated that adaptive changes made by foetus in response
to intrauterine environment result in permanent changes in early life programming [14–16].

Currently, there are no prospective systematic studies conducted in humans that would
evaluate the association of selective environmental factors and risk of MS in humans. However,
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many environmental factors have been described to be potential epigenetic regulators of MS
development [16, 17, 18]. Some of the metabolic and toxic epigenetic factors are listed and
included in Table 1.

- lower levels of maternal vitamin D and lower exposure to UV light in childhood

- nutritional factors + obesity

- exposure to glucocorticoids, metabolic trigger

- smoking

- epigenetics of endocannabinoid system

- maternal psychosocial stress

Potential epigenetic
factor

Mechanism of action Clinical and immunological
consequences

References
number

Lower maternal
vitamin
D Decreased vitamin
D in MS patients

blocking of NF for
activated T-cells,
sequestration of
Runt-related TF-1
FokI gene polymorphism
(rs10735810)
Vitamin-D-mediated
trans-repression of
the CYP27B1 p450 27B1
gene methylation of CpG
sites IL-17 gene expression by
blocking of NF,
necessary for activating
Th-1 cells TF and by
HDAC Vitamin-D mediated
suppression of IL-12
via HDAC

1,25(OH)2D3 inhibits
the production of
IFNγ, IL2
and IL12, expansion
of dependent Th-1
cells, modification
of dendritic cells
58% reduced risk of
MS for each 400
IU/day evolution
of MS, sex-differences

[19–25]

Lower UV exposure Similar to vitamin D
deficiency

Increase of TNFα
and IL-10-impaired
antigen-presenting cell
function, and antigen
-specific Th-cell tolerance,
decreased Th-regulatory
cells region of
birth and low
maternal exposure
to UV radiation

[26, 27]
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Potential epigenetic
factor

Mechanism of action Clinical and immunological
consequences

References
number

in the first trimester
are independently
associated with subsequent
risk of MS
in offspring

Higher maternal
pre-pregnancy BMI

Oxidative stress, lower
vitamin D exposure,
over-expression of
miR-145,146,155,
cluster 17-92 on immune
cells Over-expression of
Notch1 signalling pathways
on oligodendrocytes,
impaired neural stem
differentiation

No significant relation
of weight gain during
pregnancy and MS risk
when increased
pre-pregnancy BMI
(OR: 0.39; 0.18–0.85)

[18, 28–31]

Glucocorticoids
hyperglycaemia/
diabetes

Reduction of GLUT, dysfunction
of cell membrane, impaired DNA
methylation of central myelin and
genes
important in regulating
cortisol levels

Blockage of the HPA
axis increased
risk to MS in
offspring

[32–34]

Parental smoking,
passive inhalation

Methyl group
deficiency, loss
of histone H3K9
and H4K20 methylation

24–50% increased
risk of MS in women
exposed to parental
or passive smoking

[18, 30, 31, 35]

Cannabis
consumption

Endocannabionoids influence
gametogenesis, DNA
modulation of
reproductive cells,
dysregulation of
glutamatergic gene
expression, findings that
would be predictive
of impaired synaptic
plasticity

Trans-generational effect
to next generation, potential
modulatory effect to
mesolimbic reward-related
subregion of
the striatum, risk
of MS and neurodegenerative
disorders

[34, 36]

Lower choline in diet Impaired DNA methylation
of PAD2 promotor, encoding
oligodendrocyte activity,
developmental
type of myelin

Increased inflammatory
cytokines: IL-6 and TNFα
Increased risk of MS

[37, 38]
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Potential epigenetic
factor

Mechanism of action Clinical and immunological
consequences

References
number

Psychosocial stress in
pregnancy,
inappropriate
maternal immune
activation
due to stress, maternal
separation and obesity

Increased DNA
methylation of endocannabionoid
receptor-1

Increased IL-6,
IL-1, IL-10, increased
CD4 and B lymphocytes, decreased
Th-regulatory cells,
increased permeability of
BBB, altered the
HPA axis in infants,
risk of immune deregulations

[32, 38, 39]

Abbreviations: NF = nuclear factor, TF = transcriptional factor, 1.25(OH)2D3 = 1.25-dihydroxycholecalciferol, FokI =
polymorphism of vitamin D receptor, IFNγ = interferon gamma, TNFα = tumour necrosis factor alfa,
IL-1,-2,-6,-10,-12,-17 = interleukine 1,-2,-6,-10,-12,-17, Th-1 = autoaggresive T lymphocytes, CYP27B1 p450 27B1 =
cytochrome P450 family 27 subfamily B polypeptide 1, CpG = cytosine guanine islands - regions of DNA, HDAC =
histone deacetylase, UV = ultraviolet, MS = multiple sclerosis, BMI = body mass index, HPA = hypothalamo-pituitary-
adrenal, miR = microRNA, GLUT = glucocorticoid transporters, PAD2 = peptidylarginine deiminase 2, CD4 = Th
lymphocytes - helpers, BBB = blood-brain barrier.

Table 1. The list of potential epigenetic risk factors.

1.3. Obesity, nutritional factors and multiple sclerosis

Over the last decade, obesity appears to be a new component of the complex mosaic of
autoimmunity [41], suggesting that starvation leads to immunosuppression [42] and that over-
nutrition or obesity promotes autoimmunity [8, 41, 43].

Maternal obesity in pre-pregnancy period [measured by body mass index (BMI)], correlated
with higher risk of developing MS in children [18], suggests that obesity is a prenatal risk factor.
Maternal obesogenic environment is considered to be an epigenetic modulator [40, 43, 44].

Trans-generational epigenetic effects have been supported by nutritional studies that identi‐
fied a link between food supply during childhood and MS mortality in grandchildren [45, 46].
Although not clearly defined in MS, intergenerational epigenetic effects could explain why the
HLA DRB 1*15 frequency is significantly lower in the first-generation affected females,
whereas it remains unchanged across the two generations in affected males [46].

Although in one of the retrospective studies, maternal obesity in pre-pregnancy period was
associated with risk of MS in children [18], other studies analysed the association of body
configuration in adolescence with risk of MS. They found a correlation between higher BMI
in adolescence and subsequent development of MS [28, 29, 47], whereas the interaction of
obesity and carriage of HLA DRB 1*15 genotype was identified [48]. Munger et al. [28] found
that a higher BMI at ages 7–13 years was associated with a significant 1.61–1.95-fold increased
risk of MS only among girls. Similarly, another study [49] identified a higher risk of paediatric
MS and clinically isolated syndrome (encompassing optic neuritis and transverse myelitis) in
extremely obese adolescent girls (BMI ≥ 35 kg/m2) with an OR = 2.57. In age-adjusted analyses,
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women with a BMI ≥ 30 kg/m2 at an age of 18 had a greater than twofold risk of developing
MS as compared to women with a BMI between 18.5 and 20.9 kg/m2. A higher percentage of
women who were obese (BMI ≥ 30 kg/m2) at an age of 18 were smokers at baseline as compared
to women with lower BMI [29]. However, body weight at age ≥ 30 was not associated with risk
of MS [28], indicating that postnatal life period and adolescence are most important for future
development of MS. Other authors did not prove the relationship between obesity and MS in
adult patients with ongoing MS symptoms [50, 51]. Moreover, Emamgholipour and colleagues
presented a study demonstrating a decreased adipose tissue mass in patients with definite MS
compared with healthy individuals (18% MS versus 22.6% in controls) [52]. The negative
correlation of MS severity and adipose tissue mass was supposed to result from increased
lipolysis and loss of metabolic plasticity.

During over-nutrition, immune cells are increasingly activated and accumulated in adipose
tissue, but pro-inflammatory cytokines and chemokines, released from immune cells can also
affect other organs [53]. Obesity is associated with accumulation of macrophages, changed
from anti-inflammatory M2 to pro-inflammatory M1 phenotype [53]. Obesity selectively
promotes an expansion of the Th17 T-cell sub-lineage, producing progressively more IL-17
than lean subjects. IL-6-dependent Th17 expansion is a clinically prominent element in obesity
[53]. The results of a small clinical study concurred with the previous investigations. These
authors demonstrated stimulation of pro-inflammatory pathways through elevated IL-17 in
serum of obese women [54].

Moreover, inflammatory peptides, originated from enlarged adipocytes, have a tendency to
change the activity of the HPA axis via hypothalamic receptors [34, 71] and consequently
modulate immune responses [58]. Obesity induced by high-fat diet increases blood-brain
barrier (BBB) permeability [56] and leads to accumulation of lipids in brain tissue [60, 61],
stimulating innate immunity responses. Over-nutrition was correlated with increased number
of activated brain microglial cells and oligodendrocytes [61].

MS is one of the autoimmune disorders of the central nervous system (CNS) with not fully
known aetiology [6]. Immunological assessments of MS patients have supported the concept
of MS as the disorder driven by myelin-specific Th1 helper cells [6], and/or Th17 cells [52].
They were found to migrate into CNS, where they cause demyelination and axonal loss and
subsequent neurological disability in MS [6]. Currently, it is known that both innate and
adaptive immune processes contribute to MS pathogenesis [42]. Additionally, there is evidence
indicating that MS has a neurodegenerative component since neuronal and axonal loss occurs
even in the absence of overt inflammation [56]. However, interactions between infiltrating
immune cells and resident cells of the CNS require co-stimulatory and additive factors that
determine both disease evolution and clinical outcome of MS patients [57]. However, neuro‐
inflammation cross-talk can have either beneficial or destructive consequences [57], depending
on the environmental influences interacting with genetic risks. In MS, environmental expo‐
sures might occur long before the disease becomes clinically evident. In addition, the onset of
the disease is unknown. Changes in gene expression driven by epigenetic mechanisms play
an important role in the predisposition to future disease development [17, 61].
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1.4. Epigenetic links between over-nutrition or obesity and multiple sclerosis

1.4.1. Micro RNA

Until today many studies have demonstrated that miR have multiple functions in negative
gene 4 regulation and play important roles in neurological disorders, and it seems possible
that 5 several epigenetic mechanisms have multiple targets [62].

Interestingly, while obesity increases the expression of the miR-143–145 cluster in adipose
tissue/adipocytes via increasing over-expression of tumour necrosis factor alpha (TNFα)
secretion and lipolysis [62], recent research has shown miR-145 to be expressed dramatically
in peripheral blood mononuclear cells (PBMCs) from patients with MS [63]. Other miR-142-3p,
miR-146a, miR-155 and miR-326 were also aberrantly expressed in the PBMCs of MS patients
[64].

Obesity-induced over-expression of miR-155, miR-107, and miR-146-5p led to release of pro-
inflammatory cytokines, adaptive and innate immune activation [65, 66], while miR-155 and
miR-326 were up-regulated in both PBMCs and brain white matter lesions [67].

It has also been found that miR-146a increases IL-17 expression and miR-155 promotes Th1
and Th17 cells [65], determining severity of the disease course [64]. Th17 cell–associated
miR-326 expression was highly correlated with disease severity in patients with MS. In vivo
silencing of miR-326 resulted in fewer Th17 cells [65]. Moreover, a recent research has revealed
that miR-155 over-expression could be implemented into acute BBB dysfunction, as miR-155
was increased at the neurovascular unit in MS lesions when compared to levels in MS normal-
appearing white matter [68]. Pro-inflammatory cytokines, such as interferon gamma (IFNγ)
and TNFα were able to up-regulate miR-155 in human cells. The findings indicate contribution
of miR-155 to cytokine-induced disruption of the brain endothelium via cell-to-cell and cell-
to-matrix interactions, leading to an increased permeability of BBB which is typical for MS [68].
Similarly, another study confirmed increased expression of miR-155 on astrocytes in acute MS
demyelinated lesions [69], while miR-155-deficient macrophages had a decreased inflamma‐
tory potential, and miR-155 inhibited adipogenesis in adipocytes [62].

Pro-inflammatory cytokines, namely IFNγ, secreted from auto-reactive Th-1 lymphocytes in
not only MS patients [67] but also in obese individuals [53, 71] could be responsible for up-
regulation of miR-155 and dysfunction of BBB.

Another possible cross-link between obesity and MS might be the expression of the miR-17-92
cluster, which was found down-regulated in B lymphocytes of MS patients [72] and also in
blood and adipocytes in obese individuals [62]. The immunogenetic study by Steiner and
colleagues proposed that miR-17-92 family members potentiate T helper cell proliferation,
whereas miR-29 family members specifically inhibited IFNγ [73].

Further studies are needed to investigate whether obesity-induced over-expression of specific
miR and release of pro-inflammatory cytokines in periphery could trigger autoimmune
reaction against brain structures in sensitive life periods. We hypothesise that maternal over-
nutrition or high-fat diet in childhood might stimulate over-expression of miR-145, -146, -155
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in several sites including adipocytes and peripheral blood cells. This allows inflammatory cells
to release cytokines and cross the BBB and attack myelin in brain white matter.

Reported down-regulation of the cluster miR-17-92 in Th cells both in obese subjects and MS
patients [62, 72] supports the theory of common immune pathways, and indirectly supports
the role of over-nutrition in autoimmunity and development of MS.

1.4.2. DNA methylation

One of the epigenetic mechanisms, methylation of myelin basic protein (MBP), is important
for maintaining protein stability. In MS patients, methylation of MBP was reported to be higher
than in healthy controls [74, 75], and some isoforms of MBP (such as the early developmental
ones) are implicated in de- and re-myelination attempts during MS [74]. Since the myelin
sheath has been described to be developmentally immature due to impaired myelin synthesis
via oligodendrocyte failure [76], a post-translational pathogenetic mechanism has been
proposed. A recent research confirmed the previous hypothesis, whereas re-expression of the
developmental pathway was found to restrict oligodendrocyte maturation [77]. The authors
showed that over-expression of Notch1 within and around active MS plaques lacking re-
myelination was associated with immature oligodendrocyte phenotype and up-regulation of
transforming growth factor beta1 in perivascular extracelullar matrix [77]. It is of interest that
animal studies proved maternal high-fat diet to be a potent epigenetic regulator of the Notch
signalling pathway that impairs hippocampal development in the offspring. Notch signalling
was involved in molecular mechanisms of neurogenesis, whereas over-expression of Notch1
in neural stem cells caused inhibition of the proliferation of neural progenitors [78]. Although
in humans the relationship between high-fat diet and inhibition of neural progenitors has not
been confirmed yet, we hypothesised that nutritional factors could exert the effect via the same
mechanism.

Myelin structure can be altered when an alternative pathway for the reversal of arginine
methylation involves the conversion of an arginine in either histone H3 or H4 to a citrulline.
This is termed deimination because the methyl group is removed along with the imine group
of arginine and is accelerated by peptidylarginine deiminase 4 (PAD4). Converting citrulline
back to arginine has not yet been described [7, 10]. It was found that deimination of MBP-
bound arginyl residues makes them more susceptible to myelin-associated proteases [75]. The
accompanying loss of positive charge compromises the ability of MBP to interact with the lipid
bilayer. The conversion of arginine to citrulline in brain is carried out by an enzyme peptidy‐
larginine deiminase 2 (PAD2). The amount of PAD2 in brain was increased in MS normal-
appearing white matter. The mechanism responsible for this increase involved
hypomethylation of the promoter region in the PAD2 gene in MS [79]. The triggering factor is
not fully known. However, the methylation process requires Vitamin B12, which transfers its
methyl group to homocysteine via synthesis of methionine, which is then converted to S-
adenosylmethionine, the methyl donor in all biological methylation reactions [79]. Cholin,
methionine and 5-methyl tetrahydrofolate are major sources of methyl groups in humans [10,
38]. Moreover, they have an importance in suppression of inflammatory processes. Individuals
whose diet was rich in choline and betaine had the lowest levels of several inflammatory
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markers, including C-reactive protein, homocysteine, IL-6 and TNFα [37]. Among the most
concentrated sources of dietary choline are fish and fish-caviar, liver, eggs and wheat germ
[37]. On the other hand, vulnerability of myelin sheath is caused by disturbed lipid metabolism,
while the uptake of external lipids may also play a role in the formation and disturbances of
myelin membranes. The pathogenic mechanisms are known from research of neurodegener‐
ative brain disorders [81, 82].

1.4.3. Histone acetylation

Histone acetylation is another epigenetic mechanism involved in the pathogenesis of MS.
Histone deacetylases (HDACs) are responsible for the removal of the acetyl group from
histones, with resulting ability to influence expression of genes encoded by DNA linked to the
histone molecule. HDACs are also able to modify a large variety of non-histone proteins whose
activity depends on their acetylation status, such as transcription factors, chaperone proteins,
signal transduction mediators, structural proteins, and inflammation mediators [83].

Sirtuin-1 (SIRT1), a member of the HDAC class III family of proteins, can induce chromatin
silencing through the deacetylation of histones and can modulate cell survival by regulating
the transcriptional activities [84]. It was recently reported that SIRT1 was expressed by a
significant number of cells in both acute and chronic active lesions in brains of MS patients.
Authors found SIRT1 to co-locate with CD4, CD68, oligodendrocytes and glial fibrillar acidic
protein (GFAP) cells in MS plaques, when statistically significant decrease in SIRT1 expression
correlated with that of histone H3 lysine 9 acetylation (H3K9ac) and methylation (H3K9me2)
[84].

HDAC9 has a key role in the development and differentiation of many types of cells, including
regulatory Th cells. Dysfunction of Th cells in MS suggests that HDAC9 may act as an
epigenetic switch in effector Th cell-mediated systemic autoimmunity [85]. Genetic variability
in HDAC9, along with variants in HDAC11, SIRT4 and SIRT5, has also been shown to influence
brain volume in MS patients, as assessed using neuroimaging methods [86].

A growing number of the dietary HDAC reported in the literature are generated as metabolites
during the course of digestion [83]. Dietary constituents are formed by the metabolism of some
vegetables and fruits, olive oil and nuts. Broccoli, cabbage, Brussel sprouts, cauliflower, kale,
Savoy cabbage, citruses, grapes, berries and apples contain many HDAC regulators [83]. For
example, resveratrol, naturally occurring compound found in grapes, wine and eucalyptus, is
a potent activator of sirtuins (class III HDACs) and in particular, SIRT1 [83]. Thus, regular
consumption of foods rich in this compound can have protective effect.

2. Conclusion

Until now, a lot of potential epigenetic mechanisms in MS have not been discovered, and also
the hypotheses linking nutritional factors and obesity or nutritional compounds have not been
proved by prospective epidemiological studies. The relationship among diet, obesity and
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genetic risk of MS has been studied only occasionally. The included studies were usually
focused on a role of vitamin D. Further studies based on both genetic-epigenetic factors and
environmental triggers could bring new information about how to determine the MS risk
factors more precisely and much earlier in life. Although at present, there is no particular
preventive strategy in MS, new findings could help us to work out dietary interventions and
other alternative non-conventional therapies.
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