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Abstract

The former Texcoco Lake (TL) belongs to a closed basin (Basin of México), with a semi-
arid climate and soil types Solonchaks and Vertisol, which confer saline and alkaline
properties to the waterbodies. Historically, this lake has been facing extraction of salt for
agricultural and livestock use. As a result of population growth, the lake has lost more
than 95% of its surface; however, currently TL is formed by permanent and temporary
shallow wetlands interconnected by the rainy season which are used as buffer zones to
avoid possible floods to the City of Mexico and as receptors of wastewater discharges.
Due to the above, the former TL has a very diverse mosaic of conditions in the remain‐
ing wetlands, therefore their quality assessment comprises a complex task of interpreta‐
tion and analysis. To perform this, it is important to have a series of indicators and analysis
tools that take into account the state of contamination of the waterbodies in different
periods of study. Additionally, is imperative to have essential elements of interpreta‐
tion which allow to combine all the features of analysis in a comprehensive scrutiny of
the health status of these water bodies. The purpose of this research is to analyze the
quality of water and sediments of the remaining wetlands located in the basin of the former
TL through various physicochemical parameters and heavy metals, and using multivari‐
ate methods and water and sediment quality indices.
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1. Introduction

Due to constant and rapid human population growth, water bodies around the world have
been threatened [1]; even large lakes are considered especially vulnerable because they are the
final receivers of a number of pollutants, in most cases due to poor connectivity with other
waterbodies, these pollutants are deposited indefinitely altering the quality of water and
sediment [2]. Among the main activities affecting lentic systems worldwide are overexploita‐
tion of water and other resources associated with water bodies, contamination by direct or
indirect sources, agriculture, and industry [3]. It has been estimated that coverage occupy‐
ing lakes and ponds around the world ranges from 1.3 to 1.8% and although it is numerical‐
ly dominated by small systems, the largest contribution in terms of the total area is given by
the great lakes [4–7].

Another important aspect regarding the current status of epicontinental waterbodies is the
distribution of freshwater lakes in relation to salt water. According to [8], about half of
the epicontinental water of the world is saline (in area and volume), while the other half
is freshwater; an epicontinental waterbody is considered saline if it exceeds the salt con‐
centration of 3 g/L without marine environment contact [9]. Regarding its location, epi‐
continental saline lakes are commonly found in endorheic basins, arid or semiarid
climates, and geographically within a latitudinal range of 20–40° in both hemispheres [6,
10].

Mexico has 0.1% of epicontinental water of the world and more than half a million cubic
meters is represented by lakes [8]. Saline lakes in Mexico are located mainly in the north
and center of the country associated with arid and low rainfall [6, 11]. In this sense, one of
the most important saline lakes is the former Lake Texcoco, which has been a great biologi‐
cal and cultural referring in Mexico; Texcoco Lake and lakes of Zumpango, Xaltocan, Xochi‐
milco and Chalco formed a large lake complex where the ancient Aztec civilization was
established [12].

The former Texcoco Lake belongs to a closed basin (Basin of México), with a semiarid climate
and summer rains, with maximum temperature ranges from 30 to 32°C in April and June,
while the minimum from 2 to 5°C in October to March. The soil in the lake are Solonchaks and
Vertisol, which give saline and alkaline properties to the waterbodies [10], favoring the
concentration of ions of manganese, ammonium, nitrites, nitrates, sulfates, and metals [12].
According to [13], this lake is athalassohaline and alkaliphilic due the high concentration of
ions such as magnesium, sulfate, calcium, sodium, and bicarbonate derived from rocks and
geological weathering. Historically, this lake has been used for the extraction of salt from the
ancient Aztec civilization; later, with the arrival of the Spaniards it has been continuously
drained by agriculture, livestock, and expansion of the City of Mexico, losing more than 95%
of its surface [6, 12, 14].

Nowadays, this lake has become a fragmented aquatic ecosystem, formed by the remaining
temporary or semi-permanent wetlands interconnected during the rainy season whose
function has been to avoid possible floods to the City of Mexico, as well as to act as a wastewater
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receptor. Because of this, in the former Lake Texcoco, there is a very diverse mosaic of
environmental conditions in the remaining wetlands; thus, the assessment of water and
sediment quality comprises a complex task of interpretation and analysis. To perform this task,
it is important to use a series of indicators and analysis tools that account the assessment of
the state of contamination of the waterbodies in different periods of study, using elements of
multivariate analysis, which allow the joint interpretation of the parameters analyzed for a
comprehensive scrutiny of the health status of these water bodies. In this sense, the aim of this
research is to analyze the current condition of water quality of the remaining wetlands located
in the basin of the former Texcoco Lake through numerous physical and chemical parameters
and heavy metals, using multivariate methods and indices of water quality.

2. Chemometric analysis and multivariate approach

One of the great challenges in the aquatic ecosystems assessment is the opportunity of
integrating natural phenomena and pollution that occur in rivers and lakes [15]. The elements
of variation in a waterbody can be discrete or specific depending on the nature of the study
site [16]; having a data set that reflects clearly the main trends and sources of pollution or
variation of physical, chemical, and biological properties in these environments is crucial.

In this sense, chemometric analysis can be defined as a discipline derived from chemistry that
uses mathematics, statistics, and logic to design or select the optimal experimental procedures
that provide the most relevant chemical information data analysis for obtaining knowledge
from natural systems [17]. This tool in conjunction with multivariate analysis is able to reduce
the multidimensionality of the parameters in natural environments to get graphical models or
indices that provide insight into the current state of water bodies [18]. In recent years, the
application of different statistics multivariate techniques, such as cluster analysis (AC),
principal component analysis (PCA), factor analysis (FA), and discriminant analysis (AD) have
contributed to identifying possible sources that influence waterbodies, and have offered a
valuable tool in the reliable management of water resources [19, 20]. These techniques have
been successfully used to classify water quality data and detect similarities between samples
and/or parameters in many research studies [21, 22].

3. Study area

The area of the former Texcoco Lake is located between 19° 20′N, 98° 05′W and 19° 35′N, 99°
05′W (Figure 1). The lake is an area where Vertisol, Solonchak, and the saline soil type
predominates [23], which characterizes this as one of the few saline lakes of Mexico. It is located
at an average altitude of 2200 m, with an average annual temperature of 16°C and rainfall of
705 mm [24].
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Figure 1. Location of waterbodies and wells studied in the former Texcoco Lake. The white circles represent waterbod‐
ies: 1. Lago Nabor Carrillo; 2. Laguna Cola de Pato; 3. Laguna de Evaporación; 4. Laguna Colorada; 5. Laguna 14; 6.
Depósito de Evaporación; 7. Laguna 16; 8. Casa del Ermitaño and 9. Xalapango. The black circles represent wells: 1.
Vivero; 2. Colector múltiple del Lago Nabor Carrillo; 3. Well No. 15; 4. Well No. 16; 5. Well No. 17; 6. Well No. 18; 7.
Well No. 19 and 8. Well No. 21.

The waterbodies in the area of the former Lake Texcoco include a system of interconnected
wetlands in an interrupted and ephemeral mode with a heterogeneity of uses including
historical uses. The Lago Nabor Carrillo is an artificial waterbody that receives input from
treated water from local plants and from zones of the east of Mexico City. On the other hand,
the evaporation tank (Depósito de evaporación) is an artificial water body constructed for
extraction of caustic soda, currently out of operation. In contrast, within these water bodies
are the Laguna 16, the House of Hermit (Casa del Ermitaño), and Xalapango that are natural
water bodies receiving contributions from rivers coming from the northeast and southeast
regions adjacent to the area of Texcoco Lake.

In relation to wells, the depth of static water level fluctuates from 40 to 130 m [25]. The
shallowest values are recorded in the southwestern portion of the aquifer near Lago Nabor
Carrillo, which gradually increase by topographic effect from north and east, where the
foothills of the mountains that delimit the aquifer are located.

4. Methods

4.1. Sampling methods and analytical procedures

Water samples were collected from 19 study sites from nine waterbodies, as well as a set of
eight wells (Figure 1) in the area of the former Lake Texcoco in June, September, and November
2015. Water samples were taken at surface using plastic containers of 2.5 L and free from metal
and detergents following the methods of field sampling for waterbodies receiving wastewater
and sampling of water for human consumption proposed by [26].

All water samples were kept at 4°C in dark conditions for transportation for further laboratory
analysis.
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Water quality analyses included 25 physicochemical parameters (Table 1), of which only
temperature, conductivity, pH, and dissolved oxygen were measured in situ. Likewise, ten
metals were quantified in water, sediments, and wells. Analytical procedures were performed
in accordance with the guidelines of Mexican standards [27, 28].

Physicochemical parameters Sample

Temperature (°C) (T°C) Hardness (mg/L) (Dur) Waterbody and water well

pH Phosphates (mg/L) (PO4)

Dissolved oxygen (mg/L) (OD) Nitrates (mg/L) (NO3)

Conductivity (μS/cm) (Cond) Nitrites (mg/L) (NO2)

Total solids (mg/L) (ST) Total nitrogen (mg/L) (TN)

Total suspended solids (mg/L) (SST) Ammonia nitrogen (mg/L) (NH3)

Total dissolved solids (mg/L) (SDT) Organic nitrogen (mg/L) (ON)

Settleable solids (mg/L) (SD) Oil and grease (mg/L) (O and G)

Turbidity (NTU) (Turb) Sulfates (mg/L) (SO4)

Biochemical oxygen demand
(mg/L) (BOD)

Methylene blue active substances
(mg/L) (MBAS)

Chemical oxygen demand
(mg/L) (COD)

Total coliforms (NMP/100 ml) (Tot Col.)

Cyanides (mg/L) (CN) Fecal coliforms (NMP/100 ml) (Fec Col.)

Chlorides (mg/L) (Cl)

Metals

Aluminum (mg/L) (Al) Cadmium (mg/L) (Cd) Waterbody, sediment and
water well

Lead (mg/L) (Pb) Chrome (mg/L) (Cr)

Iron (mg/L) (Fe) Nickel (mg/L) (Ni)

Arsenic (mg/L) (As) Copper (mg/L) (Cu)

Barium (mg/L) (Ba) Mercury(mg/L) (Hg)

Table 1. Physicochemical and metals analyzed in the water and sediment samples.

4.2. Analysis and data interpretation

Trophic state index (TSI) [29] was calculated from the results of the total phosphorus concen‐
tration and using the following mathematical expression:

48
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where TSI (PT) is the trophic state index for total phosphorus and TP is the concentration of
total phosphorus (mg m−3). The index expresses the trophic state based on the following scale:
<30 as oligotrophic; 40–50 mesotrophic; eutrophic 50–70; and 70–100 or greater than 100 as
hypereutrophic [29].

On the other hand, the Water Quality Index proposed by the National Sanitation Foundation
(WQI-NSF) [30] generates results from 0 to 100, with zero considered the worst quality and
100 as excellent quality. The WQI-NSF has the following expression:

9 9

1 1
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where p is measured for the ith parameter; Ti is the transformed value from the curve pi quality
of each parameter, such that Ti(pi) = qi and wi are the relative weight for the ith parameter.
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The WQI-NSF represents water quality in general giving different grades depending on the
value obtained, but without incorporating qualifications for specific water uses, such as
drinking water, recreational use, suitable for agriculture, etc.

Finally, the proposed Pollution Index (Cd) by [31] was calculated, which determines the
relative contamination of different metals separately and presents the sum generated by each
of these components. This contamination index is calculated according to the following
equation:

1
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where Cfi is the contamination factor for the metal, CAi the analytical result of the metal, CNi
the maximum permissible limit of the metal. According to [32]

Pollution levels are referred to Cd:

Cd < 1 Low contamination

1 < Cd < 3 Medium contamination

Cd > 3 High contamination
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Additionally, in the case of sediments, [33] proposed the metal pollution index (MPI), which
is a very simple index, calculated as a geometric mean concentration of metals by the expres‐
sion:

1

1 2 3( )nnMPI M M M M= × × ×¼×

This index has the peculiarity that does not use reference levels, safety data sheets, reference
sites, or baselines. There is no classification of polluted or unpolluted, but allows comparisons
with other aggregations (sites) and highlighting those sites with high concentrations of metals.

The variation of each parameter over the periods and study sites was performed by a factor
analysis (FA) to identify which parameters are statistically significant for further analysis.
From this information, a cluster analysis (AC) was assessed using the Euclidean Distances
Index and Ward ligation method.

The set of indicators of water quality analysis was performed by Pearson correlation in a PCA
from a data matrix consisting of the study sites as rows and environmental parameters as
columns. The array data was standardized by X = log(x + 1) to make evident the chemometric
trends of water bodies from the former Texcoco Lake. All statistical analyses were performed
using the software XLSTAT-2015.

5. Results

5.1. Physico-chemical characterization of the waterbodies from the former Lake Texcoco

The water bodies of the former Texcoco Lake have a high conductivity with values ranging
between 932 and 12.266 mS/cm, mainly due to the high concentration of chlorides and metals
such as Fe and Mg. On the other hand, the concentration of total suspended solids, dissolved
solids, and settleable solids is very high, with values of up to 88.39 mg/L in the study sites: S2
(Laguna Cola de Pato) and S5 (Laguna 14); these conditions are due to the shallowness of the
waterbodies and because the allochthonous materials entering the waterbodies are easily
deposited. Furthermore, the high content of dissolved material in the water increases the
concentration of BOD5 and COD, reaching values of up to 195.76 and 7,858 mg/L respectively,
in S2 and S5 sites.

5.2. Factor analysis

The FA for the set of physicochemical parameters showed that the first factor F1 (51.15% of
the explained variance) includes the parameters related to the input of organic compounds,
such as dissolved oxygen, BOD5, COD, total nitrogen, ammonia nitrogen, and organic
nitrogen, as well as elements that provide ions and suspended materials such as conductivity,
total solids, fluorides, phosphates, sulfates, and MBSA. In the second factor F2 (20.62% of the
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explained variance), the factors related to the obstruction in light penetration were pondered
such as suspended solids, turbidity, oil, and grease (Table 2).

F1  F2 

Temperature (°C) 0.694 −0.310

pH 0.840 −0.162

Dissolved oxygen (mg/L) 0.614 −0.443

Conductivity (μS/cm) 0.880 −0.435

Total solids (mg/L) 0.892 −0.246

Suspended solids T (mg/L) 0.304 0.813

Dissolved solids T (mg/L) 0.845 −0.410

Settleable solids (mL/L) −0.474 0.357

Turbidity (NTU) 0.386 0.827

BOD soluble (mg/L) 0.799 0.213

COD soluble (mg/L) 0.923 −0.026

Chlorides (mg/L) 0.896 −0.391

Hardness (mg/L) 0.288 −0.187

Fluorides (mg/L) 0.890 −0.214

Phosphates (mg/L) 0.807 −0.214

Nitrates (mg/L) 0.153 0.388

Nitrites (mg/L) 0.203 0.513

Total nitrogen (mg/L) 0.913 0.342

Ammonia nitrogen (mg/L) 0.715 0.677

Organic nitrogen (mg/L) 0.927 0.220

Oil and grease (mg/L) 0.436 0.751

Sulfates (mg/L) 0.664 −0.645

MBAS (mg/L) 0.769 0.141

Total coliforms (NMP/100 mL) −0.084 0.866

Fecal coliforms (NMP/100 mL) 0.683 0.181

Solonchak 0.920 0.315

Vertisol −0.920 −0.315

Variability (%) 51.153 20.620

% accumulated 51.153 71.773

F1 and F2 belong to factorial loads of FA. Bold number indicates significant values.

Table 2. Factor analysis (FA) for the periods and study sites and the environmental parameters.
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5.3. Cluster analysis

The nine water bodies were separated into two groups and four independent units (Figure 2).
The first group corresponds to the study sites S3 (Laguna Evaporation), S1 (Lago Nabor
Carrillo, the largest waterbody and receiving wastewater), and S4 (Laguna Colorada); these
sites are in the south and southeast of the former Texcoco Lake. The second group corresponds
to the study sites S2 (Laguna Cola de Pato) and S5 (Laguna 14), which are located in the
northwest region of the former Texcoco Lake. These waterbodies have the highest conductivity
values, suspended materials (ST, SST, SDT and SD), BOD5, and COD. Finally, the four
independent units correspond to S6 (Depósito de evaporación), S7 (Laguna 16), S8 (Casa del
Ermitaño), and S9 (Xalapango). These sites are in the north and northeastern portion of the
lake.

Figure 2. Dendrogram of study sites with the Euclidean distances dissimilarity index, based on the parameters of
greater significance in the factor analysis.

5.4. Water quality index

The WQI-NSF scores ranged from 18.51 in S3 in September to 44.19 in S7 during June. However,
all scores in the WQI-NSF qualify from waters with poor quality (41 to 50) to very poor quality
(0–40) (Figure 3a).
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Figure 3. Water Quality index (WQI-NSF) values: (a) WQI-NSF for the waterbodies during the three periods of study;
(b) WQI-NSF for the wells in the former Texcoco Lake.

Mean values of WQI for all study sites and periods of study are 32.39, 24.71, and 28.95 in
June, September, and November, respectively. However, the dispersion of the data in Sep‐
tember is wider, indicating low and high values of WQI-NSF in some water bodies.

According to the records of the National Meteorological System [34], the rainy season of this
region ends in September (96.6 mm/month), which could contribute to the depletion of WQI-
NSF by the increased input of allochthonous materials and increased wastewater flow from
the rivers of the eastern region of the former Texcoco Lake. Similarly, the runoff in a closed
basin directly increases settleable and suspended solids in the waterbodies, causing further
deterioration of water quality.

According to [14, 35], the rivers from the eastern portion of the former Texcoco Lake provide
to these water bodies high values of organic matter and fecal contamination, reaching 49.75
million fecal coliforms/100 mL−1. High values of coliform not only exceed the maximum
permissible guidelines of the Mexican standards (1000–2000 NMP 100 mL−1), but also consid‐
erably deplete the results of water quality index.

5.5. Trophic state index

The TSI values fluctuated between 106.19 in site S8 to 180.43 in site S4 during June. All sites in
the three periods of study showed hypereutrophic condition (70–100+). However, it is
remarkable that waterbodies S2 and S5 showed the highest values during November, where
the concentration of PO4 reached 156.8 mg/L and 107.98 mg/L, respectively, with the highest
values of this nutrient throughout the study sites and seasons (Figure 4).
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Figure 4. Values of TSI for water bodies during the three periods of study.

5.6. Pollution Index

Results of Pollution Index show that study sites S1, S3, S7, and S8 showed values from low
pollution (Cd < 1) to medium pollution (1 < Cd < 3), which is consistent because the site S1
receives treated wastewater, while the sites S7 and S8 are small waterbodies isolated without
input from wastewater (Figure 5).

Figure 5. Values of the metal pollution index (Cd) for the nine bodies of water during three study periods.

In contrast, other sites qualify with high pollution, being the site S2 (168.75), S5 (121.01) and
S9 (80.43) in November those sites that reached the highest values of metal contamination. In
the case of S9, despite being a natural water body, it receives inputs from rivers located in the
eastern portion of the former Texcoco Lake and according to [14, 35], they transport in their
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current a considerable amount of contaminants and heavy metals such as Pb, Zn, Ni, Cu, and
Cd, although the concentrations do not exceed the maximum permissible guidelines.

The high metal concentrations, particularly for waterbodies of the central part of the lake, are
because many of these waterbodies are small and very shallow, with a high variation in
volume. On the other hand, continuous evaporation processes concentrates salts in the water,
since they have also the highest concentrations of conductivity (>20,000 mS/cm) chlorides
(>120,000 mg/L) and total dissolved solids (>300,000.00 mg/L). Finally, being small and shallow
waterbodies, they are influenced by Solonchak soil that predominates in the area. In these soils,
aluminum salts (alumina) are predominant, which may be contributing to the increase in the
index scores as the aluminum concentration exceeds more than forty times the reference value.

5.7. Metal pollution index

The MPI provides a geometric mean of the metal concentration for each waterbody, thus this
index is an indicator of the level of contamination by these elements. There are metals whose
presence in nature or polluting sources is very low, while other metals may be in abundance
(either in nature or polluting sources). The assessment of geometric mean values contributes
to the elimination of those extreme values that affect the correct interpretation of the data.

The result set of geometric mean values was considered as the overall average for all the water
bodies studied (Figure 6a and b, horizontal orange line). The global geometric mean value for
all the study sites indicates that waterbodies S2 and S5 are those with the highest values of
MPI for the three periods of study, with values of 0.54, 0.57, and 0.77 and 0.50, 0.41 and 0.71
for the months of June, September, and November, respectively. This coincides with the
Pollution Index, which indicates that these waterbodies are the most contaminated by metals.

Figure 6. Values of the metal pollution index (MPI) for the nine water bodies during the three periods of study (a); for
sediments of nine water bodies (b) and for the eight wells (c).

According to this index, the sites S7, S8, and S1 were sites with lower concentration of metals
during the three periods of study, which in relation to the previous analysis allows to group
these waterbodies with the best quality indicators among all water bodies studied.
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5.8. Metal contamination in sediments

In the case of sediments, the MPI showed a maximum value of 0.54 for S2 in September, while
the minimum value was 0.12 for S9 during September. The overall mean was 0.21 (geometric
mean of all water bodies and periods of study) (Figure 6b). It is a remarkable increase of metals
in sediments during September, which may be due to the effects of the rains that carry metals
to waterbodies and these can be settled down with the material being transported, or can be
chelated and removed from the water column to the sediments. This analysis shows that there
is a higher concentration of metals in water reaching values up to 0.77-fold, related to the
concentration in sediments.

5.9. Water quality of wells

The scores for the wells qualify as good water quality (Figure 3b). According to the National
Water Commission [36], the static level of depth of the wells for the area of Texcoco fluctuates
between 40 and 130 m, the wells being closest to Lago Nabor Carrillo with depths of 50 m [37].
The geological profile of the Texcoco area consists of clays with a high concentration of salts
and silts up to 80 m deep [35], giving rise to very poor permeability of surface water into the
aquifer.

Furthermore, the MPI scores for wells reflect the scarce metal concentration (Figure 6c).
However, the high concentration of Mn (0.17–1.86 mg/L) is a distinctive feature of the geology
of the area and in this sense, the presence of this metal is removed by a local treatment plant
that recovers water from this series of wells for public supply. This suggests that the quality
of water in the aquifer in this area can be considered good, although the geological nature and
soil type provide metals and a large amount of salts.

6. Integration of the indices

In the present study, we used four indicators of pollution of water bodies:

• Water quality index (WQI-NSF).

• Trophic state index (TSI).

• Cd pollution index (indicator of contamination by heavy metals based on international
security standards for different uses of water).

• Metal pollution index (MPI).

The WQI-NSF is an indicator of water quality by different environmental parameters meas‐
ured in the water and allows decisions about the use of the resource; in this case, all water
bodies were classified into two categories: (a) poor quality and (b) very poor quality.

The TSI is an indicator of nutrient enrichment, which indicates that due to the high concen‐
tration of nutrients these waterbodies are susceptible to algal blooms, both by microalgae or
cyanobacteria, which can become potentially toxic.
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Cd pollution index is based on comparative environmental standards. Its purpose is to ensure
environmental safety standards regarding the use of water. In this case we used international
criteria for aquatic life protection, protection of human health and public supply, of which the
strictest criteria were selected.

The MPI is indicator of the level of metals in water and sediments, offering an overall average
metal content in each compartment. Based on the above, a principal component analysis (PCA)
(Figure 7) was performed, and to identify trends, three of the five indices were used: TSI, WQI-
NSF, and MPI; thus the analysis considers nutrient enrichment, the state of water quality and
metal contamination.

Figure 7. Biplot of the Principal Component Analysis for the water bodies based on TSI, WQI-NSF, Cd pollution index,
and MPI.

The use of all these indices allows the identification of different kinds of deterioration of the
waterbodies.

The PCA showed a 72.50% explained variance, with 55.74% in the first component and 16.75%
in the second. On the upper and lower right quadrants the vectors of MPI, TSI, and Cd were
located and the three sampling seasons were associated with these vectors. Furthermore, the
waterbodies S2, S4, and S5 were also associated with these vectors. These waterbodies, as was
already indicated, have the highest concentrations of metals. Similarly, S2 and S5 reached the
highest values of the TSI for the three periods of study.

On the upper left quadrant, the vector of WQI-NSF showed that sites S1, S7, S8, and S9 in June
and September reached the highest values of WQI; in addition, these sites exhibit the lowest
concentration of metals and lowest values of the TSI. In this sense, these water bodies are
characterized by better water quality among all the study sites.
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7. Conclusions

Water bodies within the ancient Texococo Lake, assessed with different tools, show a high
degree of contamination.

The WQI-NSF, an indicator of physical and chemical quality, notes that water bodies showed
poor to very poor water quality.

All water bodies have a high degree of nutrient enrichment and are in hypereutrophic
conditions.

The concentrations of heavy metals through various indices (Cd and MPI) showed that the 20
waterbodies are highly contaminated by metals, with a higher concentration in both water and
sediments.

Water quality of wells is good despite the high concentration of Mn by natural geological
effects. Also by the geological features of the study area, the pollution of the surface water does
not compromise the quality of the aquifer, mainly due to low permeability of the lithologic
material in this area.

The integration of the WQI-NSF, TSI, Cd, and MPI indices and use of multivariate analysis
identified those bodies of water in which metal contamination is more relevant than the
deterioration of water quality by other physico-chemical parameters, as well as those water‐
bodies that have better conditions, despite their poor water quality.
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