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Abstract

In this Chapter we revisit the main strategies used for years in synthesizing staurosporine
indolocarbazole alkaloid and its analogues, which are promising compounds for treating
cancer. In addition to describing the details of the synthesis strategies, including the key
challenges that had to be faced, we offer a historical perspective of the development in
the field.
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1. Introduction

1.1. Aims and significance

Cancer is one of the most serious threats against human health [1], which has motivated
extensive research into a plethora of chemotherapeutic agents [2-3]. The need for new anti‐
cancer drugs arises not only from the limitations of current drugs, but also from the develop‐
ment of drug resistance [4-6]. Several strategies exist for designing such novel drugs, for which
the essential criterion is the selection of a suitable starting point from the vast chemical space
[7]. Natural products, in this context, are privileged structures [8] and biologically prevalidated
leads, for they contain molecules that probably evolved to exert highly specialized functions.
About 74% of anticancer compounds originate from natural products or from natural product-
derived products [9]. The variety of structures in products is key for new therapeutics [10].

The indolocarbazole family of natural products (hereafter referred to as ICZ’s) was discovered
in 1977 in actinomycetes, bacteria commonly found in soil, and is now investigated by
medicinal chemists especially due to its antitumor and neuroprotective properties [11-13].

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



Figure 1 illustrates that ICZs are a structurally diverse family of natural products. The four
types of aglycons include: A) the parent indolo[2,3-a]carbazole nucleus, such as that found in
tjipanazole F2 (7); B) an imide, as in rebeccamycin (8) and arcyriaflavin D (3); C) hydroxy
lactams, as in the UNC compounds (2); and D) simple lactams, found in 1, 4, 5 and 6. In all of
these aglycon types, substitution with halides, ethers, phenols, has been done at various
positions on the aromatic heterocycle. The compounds possessing the pyrroloindolocarbazole
system with one N-glycosidic bond, such as rebeccamycin (8), act by inhibiting DNA topoiso‐
merase (target for cancer chemotherapy), whereas those with two N-glycosidic bonds, e.g.,
staurosporine (1), are mainly protein kinase C (PKC) inhibitors [14].
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Figure 1. Well-known indolocarbazole alkaloids

We can also further divide ICZs based on the pattern of attachment of aglycon to the sugar
moiety into four sub-patterns, viz.: A) ICZs having no sugar moiety, such as 3, 4; B) ICZs
possessing one indole N-glycosidic linkages, such as 5, 7 and 8; C) ICZs with pyranose fused
ring with two indole N-glycosidic linkages (e.g., 1, 2); and, D) ICZs with furanose fused ring
with two indole N-glycosidic linkages (e.g., 6). The synthetically most challenging subgroups
of indolocarbazoles are the cyclofuranosylated [e.g., K252a (6a)] and cyclopyranosylated [e.g.,
staurosporine (1)] congeners.

Knolker and Reddy reviewed the synthesis and biological activity of carbazole alkaloids,
depicted in Figure 2, where different synthetic strategies for indolocarbazole alkaloids were
discussed [15].

1.2. Motivation for the chapter

Potent drugs against cancer normally have to fulfill a number of requirements in terms of its
toxicity to tumor cells and solubility for efficient delivery. This requires a full-fledged charac‐
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terization of drug candidates, including possible synthetic strategies. In this Chapter we
concentrate on indolocarbazoles such as staurosporine, the most potent PKC inhibitors isolated
to date, which probably act by occupying the ATP binding site and preventing protein
phosphorylation. There is hence the need of synthetic routes to prepare indolocarbazole
derivatives that are selective toward specific malfunctioning kinases associated with a disease.
Furthermore, clinically useful compounds should have enhanced solubility in water, as
compared to the poorly soluble ICZs. Since most indolocarbazoles with potent biological
activities have substituents on the benzene portion of the core, enhanced solubility has been
attempted with at least three approaches. The first is to introduce a hydrophilic group on the
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Figure 2. Approaches to indolocarbazole alkaloids
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imide nitrogen, e.g. the N-bis(hydroxymethyl)methylamino group. The second possibility
consists in elongating the carbohydrate side chain. The third approach is to replace the
uncharged sugar residue of ICZ with a positively charged amino-carbohydrate. Many of the
recent synthetic approaches toward indolo[2,3-]carbazole glycosides separately address the
syntheses of the sugar and heterocyclic portions, leaving glycosylation as the consummate
step. One of the major difficulties associated with the synthesis of biologically-active ICZ alkaloids, such
as Staurosporine, is the regiocontrol required for the glycosylation step. Left undiscriminated to the
last, the attachment of a chiral sugar moiety to a specific indolic nitrogen indolocarbazole
moiety (R1 =R2 =H) occurs nonselectively, thus producing regioisomers.

Well-known examples of pharmaceutically important glycosylated natural products include
macrolide antibiotics, aromatic polyketides, glycopeptides, indolocarbazoles, aminoglyco‐
sides, and cardiac glycosides. The sugar moieties are often essential for the biological activity
in such natural products. Thus, altering the structures and/or substitution patterns of sugar
appendages on aglycone moieties, a process known as glycodiversification, could potentially
generate glyco-conjugates with enhanced biological activity. Therefore, glycodiversification
may ultimately lead to new antibiotics against drug-resistant infectious bacteria, improved
cytotoxic agents for treating cancer, or potent chemicals for combating other ailments.

1.3. Definition of the problem

The indolocarbazole acceptor is generally a weaker nucleophile than the bis(indoly1)-malei‐
mide or indole acceptor, which limits application of established glycosylation methodologies
to the indolocarbazole aglycones.

1.4. History of staurosporine

1.4.1. Isolation

Omura et al reported in 1977 a new alkaloid, isolated from Streptomyces staurosporeus during
a search for new alkaloids in actinomycetes, found to possess potent hypotensive properties
in addition to broad spectrum antifungal activity [16]. It was originally named as AM-2282 (1),
whose structure solved by single crystal X-ray analysis contained an indolocarbazole subunit
with the two indole nitrogens bridged by glycosyl linkages (see Figure 3) [17-18]. AM-2282
was then renamed staurosporine (1), and became the first of over 50 compounds to be
characterized in this family of alkaloids possessing the indolo[2,3-a]carbazole subunit [19-20].

Structure 1a, the enantiomer of the natural product, was originally assigned to staurosporine,
and not until recently has the assignment of the absolute configuration of staurosporine been
revised to that shown in structure 1 (Figure 4) [21].

This isolation of staurosporine sparked research into related natural and synthetic compounds,
particularly for treating cancer with nanomolar inhibition of protein kinases (PKC) [22]. Many
staurosporine analogues are in phase III clinical trials to treat cancer and about ten such PKC
inhibitors have been approved for use in clinical level.
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1.4.2. The importance of protein kinase c inhibitors

Protein kinase C (PKC) is a family comprised of at least eight serine/threonine specific kinases
that are approximately 77 kD in size. The importance of PKC in regulating signal transduction
pathways and ultimately cellular response has been well-established [59]. Activation of PKC
occurs through a series of events that begins with specific binding of an extracellular agonist
to a cell surface receptor. This binding results in activation of phospholipase C which then
cleaves inositol triphosphate (IP3) from phosphatidylinositol-4-5- biphosphate (PIP2) and
leaves behind a molecule of 1,2-diacylglycerol (DAG) in the membrane. Phosphorylation
ultimately results in cellular responses by modifying the function of rate-limiting enzymes and
regulatory proteins implicated in metabolic pathways.

As already mentioned, indolocarbazoles such as K252a and staurosporine are the most
powerful PKC inhibitors isolated to date. This mode of PKC binding, illustrated in Figure 5,
unfortunately results in a relatively non-selective inhibition of several kinases. The preparation
of indolocarbazole derivatives possessing selectivity toward specific malfunctioning kinases
associated with a disease state would be a solution; thus, an efficient and general synthetic
route to the indolocarbazoles is desirable.
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Figure 3. Single crystal X-ray analysis of staurosporine
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Figure 4. Structures of staurosporine (1) and ent-staurosporine (1a).
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(Adapted from: B. M. Stolz, PhD Thesis, Yale University 1997)

Figure 5. Mechanism of PKC inhibitors

1.4.3. Pharmacology of staurosporine and its analogues

The recent literature on staurosporine analogues has provided valuable inputs into their
biochemical pharmacology and generated discussion on the suitability of protein kinase C as
potential target for anticancer drugs. The following conclusions are particularly pertinent with
respect to pharmacological mechanisms [23]:

1. staurosporine analogues such as UCN-01 and CGP 41251 are inhibitors not only of PKC,
but of a ‘cocktail’ of kinases;

2. the composition of this cocktail and expression of its constituent kinases in a given
neoplasm determine the nature and extent of pharmacological efficacy; and

3. slight alterations in molecular structure dramatically alter individual components of this
cocktail.

Indolocarbazoles are all biologically active and display such properties as antimicrobial,
antifungal, and antitumor activity, in addition to acting as hypotensive or platelet aggregation
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agents [24-27]. Three representative examples of this class are staurosporine (1), rebeccamycin
(8), and K-252a (6) (see Figure 1). Rebeccamycin (8) causes topoisomerase I-mediated DNA
cleavage and is presently in late-stage clinical trials as an anticancer agent. Additionally,
staurosporine (1) and K-252a (6a) are potential antitumor agents acting as potent inhibitors of
protein kinase C (PKC). Staurosporine has also been reported to possess immunosuppressive
activity and to reverse multidrug resistance [28-30]. It is because of its nanomolar inhibition
of PKC, however, that staurosporine has attained its current acclaim.

2. Synthesis of staurosporine and its analogues

2.1. Introduction

Staurosporine can be divided into two distinct parts: the "northern" indolocarbazole aglycon
and the ‘‘southern’’ carbohydrate portion of the molecule, as shown in Figure 6. One can
envision that by so dissecting the molecule, a convergent synthetic approach would be possible
in which a lactam-protected derivative of aglycon could be coupled with a bis-glycal derivative
(no commitment is made as to the functional nature of R1 or R2).
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Figure 6. Retrosynthetic analysis of staurosporine (1).

From Figure 7 one may infer that aglycon 2 is itself a natural product, commonly referred to
as staurosporinone or K-252c. Because it constitutes a major unit of many indolocarbazole
natural products, several approaches to its synthesis have been developed [31-32]. Classified
by the last covalent bond(s) formed, these approaches include cycloaromatization (A), double
nitrene C-H insertion (B, B'), nitrene C-H insertion (B'), maleimide reduction (C), and diazo‐
lactam initiated cycloaromatization (D).
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2.2. Biosynthetic pathway of staurosporine

2.2.1. Biogenesis of the indolocarbazole nucleus

Cordell and Pearce independently reported the first indolocarbazole biosynthesis in 1988
[33-35], both identifying aglycon units of ICZs (1 and 8 (Figure 1)), to be derived from two
intact tryptophan units. Tryptophan (10) was in fact utilized in the aglycon biosynthesis,
produced by Streptomyces staurosporeus from D-glucose (9), probably via the shikimic acid
pathway (Scheme 1) [36].
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2.2.2. Biosynthesis of indolocarbazole carbohydrates

The carbohydrate precursor to staurosporine has been shown to be D-glucose and the N- and
O-methyl groups are derived from L-methionine as shown in Scheme 2. Hoehn reported the
isolation of 15b by cofermentation and bioconversion studies and found that O-methylation
is the last step, ie., direct precursor to staurosporine biosynthesis [37].
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2.2.3. About this pathway

The first enzyme identified in staurosporine biosynthesis was the one catalyzing the very last
step (3'-O-demethyl-staurosporine methyltransferase). A Streptomyces longisporoflavus mutant
defective in this enzyme was reported in 1995 [37], while the enzyme was identified in 1998
[38]. The complete staurosporine biosynthetic gene cluster was cloned from Streptomyces sp.
L-amino acid oxidase staO initiates synthesis by converting L-tryptophan to the imine form of
indole-3-pyruvate (2-imino-3-(indol-3-yl)propanoate). StaD (staD) then catalyzes coupling of
two IPA imines to yield chromopyrrolate. Formation of the indolocarbazole core of stauro‐
sporine is catalyzed by two enzymes: staP converts chromopyrrolate into three indolocarba‐
zole compounds, K-252c, 7-hydroxy-K252c and arcyriaflavin A, by intramolecular C-C bond
formation and oxidative decarboxylation, while StaC is required to ensure that the main
product is K-252c.

The next step is glycosylation, which is catalyzed by two enzymes. K252c N-glycosyltransfer‐
ase (staG) catalyzes N-glycosidic bond formation between N-13 and C-6' of the nucleotide
sugar dTDP-L-ristosamine. Cytochrome P450 StaN (staN) then catalyzes an additional C-N
bond formation between N-12 and C-5'. These two enzymes convert K-252c to 3'-O-demeth‐
yl-4'-N-demethyl-staurosporine via the intermediates holyrine A and holyrine B. The final
steps in the pathway are two methylation reactions. staMA catalyzes N-methylation of 3'-O-
demethyl-4'-N-demethyl-staurosporine and staMB catalyzes O-methylation, which results in
staurosporine (Figure 8) [39].
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2.3. First total synthesis of staurosporine and ent-staurosporine (Danishefsky et al., 1995)

It was not until 1995 that the first total synthesis of staurosporine (1) was reported by Dani‐
shefsky et al. [40]. A central challenge in total synthesis by previous groups was that of
constructing the two glycosidic bonds to weakly nucleophilic indolic nitrogens [41-44].
Danishefsky observed oxazolidinone glycal 27b to function as the glycosyl donor and bis(in‐
dolyl)maleimide 26 to function as the aglycon acceptor (Scheme 3). Aglycon 26 was synthe‐
sized from benzyloxymethyl (BOM) dibromomaleimide 24 in the modular fashion shown.
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Triisopropylsilyl-L-glucal 31 (TIPS-L-glucal) was converted to its bis- (trichloroacetimidate)
and then to oxazoline 30 by an apparent vinylogous Schmidt glycosylation. The oxazolidinone,
fashioned from derivative 29, was protected as its BOM derivative 27. The TIPS protecting
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group was cleaved, and a p-methoxybenzyl ether (PMB) was installed. Accordingly, glycal 28b
was oxidized with 2,2-dimethyldioxirane. The mixture of epoxides (27) was treated with the
sodium salt of 26 to furnish indole glycoside 32 with 47% yield.

Compound 32a was subjected to Barton deoxygenation to remove C2
’ hydroxyl, affording

32b. Seco-system 32c was obtained by further deprotection of C6
’ PMB and the indolic SEM

groups. Photolytic oxidative cyclization resulted in compound 33 (Scheme 3). The exo-glycal,
which was essential for intramolecular glycosylation, was performed using iodination strategy
of 33 followed by elimination. Treatment of 34 with potassium tert-butoxide and iodine
eventually resulted 35. Thereafter, reacting with tri-n-butyltin hydride and deprotecting the
BOM groups, compound 37 was available. For compound 38, a BOC group was introduced
particularly on the oxazolidinone ring to facilitate disconnection of oxazolidinone. The BOC
group would protect against dimethylation of the amine during the opening reaction. To
safeguard the imide ring during sequential modifications, which would generate N-methyl
and O-methyl functions, compound 38 was converted into 39. Treatment of 39 with cesium
carbonate in methanol led to 40. Next, the O-methyl and single N-methyl groups were
incorporated to yield 41, which on further deprotection afforded 7-oxostaurosporine (42)
(Scheme 4). 7-Oxo compound 42 was transformed into staurosporine.

A methodology was developed to convert the 7-oxo compound 42 to staurosporine itself. It
started with a reduction with sodium borohydride (In Scheme 4, 40-42). It was not that easy
to deoxygenate the carbanolamide linkage but this portion was smoothly accomplished by
using benzeneselenol. By performing two steps on 42, Danishefsky et al. obtained a 1:l mixture
of isostaurosporine (43) and staurosporine (1) [40]. After separation, homogeneous fully
synthetic staurosporine (1) was isolated. The total synthesis of staurosporine (1) was thus
completed.

2.4. Staurosporine and ent-staurosporine: The first total syntheses, prospects for a
regioselective approach, and activity profiles (Danishefsky et al., 1996)

The total syntheses of staurosporine and ent-staurosporine was achieved again by Danishefsky
et al, by constructing both the glycosidic bonds from glycal precursors [45]. The first glycosidic
bond was originated from direct epoxidation of endo-glycal to give 1,2-anhydro sugar, which
was later made to react with indole anion through intermolecular coupling. They used the
strategy of intramolecular iodo glycosylation for the second bond using an exo-glycal [45].

The authors dealt with the problem of indole glycosylation, functional group management in
the pyranose ring, and regiochemical harmonization in the course of the first total synthesis
of staurosporine (1) detailed herein. It is an electrophilically induced cyclization of the second indolic
nitrogen onto a novel exo-glycal to establish the staurosporine core skeleton.

Monosaccaharide synthesis

Danishefsky et al. assumed the upcoming C3´ methoxy and C4´ methylamino vestiges would
be existing in an oxazolidinone ring. Protecting the nitrogen with a benzyloxymethyl group,
C1´-p-methoxybenzyl ether would protect a primary alcohol that could be utilized in designing
the exo-glycal essential for intramolecular indole glycosylation (Scheme 5).
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Consistent with the discussion above, they formulated the donor to be a glucal of the type
50a. This sequence shown in Scheme 5 provided oxazolidinone glycal 50a which proved to be
an effective glycosyl donor subjecting to proper activation. It was noted that oxazolidinone
would provide stereochemical guidance in activating the endo-glycal en route to the first indole
glycosylation.

Glycosylation and Elaboration.

Oxazolidinone glycal 50a and its derived epoxide proved to be effective as functional versions
of target glycals. Danishefsky et al. next focused on the first glycosidic bond (Scheme 6), for
which bis-indolyl maleimides were effective glycosyl acceptors for 1,2-anhydrosugar donors.
Thus, the sodium anion of bis-indolyl maleimide 26 was synthesized and treated with a
solution of 1,2-anhydrosugars prepared from epoxidation of glycal 50a using 3,3-dimethyl‐
dioxirane. A mixture of expected indole glycoside 52 (47% yield) and indole glycoside 53 (10%
yield) was obtained upon heating the reaction.
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Alteration of the functional group was essential to construct the second glycosidic bond. It was
performed by deoxygenating the newly created alcohol at C5´, deprotecting the indole moiety,
establishing 2,2´ indolic bond, and finally formation of exo-glycal (Scheme 7).

The Key Cyclization

Early screening of the reaction of indolocarbazole glycoside 61 with an array of electrophiles
failed to establish conditions to perform cyclization and lead to the fully functionalized core
of staurosporine (1). Indolocarbazole glycoside 61 should have its activated exo-glycal and
thereby undergo a conformational change so that cyclization would be made possible. The
sterically demanding aglycon must be in an axial conformation rather than the preferred
equatorial conformation. Cyclization to 62 thus resulted as the nucleophillic nitrogen attacks
the activated exo-glycal.
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Completion of the Synthesis

To complete the total synthesis of ent-staurosporine (2), a two-step deprotection strategy
(hydrogenation followed by aminal hydrolysis) delivered 64 from 63 in high yield (Scheme 8).
Danishefsky et al. preferred to clarify the monosaccharide domain prior to reducing the
maleimide function [45]. The most efficient method involved reduction of the imide group
with sodium borohydride to provide a 1:1:1:1 mixture of hydroxy lactams. Further reduction
to ent-staurosporine (1a) and ent-isostaurosporine (71) was then successfully finished using
phenylselenol and p-TSA. Compounds 1a and 71 were each isolated in a homogeneous state
from the 1:1 mixture generated from this two-step sequence.
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Scheme 8 

Upon successfully completing the chemistry in the ent-series, the strategy towards total
synthesis of staurosporine (1) was evident (Scheme 9). Initially, tri-O-acetyl-L-glucal 72 was
transformed into the corresponding oxazolidinone 73. Compound 74 resulted from coupling
to the aglycon, deoxygenation, photocyclization, and finally by exposing exo-glycal. There‐
after, performing the crucial cyclization step yielded 75. Opening the oxazolidinone, methyl‐
ation, deprotection, and reduction furnished staurosporine (1) and isostaurosporine (1a).

Danishefsky et al. evaluated ent-staurosporine (1a), ent-isostaurosporine (71), a related imide
64, and their corresponding enantiomers for their in vitro antitumor activity, their capacity to
inhibit PKC (Table 1), and their ability to inhibit topoisomerase I. The cytotoxicity of indolo‐
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carbazole alkaloids can also be affected by a different mechanism than inhibition of PKC, i.e.

inhibition of topoisomerase I (Table 2).

Compound

PKC inhibition:

IC50 (M)

Cytotoxicity

HL-60     833K
























Cytotoxicities are given as IC50's in units



Staurosporine (1)

ent-Staurosporine (2)

isostaurosporine (94)

ent-isostaurosporine (89)

imide(95)(ent-82)

imide 82

0.014

3.84

2.39

6.55

1.68

593

0.0065

0.312

0.55

0.272

0.72

454

Table 1. PKC Inhibition and in Vitro Cytotoxicity
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


























Compound

Relative potencies are compared with camptothecin (++++) at 100M

topo I inhibition

DNA cleavage
inhibition of supercoiled

DNA relaxation

Staurosporine (1)

ent-Staurosporine (2)

isostaurosporine (94)

ent-isostaurosporine (89)

imide(95)(ent-82)

imide 82

camptothecin

++

++

++

+++

++

+

++++

+

+

+

+

++++

+

++++

 

Table 2. Topo I Inhibition

2.5. Wood and Stolz’s synthesis of staurosporine

A total synthesis of the natural product (+)-staurosporine has been achieved [46] along with
other ICZs. The synthetic strategy involved steroselective ring expansion of a furanosylated
indolocarbazole [(+)-79] to a pyranosylated congener [(+)-80] that serves a common intermedi‐
ate in the production of 1 and other desired ICZs.

2.5.1. Retrosynthetic analysis: The development of a ring expansion approach to the pyranosylated
indolocarbazoles

Wood and Stolz began by considering approaches that involved ring expansion of a furano‐
sylated intermediate. Noting the striking structural homology of 1 and other related ICZs, they
envisioned a strategy that would allow access to these congeners via a common intermediate.
Specifically, R-methoxy ketone 76 was viewed as ideal since the stereogenic centers common
in place and flexibility for stereocontrolled functionalization at C(4´) and C(5´) is maintained.
Thus, reductive amination would produce staurosporine (1).
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Figure 9. Key intermediate 76
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The inspiration for developing this approach derived from Wood’s recognition that ketone 76
might be accessed from aldehyde 79 via a Tiffaneu-Demyanov-like ring expansion (Schemes
10 and 11). In designing this ring expansion approach, Wood et al. addressed the issues of
regio- and stereochemical outcome and the known propensity of similar systems to undergo
skeletal rearrangement (i.e., 77 to 78, Scheme 10). From Scheme 3, it could be envisioned that
the planned rearrangement occurs with migration of either bond a or bond b of aldehyde 79,
to produce regioisomeric hydroxy ketones 80 or 81, respectively. Thus, Wood et al [46]
assumed bond a would migrate to the si face of the aldehyde, producing a product (80) that
possesses both the regio- and stereochemistry needed for further progressive steps towards
staurosporine.
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2.5.2. Completion of staurosporine

Next, Wood and Stolz [46] treated (+)-80 with NH2OH.HCl to produce corresponding oxime
(-)-83 in 95% yield. In contrast to ketone (+)-80, bis-methylation of (-)-83 under phase transfer
conditions (MeI, KOH, and n-Bu4NBr in THF) occurred cleanly to afford (-)-84 and set the stage
for a stereoselective reduction (H2/PtO2) that furnished amine (+)-85a. Mono-methylation and
deprotection then afforded (+)-staurosporine (1) in 67% yield (two steps, Scheme 11).
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Scheme 11 

3. The synthesis of carbohydrates for indolocarbazole synthesis

Only a few methodologies have been developed for synthesizing complex carbohydrate
intermediates for use in the total synthesis of indolocarbazole alkaloids such as staurosporine
(1). Some of those strategies are summarized in the succeeding sections:

3.1. Synthesis of staurosporine monosaccharide (Weinreb et al.)

Weinreb published the synthesis of aminohexose fragment of staurosporine via an N-sulfinyl
Diels-Alder [4+2] cycloaddition [43,47]. From Scheme 12, cycloaddition of diene 86 and benzyl
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sulfinylcarbamate (87) resulted in a mixture of diastereomeric sulfoxides which after oxidation
yielded the corresponding sultam (88) and then converted to acetal 99. Subjecting to diaster‐
eoselectively epoxidition of olefin 89 using trifluoroperacetic acid afforded 90. Hydrolytic-
reductive opening of epoxide 90 followed by olefin cleavage resulted in keto-acetal 91, a critical
synthon for the staurosporine carbohydrate (92).
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3.2. Staurosporine glycal precursor (Danishefsky et al).

Danishefsky exploited glycal epoxide 93 as the glycosyl donor in his first total synthesis of
staurosporine [41,48]. Glycal 94, a derivative of L-glucal, was transformed into its correspond‐
ing oxazoline 95 by a modified Schmidt reaction. Conversion to oxazolidinone proceeded
under standard conditions, and finally treatment with Murry’s reagent provided the glycal
epoxide (96, Scheme 13).
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Scheme 13 

3.3. Methods describing the combination of carbohydrate and indolocarbazole

3.3.1. The Danishefsky synthesis of (+)- and (-)-staurosporine

Danishefsky formulated a strategy to staurosporine [41], in which epoxidation of glycal
(-)-98 with maleimide 97 resulted in one of the indole N-glycosidic linkages to form 99.
Treatment of olefin 99 using Barton deoxygenation, iodine and t-BuOK followed by radical
dehalogenation provided the pyranosylated indolocarbazole 101 with 64% yield. Deprotection
and methylation followed as shown in Scheme 14 (i.e., 101→102), after which reduction of
imide 102 led to a 1:1 mixture of 1 and 1a.
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3.3.2. Syntheses, biochemical and biological evaluation of staurosporine analogues from the microbial
metabolite rebeccamycin

To synthesize staurosporine analogues from rebeccamycin, different structural variations were
exploited by Prudhomme et al., including coupling of the sugar moiety to the second indole
nitrogen, dechlorination and then reduction of imide to amide [49].

The synthesized compounds 105-109 in Scheme 15 were tested for their ability to bind to DNA
and inhibit topoisomerase I and protein kinase C [49]. The cytotoxicity of dechlorinated imide
analogue 108 correlates well with its DNA binding and anti-topoisomerase I activities.

3.3.3. Synthetic studies on indolocarbazoles: Total synthesis of staurosporine aglycon

Mohankrishnan et al synthesized staurosporine aglycon and its analogues with 28-36% overall
yield, using 2-methylindole (110) as synthetic precursor [50]. The key steps for the synthesis
of indolocarbazole alkaloids involved electrocyclization and nitrene insertion reactions as
depicted in Schemes 16 and 17.
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Triphenylphospite-mediated nitrene insertion of 2-nitroarylcarbazole was performed at a
moderate temperature using anhydrous ZnBr2 as catalyst. In addition, an alternative synthetic
protocol for preparing ICZs involving concurrent electrocyclization followed by nitrene
insertion was adopted as in Scheme 17 by Mohankrishna et al. [50].

3.3.4. Synthesis of pyrrolidin-2-ones and staurosporine aglycon (K-252c) by intermolecular Michael
reaction

3,4-Disubstituted pyrrolidin-2-ones, a group of compounds with interesting biological
properties, are related to staurosporinone. The most important property is inhibition of protein
kinase C (PKC), so that this antiproliferative agent can interfere with the cell cycle. The
synthetic strategy permits preparation of said compounds using an intermolecular Michael
addition, starting from nitroethene derivatives and substituted acetate Michael donors [51].
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Enantioselective syntheses can also be carried out using chiral auxiliaries in this strategy.
Reduction of the nitro group using raney nickel and subsequent lactamization, the desired
lactam precursor of staurosporine, which is essential for the biological activity, is obtained
according to Scheme 18. The easiest and shortest (in contrast to the published routes of
staurosporinone) synthetic strategy of staurosporinone within three steps with good to
moderate yields is obtained.
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3.4. Syntheses of the indolo[2,3-a]carbazole nucleus

Synthetic strategies for preparing the indolo[2,3-a]carbazole nucleus have been already
summarized in Figure 2 based on the key bond formations, type of structure synthesized
(aglycon), and research group. In the following section some of the methodologies are
described briefly.

3.4.1. Winterfeld’s strategy to synthesis of staurosporinone

In 1983, Winterfeld published the first synthesis of K252c as shown in Scheme 19 [52-53]. The
synthesis of lactam 126 was successfully achieved by intramolecular aldol reaction of ketoa‐
mide 125 and then followed by titanium-mediated deoxygenation. Oxidative Photocyclization
of 126 resulted in indolocarbazole 4 (staurosporinone).
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3.4.2. Magnus’ approach

Magnus published a synthetic methodology to selectively protect staurosporinones, just after
Winterfeld’s report [54]. Intramolecular Diels-Alder cycloaddition of indole-2,3-quinidome‐
thane 130a was the crucial step in his synthetic strategy (see Scheme 22). Imine 130 was
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prepared from condensation of tryptamine derivative 129 and 2-aminostyrene and then
subjecting to acylation yielded indole-2,3-quinidomethane 130a (in situ) and initiated an
intramolecular Diels-Alder reaction. Oxidative work-up with DDQ resulted in indolocarba‐
zole 131. Deprotecting phthalimide group on 131 followed by acylation gave bis-protected
staurosporinone 132. Interestingly, the indoles could be selectively deprotected (e.g., 132→4
or 132→133, Scheme 20) to facilitate regioselective introduction of a sugar portion.
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3.4.3. The Weinreb approach

Weinreb exploited a synthetic strategy for the synthesis of bis indolyl maleimides to furnish
maleimide 135 from indole-Grignard 134 and imide 134a [43]. DDQ mediated oxidative
cyclization of 135 resulted N-benzyl imide 136. To complete the synthesis, Clemmenson
reduction was performed for desymmetrizing 136, to produce the corresponding lactam 137
(Scheme 21).

3.4.4. Raphael’s approach

Raphael staurosporinone synthesis based on intermolecular Diels-Alder methodology and
nitrene insertion chemistry is depicted in Scheme 22 [55-56]. Reaction of numerous dienophiles
with diene 139 following dehydrogenation afforded triaryl products such as 140a and b. In an
initial attempt, 140b was reduced and cyclized in good yield to afford lactam 137, a compound
previously prepared by Weinreb and Bergman [43].

3.4.5. The Moody approach

Moody utilized the pyranoindolone 147 to regulate intramolecular Diels-Alder reaction with
subsequent aromatization to carbazole 148 (Scheme 23). Nitrene formation by deoxygenation
using triethylphosphire produced K252c (4, staurosporinone) [57-58].
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4. Conclusion

In this book chapter, a brief introduction to biologically active indolocarbazole alkaloids was
presented, with emphasis on the isolation and synthetic pathways of powerful protein kinase
inhibitors such as Staurosporine indolocarbazole alkaloid and its analogues. Glycosylation on
indolic moiety and concerns were discussed apart from the synthesis of staurosporinone
aglycon and sugar portion. We do hope that this book chapter will be a valuable addition to
the chemists dealing with indolocarbazole alkaloids from pharmaceutical industry and
synthetic organic point of view.
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