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Abstract

Globally, more than 300 million people are asthmatics and thisnumberhasbeen estimated
to become 400 million by 2025. Asthma is a chronic inflammatory condition, which,
althoughhasnocure, istreatableinmost patients. The mostcommonstructural alterations
in asthmatic airways include thickening of the epithelial and sub epithelial layers,
increased airway smooth muscle mass, and angiogenesis. Several genetically control-
led factors greatly influence the predisposition and severity of allergic asthma. Twin
studies have attributed as much as 75% of asthma susceptibility to heredity. Particular-
ly, genome-wide association studies (GWASs) have discovered several asthma and/or
atopy susceptibility genes. Current treatment protocols for managing asthmainvolve the
use of corticosteroids and 3-agonists. Over the last 40 years, there has been a marked
development-targeted therapy for asthma, such as anti-leukotrienes, anti-immunoglo-
bulin (Ig)E, anti-tumornecrosisfactor (TNF)-a, and anti-interleukins (ILs) (Th2 cy tokines).
To identify novel targets and to develop newer drug generations, better understanding
of asthma molecular pathophysiology is required. Furthermore, the pharmacogenetic
studies, focusing on better understanding of beneficial or/and adverse effects to anti-
asthma drugs, will also facilitate the development of more effective and targeted
treatments in specific subpopulations of patients suffering from asthma.

Keywords: asthma, asthma therapies, genetics, pharmacogenetics

1. Introduction

Asthma is an inflammatory chronic condition that has reached globally epidemic levels.
Although no cure exists, symptoms are treatable in most patients [1]. Statistically, the number
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of asthmatic cases has been on the rise over the past 10 years and affecting up to 10% of adults
and 20% of children worldwide [2]. Globally, more than 300 million people are asthmatics,
and this estimate is predicted to become 400 million by 2025 [3]. The worldwide economic
burden caused by asthma is predicted to be more than that of both acquired immunod eficiency
syndrome (AIDS) and tuberculosis combined together. For example, in the United States of
America, the annual asthma care costs exceed US$6 billion [4]. Moreover, these numbers are
due to the fact that more than 50% of asthmatic cases are poorly controlled by medication,
since the response to treatments varies considerably among patients despite having similar
clinical features [3, 5]. Asthma is characterized by altered and distinct clinical changes in the
lung airways obstructing the flow of air into the lungs. The most prominent airway remodel-
ing features include epithelial and subepithelial layer thickening, increased airway smooth
muscle (ASM) mass, and angiogenesis [6]. Different classes of asthma therapies address one
or more of the phenotypes of asthma; however, the heterogeneous nature of the disease
prevents homogeneous clinical outcomes in response to the current treatment guidelines [7].

In the past two decades, the field of human genetics has evolved due to the advancements in
the human genome project and high-throughput sequencing technologies [8, 9]. Currently, the
advances in genetic, pharmacodynamic, and pharmacokinetic studies, analyzing responsive-
ness of patients to various therapies, may eventually allow to prescribe personalized treatment
and to shift asthma therapies from classical standards, using mostly corticosteroids and (-
adrenergic agonists, to a highly tailored approach [10]. Future genetic profiles of the popula-
tion would form the basis of tomorrow’s treatments in order to potentiate the required
therapeutic benefits, and to diminish any possible adverse effect risks. Overall, there remains
a great need for comprehensive drug research, paralleled with high-throughput genetic
profiling, in order to treat asthma in a personalized or stratified manner [11].

2. Genetic control of airway hyperresponsiveness, atopy, and allergic
asthma

The heritable nature of asthma has been demonstrated through various types of studies over
the past decades. Family and twin studies indicate that 60-70% of asthma cases are due to
genetic factors. Moreover, it has been proven that the concordance of asthma is greater among
monozygotic twins rather than among dizygotic ones. Adoption studies have shown greater
disease prevalence within biological relatives of the affected people compared to the adopted
family [12].

Higher prevalence of allergic disease phenotypes is observed among relatives of atopic
individuals compared to nonatopic individuals. Overall, the heritability estimates remain in
between the range of 30-66% for airway hyperresponsiveness, 35-95% for asthma, and 35-
84% for total serum IgE levels [13]. It is clear that both the inter-genetic individual differences
and the degree of allergen exposure contribute to these variations in heritability. Heritability
of asthma is linked to both disease susceptibility and severity. While the main concern of
asthma genetic studies has been on disease susceptibility, increasing evidence shows that
many genetic variants are important in asthma progression and severity as well [14]. Lung
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function tests in asthma showed that genes in the T-helper lymphocyte 1 (Th1) pathway affect
asthma severity; meanwhile, T-helper lymphocyte 2 (Th2) pathway genes relate to suscepti-
bility [14]. Based on these hypotheses, genes associated with asthma susceptibility differ from
those related to asthma severity; hence, it is important to define both groups distinctly.

By knowing the genetic signature associated with allergic asthma, geneticists can help to better
understand the molecular mechanism of this disease, and the shared and distinct pathways
among other allergic diseases. Moreover, the genetic signature of asthma-associated genes
with altered expression during the peak of asthmatic episodes may help predict the severity
and response to therapy. Unfavorable response might be identified and, consequently, more
targeted and personalized treatments can be considered for this complex trait. The human
genome project and the ongoing advancements in sequencing technologies, both, resulted in
more successful gene discovery over the last years, even in diseases as complexed as asthma.
Since then, dozens of susceptibility genes were identified through a large variety of methods
and rationales. ADAM33 is the first asthma susceptibility gene to be discovered through
positional cloning [15]. ADAMS33 (also known as Disintegrin and metalloproteinase domain-
containing protein 33) is a membrane-bound metalloproteinase enzyme that has been involved
in several cellular interactions involving cell-cell and cell-matrix events [16]. Variants in this
gene have been correlated to asthma susceptibility and bronchial hyperresponsiveness, but
not atopy. Due to its clinical significance, ADAM33 studies were conducted among 33 different
asthmatic population samples all over the world. Additionally, numerous studies have
suggested that altered ADAM33 DNA methylation patterns could result in diversely unbal-
anced biological effects in the airways [17]. Studies focused on candidate genes have examined
anumber of genes involved in asthma and highlighted more than 100 interesting genetic spots;
however, the role of those loci in asthma susceptibility remains largely unexplored [18].

Genome-wide association studies (GWASs) extensively investigate the unknown genetic bases
of many intricate disorders including asthma [19,20]. In the first reported GWAS study for
asthma susceptibility, Moffatt et al. [21] identified the 17q21 locus, containing several genes,
for example, ORMDL3 and GSDMB as being associated with childhood asthma. Importance
of this region was later on replicated in numerous subsequent studies [22-24]. Expression
levels of the gene ORMDLS3 are differentially regulated by distinct haplotypes in this region.
This gene encodes protein acting as an inhibitor of sphingolipid biosynthesis and in general
Orm family proteins were shown to be implicated in the control of sphingolipid homeostasis
[25]. Dysregulated sphingolipid formation in the respiratory tract instigates airway hyper-
reactivity [26] although exact molecular steps are still not known. The results of these studies
suggested that the mechanisms of asthma development are linked with genetically determined
abnormalities in some patients resulting in their inability to control balance between oxidative
and anti-oxidative reactions. The mechanisms of asthma development are linked with
genetically determined abnormalities in the functioning of antioxidant defense enzymes.
These alterations seem to be accompanied by a systemic imbalance between oxidative and anti-
oxidative reactions with the shift of the redox state toward increased free radical production,
oxidation of proteins and phospholipids, and eventually to their selective degradation.
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To increase the power of detection of modest alleles due to the large sample size, the results
of individual GWAS need to be gathered into a meta-analysis. The scientific literature
recognizes two meta-analyses of asthma GWAS. One was done by the GABRIEL Consortium
[27] of the European investigators, and the other was conducted by the EVE Consortium of
the USinvestigators [22]. While the EVE meta-analysis included diverse subjects from different
ethnic background, US and Mexico population backgrounds, the GABRIEL meta-analysis
included only European subjects. Overall, these two thorough meta-analyses present a
comprehensive overview of the genetic associations for asthma. Some associations are shared
among different populations; by contrast, others are specific to one race. Grouping GWAS in
this way increases the power of genetic detection, contrasts different ethnic groups’ genotypes,
and highlights the worldwide populations” genetic patterns. Overall independent GWASs
have identified large number of candidate loci that deserve further testing. Replication studies
help to prioritize which genes deserve further study, based on their identification in multiple
populations.

Additionally, more loci were identified to be associated with asthma; these include interleukin
(IL)-33 (on 9p24), HLA-DR/DQ (on 6p21), ILIRL1/IL18R1 (on 2q12), TSLP (on 5q22), and IL13
(on 5q31) [22,27,28]. Collectively with ORMDL3/GSDMB (on 17q21), these are the most
remarkable and consistent loci, which are identified for asthma. Since Moffatt et al. had
published the first GWAS results for asthma, identifying ORMDL3 as a candidate gene,
numerous other studies have been conducted investigating an array of phenotypes which are
observed in allergic diseases. In particular, FCER1A, RAD50, and STAT6 have been associated
with total serum IgE levels [29].

3. Environmental factors contributing to asthma

Parallel to genetic factors, environmental factors are also involved in the development and
progression of asthma (Figure 1). The exposure to some environmental factors was shown to
contribute not only to asthma but also to other related respiratory disorders, for example,
emphysema development. By contrast, there are also some other environmental factors that
seem to be solely linked to the development of asthma but not to other inflammatory or/and
respiratory disorders [30]. Various studies assessed the risk factors of asthma and found
evidence that allergen exposure, respiratory tract infections, gastroesophageal reflux disease
(GERD), and physical and psychosocial stress might represent individual risk factors. It is
important to keep in mind that some other environmental factors are protective, such as
maternal diet, breastfeeding, and farming conditions [31].

Allergen exposure is the major factor impacting sensitization and constitutes the most common
cause of asthmatic exacerbations in adults and children. A wide variety of inhaled allergens
may trigger asthma symptoms, for example, house dust mite [32], pollens [33], cockroaches
[34], and animal fur [35]. Respiratory tract infections have been implicated in asthma occur-
rence and exacerbation as well. Examples include infection with viruses [36,37], Mycoplasma
[38], and Chlamydia species [39]. Based on the conclusions from the Japanese study, which
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included 3085 patients, the change in weather followed by smoking was identified as two
leading asthma-exacerbating factors [40]. Although (passive) smoking is a predominant
contributing factor for the development of asthma [41], one occupational study [42] has shown
that nonsmokers might also develop asthma due to occupational air pollutant exposure.

Gene-Environment

Environmental Interaction Genetic
~ Factors

Epi-
~Genetics

Pharmacogenetic
Studies

Figure 1. Environmental stress, in conjunction with genetic factors, both contribute to the development of asthma exac-
erbations.

Additionally, a correlation has been observed between the presence of asthma and gastroeso-
phageal reflux-induced disease, with reports showing one-third of asthmatic patients also
diagnosed with GERD [43,44]. Although the coexistence of GERD in asthmatic patients did
not affect asthma severity, the airway resistance was significantly higher in asthmatic patients
with GERD [45]. Some other psychosocial factors such as parental stress during childhood [46]
and the socioeconomic status [47] are reported to influence allergic inflammation severity. It
is estimated that psychopathology is six times more common among asthmatics, and accord-
ingly it correlates more closely with the asthmatic quality of life, rather than with lung
physiological functions [48,49]. In both directions, psychopathology is supposed to precipitate
asthma or vice versa; psychopathology may develop as a consequence of asthma [50].

4. Asthma pathophysiology

Scientists tried to uncover alterations related to asthma since a long time ago. One of the oldest
publications that discussed asthma pathophysiology was in 1873 [51]. Later on, in 1886, F.H.
Bosworth concluded a possible relation between asthma and hay fever [52]. Clearly, it is well
known that asthmatic patients suffer from reversible airway obstruction resulting from an
allergen exposure, consequently releasing multiple broncoconstricting mediators that stimu-
late airway muscles to contract. Furthermore, airways narrow results from past and current
mucus and edema occlusion [53]. The chronic inflammation and associated repair of lung
airways leads to structural changes, referred to as “airway remodeling.” Airway remodeling
(Figure 2) usually involves lung epithelial layer injury and includes features such as subepi-
thelial thickening, airway smooth muscle hyperplasia, and angiogenesis [6].
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Figure 2. Schematic representation of the major events underlying asthma pathophysiology.

Asthma and COPD (chronic obstructive pulmonary disease) are now considered to be discrete
respiratory disorders. Although both share several similar underlying mechanisms, driving
airway obstruction in COPD, and hyperresponsiveness in asthma, core molecular pathology
remains to be mostly different for both [54]. Pauwels et al. [55] defined COPD as “a disease
state characterized by airflow limitation that is not fully reversible. The airflow limitation is
usually progressive and associated with an abnormal inflammatory response of lungs to
noxious particles and gases.” One important reason of asthma and COPD overlap is the effect
of aging. Asthma-COPD overlap syndrome (ACOS) is a medically recognized coexisting
syndrome of both asthma and COPD [56]. Some other health conditions may occur more
frequently in asthmatic patients. Rhinosinusitis [57], obstructive sleep apnea [58], or GERD
[59] are the most common documented comorbidities. Substantially, they can contribute to the
same pathophysiological process, which is already triggered by allergic response or alter
asthma phenotype detrimentally. The impact of these diseases on asthma is variable and still
not fully clear [60].

5. Structural alterations in asthmatic airway walls

5.1. Epithelial/subepithelial layer thickening

Epithelial changes are not unique to asthma, they are also observed, in more or less of similar
manner, in lungs of smokers and cancer patients [61]. Epithelial layer damage in asthma
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includes loss of ciliated cell layer, shedding of the epithelium, goblet cell hyperplasia and
growth factors, cytokine and chemokine upregulation [62].

One important feature of asthma, which has been routinely used as an asthma severity index,
is the thickening of the subepithelial airways layer. The epithelial and subepithelial layer
thickening is caused by the overdeposition of extracellular matrix (ECM) proteins [63]. Roche
et al. observed that intensive layers of collagen sedimentation contribute to the thickened
subepithelial basement membrane. Through immunohistochemistry, they have shown that
the commonly involved collagen types are collagen I, III and V, and fibronectin [64]. Addi-
tionally, the cells that are responsible for ECM protein production are myofibroblasts and
fibroblasts, as both are embedded in the sophisticated ECM which they secrete [65]. Mean-
while, some inflammatory cells, for example, T cells, mast cells, and eosinophils also accumu-
late in the submucosal layer [66]. Moreover, transforming growth factor-p (TGF-{3), and some
similar growth factors, is usually secreted by the lung epithelial cells echoing any ongoing lung
injury, and consequently directly impress the matrix proteins’ production by fibroblasts/
myofibroblasts. By increasing the airway rigidity, however, Holgate et al. suggested that the
airway thickening due to the ECM proteins precipitation may in fact have a remodeling
protective effect via postponing long-term bronchoconstriction events [62]. Collectively, the
ECM proteins, the lung structural cells (i.e., epithelial cells and fibroblasts), and the immune
system inflammatory cells, all interact together and control the overall airway remodeling and
fibrosis [67].

5.2. Hyperproliferation of airway smooth muscle mass

Hyperproliferation of airway smooth muscle mass is a common event in asthma and has been
suggested to be implicated in its pathophysiology. Hyperplasia and hypertrophy of the ASM
in the bronchial airways of asthmatics can be observed by three-dimensional (3D) morpho-
metric studies [68]. Airways smooth muscle layer is estimated to be increased by 25-55% in
nonfatal asthma and up to 50-200% in fatal asthma [69]. Meanwhile, in response to some
growth factors like TGF-(3, vascular endothelial growth factor (VEGF), and connective tissue
growth factor (CTGF), ASM cells actively participate in the remodeling process through the
process of ECM synthesis [70]. ASM cells also express cellular adhesion molecules (CAMs),
receptors for cytokines (e.g., tumor necrosis factor-«), Toll-like receptors, and chemokines
(eotaxin, macrophage inflammatory protein la, and interleukin 8) presenting multiple
mechanisms for the inflammatory and remodeling process [71]. Additionally, one character-
istic event of the airway remodeling is the ASM cells migration toward the epithelium [72].
Since ASM cells are crucial in asthma, Zuyderduyn et al. suggested that these cells should be
targeted, rather than targeting inflammation or dealing with the symptoms [73].

5.3. Angiogenesis

Accumulating evidences indicate that there is an abnormal elevation in the size and number
of blood vessels, as well as microvessels vascular leakage within the bronchial tissue in
remodeled airways [74]. It is assumed that VEGF strongly affects airways remodeling via its

143



144 Asthma - From Childhood Asthma to ACOS Phenotypes

angiogenic effects, but the exact molecular mechanism linking the increase in the VEGF
expression to remodeling of the airways has not been fully understood [75].

Correlation between angiogenesis and asthma severity has also been documented. Dense
vascularity occurs in severe asthmatics, followed by moderate, and then finally mild asthmat-
ics, who experience less angiogenesis events [76]. This pattern was also observed in fatal
asthmatics compared with nonfatal asthmatics [77]. While current asthma therapeutics is not
directly targeting vascular remodeling, recent trials investigate some anti-angiogenic therapies
as a new approach for asthma. Yuksel et al. showed that Bevucizamab, which significantly
neutralizes VEGF, results in a reduced thickening of lung epithelium, a reduced ASM, and a
reduced basement membrane thickness compared with untreated ovalbumin (OVA)-chal-
lenged mice [78].

6. Therapies for asthma

Modern treatments for asthma have been tested and used since the early twentieth century
[79]. However, the oldest documented drug for asthma dates back to ancient Egypt. Kyphi, an
incense mixture drink, was used inside the temples by the priests as a multipurpose lung
medicament. There was more than one recipe for Kyphi; each may include as many as 10 herbs
[80]. Following this, about 4000 years ago, Atropa Belladonna alkaloids, also called “deadly
nightshade” because of their poisonous properties (“Natural Medicinal Herbs”), were derived
from the leaves of thorn-apple plant and smoked by the Indians as cough suppressant [82].
Till today, natural and synthesized entities related to the tropane alkaloids class are still widely
used. This includes anticholinergics (e.g., natural atropine, hyoscyamine (the levo-isomer of
atropine), acopolamine, and the synthetic Ipratropium Bromide and stimulants (e.g., cocaine
and hydroxytropacocaine) [83]. In 1872, one of the first papers published on asthma states that
rubbing the chest of asthmatics with chloroform liniment can resolve airway constriction [84].
Adrenergic stimulants were in use for asthma over 100 years ago. In 1901, the adrenaline
isolated from sheep and oxen adrenal glands was used to treat asthma [85]. The first
documented publication of adrenaline as a bronchodilator therapy for asthma was written in
1903 by James Burnett, a physician in Edinburgh [86]. One year later in 1904, adrenaline was
synthesized in the laboratories of Friedrich Stolz and Henry Drysdale Dakin, independently
[87].

As suggested by the Global Initiative for Asthma (GINA) [88], a five-level step-down approach
is widely recognized among the medical practitioners (Figure 3). The GINA approach assigns
two types of drug classes for managing asthma:

* Relievers (bronchodilators) cause immediate dilatation effects on the airways obstruction,
mainly by acting on lung’s smooth muscle.

* Controllers (preventers) provide long-term control of symptoms, mainly by suppressing the
underlying disease process.
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Legend:

SABA: Short acting beta agonists, ICS: Inhaled corticosteroids (arrow down = low dose, arrow up = high dose), LABA:
Long acting beta agoints, LTRA: Leukotriene receptor antagonists, MX: Methylxanthines, OCS: Oral corticosteroids,
OZ: Omalizumab
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Cases

Stepwise approach for controlling asthma symptoms and minimizing future morbidity
Figure 3. Stepwise approach for controlling asthma symptoms and minimizing future morbidity.

[2-agonists and anticholinergics are considered to be bronchodilator relievers. Asthma
controllers include corticosteroids, anti-leukotrienes, and anti-IgE. Theophylline is casually
classified as both a bronchodilator and a reliever. The following book section will briefly
discuss each therapeutic class.

6.1. Corticosteroids

Nowadays, most popular protocols for managing asthma involve the use of corticosteroids
and (-agonists [1]. Anti-inflammatory corticosteroids, which are one of most trusted treat-
ments for asthma, were introduced in mid-twentieth century [79]. The principle mode of action
of corticosteroids in asthma is through their direct anti-inflammatory effect in different white
blood cells including T cells, mast cells, and eosinophils. Among leukocytes, corticosteroids
suppress chemotaxis and adhesion, and prevent inflammatory cytokines recruitment [89]. In
vitro, corticosteroids reduce human ASM proliferation directly [90] by stimulating p21 gene
expression [91], an important regulator of cell cycle progression. Moreover, corticosteroids
improve vast majority of vascular remodeling aspects in asthma, reducing angiogenesis, excess
blood flow, and vascular leakage [92]. This is mainly mediated by decreasing VEGF activity
within the airway wall cells [93].

Various studies describe contradicting effects of corticosteroids on the lung epithelial abnor-
malities in asthmatics. Dorscheid et al. [94] reported that Dexamethasone treatment resulted
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in increased epithelial apoptosis and shedding. Similar results were obtained when treating
guinea pigs with Budesonide, which did not improve the tracheal epithelium [95]. By contrast,
some in vivo studies showed that inhaled corticosteroid (ICS) treatment resulted in improve-
ment of epithelial damage in severe asthmatics [96,97].

ICS has been used around for the past couple of decades. Its idea dates back to the nineteenth
century when the hand-held glass bulb nebulizer was used; however, pressurized metered-
dose inhaler (pMDI) came to the clinic in 1956. After seeing his daughter’s suffering while
using the hand-held nebulizer, George Maison, a medical consultant at 3M Pharmaceuticals,
had advocated the use of pMDL. In 1959, George Maison and Irvine Porush were awarded a
patent on the first pMDI [98].

6.2 B-adrenergic agonists

Long-acting [-agonists (LABAs), for example, Formoterol [99] and Salmeterol [100], offer a
longer period of bronchodilation compared to the short-acting beta agonists (SABAs), for
example, Salbutamol [101] and Terbutaline [102]. LABAs persist in the airway tissues for long
periods due to their lipophilic nature and they provide a good umbrella of asthma broncho-
dilation and control, particularly at night [99,100]. However, until recently, the medical
literature lacked supporting studies reporting the positive effect of 3, agonists on the chronic
airway remodeling [103]. Addition of a [-agonist to the corticosteroid therapy allows a
“steroid-sparing” effect, that is, maintains asthma control using lower doses of corticosteroids
[104]. LABAs are not used as monotherapies anymore and they must be used in combination
with ICS [105], because there have been cases of severe exacerbations and death when LABAs
are administrated solely.

6.3. Antimuscarinic agents

Inhaled antimuscarinic agents, also known as inhaled anticholinergics, are considered another
alternative bronchodilator group to B-agonists. The bronchodilation effect is functionally
mediated via muscarinic receptor subtypes M1, M2, and M3, although five muscarinic
receptors have been revealed in the lungs M1, M2, M3, M4, and M5 [106]. It is widely known
that parasympathetic stimulation via the vagus nerve leads to immediate smooth muscle
contraction and mucus secretion in the airways [107]. It is also suggested that M receptors
interact with (32-adrenergic receptors (ADRB2) on the airways smooth muscle, leading to a
reduced bronchodilator response of the -agonists [108]. For years, in both adults and children,
short-acting antimuscarinic agents use, for example, Ipratropium [109], has been limited to
acute asthma management, in addition to inhaled SABA [110, 111]. Long-acting antimuscarinic
agents, for example, Tiotropium [112], appear to have more benefits in difficult-to-control
asthma. Adding Tiotropium to the standard asthma therapy significantly reduces asthma
symptoms and highly increases the clinical outcomes [113, 114].
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6.4. Targeted therapies

Over the last 40 years, there has been a marked increase in the development of targeted
treatments for asthma—anti-leukotrienes, anti-IgE, anti-interleukins, and anti-TNF-a [115].
Obviously, as more of the biological basis of asthma is uncovered, more effective targeted
asthma treatments might be developed. The list of most recently published clinical trials
covering the period from 1 January 2013 to 1 January 2016, as well as the list of currently
ongoing registered clinical trials that has started since 2013 for the new asthma medications
are summarized in Tables 1 and 2, respectively.

Clinical Trial Publication Outcome Reference

Title

Phase Drugs Responsible

Identifier Party

NCTO01147744 Efficacy, safety, and Phase 2 GSK2190915 GSK2190915 30-mg efficacy GlaxoSmithKline [1]

tolerability of (5- was demonstrated in day-
GSK2190915, a 5- lipoxygenase- time symptom scores and
lipoxygenase- activating day-time SABA use,
activating protein protein compared with placebo.
inhibitor, in adults inhibitor) No additional improvement

and adolescents with on efficacy was gained by

persistent asthma: a administration of greater

randomized dose- doses than 30 mg.
ranging study. GSK2190915 was well
tolerated.
NCT00411814 A phase 1, Phase 1 GSK679586 GSK679586 showed dose-  GlaxoSmithKline [2]
randomized, (anti-IL-13) dependent pharmacological
placebo- activity in the lungs of mild
controlled, intermittent asthmatic
dose-escalation patients.
study of an GSK679586 could be a
anti-IL-13 potential therapeutic
monoclonal candidate for treatment of
antibody in asthma.
healthy
subjects
and mild
asthmatics.
NCTO00659659) Effects of Phase 1 Benralizumab Single-dose I.V. and MedImmune [3]
benralizumab on (Anti-IL-5) multiple-dose S.C. of LLC

airway eosinophils in
asthmatic patients
with sputum

eosinophilia.

benralizumab reduced
eosinophil counts in airway
mucosa/submucosa and
sputum and decreases

eosinophil counts in bone
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Clinical Trial Publication Phase Drugs Outcome Responsible Reference
Identifier Title Party

marrow and peripheral

blood in asthmatic patients.

NCTO01007149 A proof-of-concept, Phase 3 Omalizumab Omalizumab may havea  Novartis [4]
randomized, (anti-IgE) therapeutic potential for Pharmaceuticals
controlled trial of treatment of severe
omalizumab in nonatopic asthma.
patients with severe,
difficult-to-control,
nonatopic asthma.

NCT00971035 Dose-ranging study of Phase 2 Lebrikizumab Blocking IL-13 alone was ~ Genentech, Inc. [5]
lebrikizumab in (anti-IL-13)  insufficient to improve lung
asthmatic patients not function in asthmatic
receiving inhaled patients.
steroids.

NCT00873860 A phase II placebo-  Phase 2 Tralokinumab Safety profile of MedImm une [6]
controlled study of (anti-IL-13) tralokinumab was LLC
tralokinumab in acceptable with no serious
moderate-to-severe adverse effects.
asthma. Although tralokinumab

treatment was associated
with improved lung
function, no improvement in
asthma control
questionnaire score was
observed.

NCT01018186 Safety and tolerability Phase 3 Fluticasone  Fluticasone furoate/ GlaxoSmithKline [7]
of the novel inhaled furoate (ICS) + Vilanterol (100/25 pg or
corticosteroid Vilanterol 200/25 ug) administered
fluticasone furoate in (LABA) once daily over 52 weeks
combination with the was well tolerated by
[32-agonist vilanterol asthmatic patients aged >12
administered once years.
daily for 52 weeks in The overall safety profile of
patients >12 years old Fluticasone furoate/
with asthma: a Vilanterol did not reveal any
randomized trial. serious adverse effects.

NCTO00393952 Efficacy and safety ~ Phase 3 Fluticasone  Fluticasone/formoterol SkyePharma AG [8]
of fluticasone/ propionate combination therapy was an
formoterol (ICS) efficient alternative
combination treatment option for
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Clinical Trial Publication Phase Drugs Outcome Responsible Reference

Identifier Title Party
therapy in Formoterol =~ moderate-to-severe
patients with fumarate asthmatic patients.
moderate-to- (LABA)
severe
asthma.

NCT01691521 Mepolizumab Phase 3 Mepolizumab Administration of GlaxoSmithKline [9]
treatment in patients (anti-IL-5) mepolizumab (L.V. or 5.C.)
with severe significantly reduced
eosinophilic asthma. asthma exacerbations and is

associated with
improvements in markers of
asthma control.

NCT00500539 Immunogenicity Phase 3 Omalizumab  Pre-filled syringe of Novartis [10]
and safety of (anti-IgE) omalizumab was not Pharmaceuticals
omalizumab associated with
in pre-filled immunogenicity.
syringes in
patients with
allergic
(IgE-mediated)
asthma.

NCTO00781443 The effects of Phase 2 Lebrikizumab Lebrikizumab reduced Genentech, Inc. [11]
lebrikizumab in (anti-IL-13) the late asthmatic
patients with mild response in subjects
asthma following with mild asthma.
whole lung allergen
challenge.

NCT01181895 Comparison of Phase 3 Vilanterol The study failed to GlaxoSmithKline  [12]

vilanterol, a novel (LABA)
long-acting beta-2

agonist, with placebo

and a Salmeterol

reference arm in

asthma uncontrolled

by inhaled

corticosteroids.

show a therapeutic
difference

between vilanterol and
placebo for the primary

end point. The magnitude
of placebo effect may be due
to increased compliance
with

anti-inflammatory

therapy regimen

during the treatment period.
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Clinical Trial Publication Phase Drugs Outcome Responsible Reference
Identifier Title Party
NCT01233284 Tiotropium Respimat®Phase 2 Tiotropium  Administration of Boehringer [13]
in asthma: a double- (LAMA) tiotropium Ingelheim
blind, randomized, Respimat®
dose-ranging study in (Once-daily) add-on
adult patients with to medium-dose
moderate asthma. ICS improves
lung function
in symptomatic
patients with
moderate asthma,
and the largest
improvement was
with a dose of
5ug.
NCTO00983658 OX40L blockade and Phase 2 huMAb Anti-OX40L MAb decreased Genentech, Inc. [14]
allergen-induced OX40L serum total IgE and airway
airway responses in (anti-OX40L) eosinophils at 16 weeks post
subjects with mild dosing, but there was no
asthma. effect on allergen-induced
airway responses. This may
be due to the treatment
duration or dose of antibody
was insufficient to have an
effect on the airway
responses.
NCT00768079 A randomized Phase 2 Benralizumab A dose of benralizumab— MedImmune [15]
trial of (Anti-IL-5) when added to usual care— LLC
benralizumab, reduced the rate and
an anti-interleukin severity of asthma
5 receptor a exacerbations experienced
monoclonal over 12 weeks by subjects
antibody, who presented to the
after acute emergency department with
asthma. acute asthma.
NCT01369017 IL-1 receptor Phase 1 Anakinra Anakinra effectively University of [16]

antagonist reduces (Anti-IL-1)
endotoxin-induced
airway inflammation

in healthy volunteers.

reduced airway North Carolina,
neutrophilic Chapel Hill
inflammation

with no

serious adverse
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Clinical Trial Publication

Identifier Title

Phase Drugs

Outcome Responsible Reference

Party

reactions in

a model of

inhaled
lipopolysaccharide
challenge.
Anakinra is

a potential
therapeutic
candidate for
treatment of

asthma.

Abbreviations: IL: Interleukin; IgE: Immunoglobulin E; TNF-a: Tumor necrosis factor — o; PDE: Phosphodiesterase
enzyme; ICS: Inhaled corticosteroids; OCS: Oral corticosteroids; SABA: Short-acting 3-agonists; LABA: Long-acting [3-

agonists; LAMA; Long-acting muscarinic antagonists.

Table 1. Summary of recent published clinical trials for new drugs used in the treatment of asthma (from 1 January

2013 to 1 January 2016).
Clinical Title Phase Drugs Start Purpose Study Recruit Respon
Trial Date Type  ment sible
Identifier Status Party
NCTO019 Phase III Phase 3 Placebo Jan 2013 Assessment Interve Recr SK
07763 study to SOTB07 of the ntional uiting Chemicals
assess the efficacy Co.,Ltd.
efficacy and safety
and safety of SOTB07
of SOTB07 in asthma
in asthma patients.
patients
NCT023 Treatment Phase 2 Omalizumab Feb 2013 Determination Interve Recr University
88997 with (anti-IgE) of whether ntional uiting of Virginia
Omalizumab Rhinovirus anti-IgE
to improve (strain 16) therapy will
the asthmatic lead to
response to decline in
an experimental inflammatory
infection biomarkers
with prior to
rhinovirus virus
inoculation,
and thus
reduce the
severity
of clinical
manifestations
after an
experimental
human RV
challenge.
NCTO019 Study of Phase 2 Placebo May 2013 Determination Interve Recr Amgen
02290 efficacy Brodalumab of the safety ntional uiting
and safety of (Anti-IL-17) and efficacy
Brodalumab of Brodalumab

compared

(AMG 827).
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Clinical Title Phase Drugs Start Purpose Study Recruit Respon
Trial Date Type  ment sible
Identifier Status Party
with placebo in
inadequately
controlled
asthma
subjects with
high
bronchodilator
reversibility
NCTO018 A study to Phase 2 Placebo May 2013 Assessment Interve Recr Novartis
36471 assess the QAWO039 of the ntional uiting Pharmaceuticals
effect of 1CS clinical
QAWO039 in effect of
nonatopic QAWO039 in
asthmatic nonatopic
patients asthmatics
taking low-
dose ICS as
background
therapy.
NCTO019  Effect of Phase 2 Placebo May 2013 Determination Interve Recr University
55512 Clopidogrel Clopidogrel if the drug ntional uiting of Southampton
on allergen (platelets Clopidogrel
challenge P2Y12 reduces
in asthma receptor inflammation
blocker) following
breathing
in house
dust mite in
people with
mild asthma.
NCT017  Intramuscular Phase 4 Epinephrine Jun 2013 Determination Interve Recr University
05964 epinephrine (IM) if IM ntional uiting of Louisville
as an epinephrine
adjunctive is an
treatment effective
for severe adjunct to
pediatric inhaled
asthma [,-agonists
exacerbation for children
with severe
asthma
exacerbation.
NCTO018 A study of Phase 3 Placebo Jul 2013  Evaluation Interve Recr Hoffmann-La Roche
68061 Lebrikizumab Lebrikizumab of the efficacy ntional uiting
in patients (anti-IL-13) and safety of
with Lebrikizumab
uncontrolled in patients
asthma on with
inhaled uncontrolled
corticosteroids asthma despite
and a second daily
controller administration
medication of ICS therapy
and at least 1-s
controller
medication.
NCT018 A study of Phase 3 Placebo Jul 2013 Evaluation Interve Recr Hoffmann-
67125 Lebrikizumab Lebrikizumab of the ntional uiting La Roche
in patients (anti-IL-13) efficacy
with and safety
uncontrolled of Lebriki
asthma who zumab in
are on patients
inhaled with
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Clinical Title Phase Drugs Start Purpose Study Recruit Respon
Trial Date Type  ment sible
Identifier Status Party
corticosteroids uncontrolled
and a asthma
second despite
controller daily
medication treatment
with ICS
therapy
and at
least 1-s
controller
medication.
NCT018 L-arginine Phase 2 Placebo Aug 2013 Identifi Interve Recr University
41281 in severe L-Arginine cation of ntional uiting of
asthma (Nitric the benefit California,
patients oxide from Davis
grouped precursor) supplemental
by exhaled L-arginine
nitric therapy
oxide in adult
levels severe
asthma
cohort.
NCTO019 Study to Phase 4 Omalizumab Nov 2013 Assessment Interve Recr Novartis
12872 assess the (anti-IgE) of the ntional uiting Pharmaceuticals
efficacy Budesonide efficacy
and safety Formoterol and safety
of Omalizumab (LABA) of
treatment Omalizumab
on ICS treatment
reduction during 12
for severe months
IgE- to reduce
mediated the use
asthma of ICS in
(MEXIC) pediatric
and adult
patients
with
severe
IgE-mediated
asthma
inadequately
controlled
with high
doses of
corticosteroids.
NCT020 Pharmacology = Phase 1 Placebo Jan 2014 Evaluation Interve Notyet Sun Pharma
41221 study of Phase 2 50597 of safety, ntional recruiting Advanced
Sun Pharma tolerability, Research
Advanced pharmacokinetics, Company
Research and Limited
Company pharmacodynamics
Limited’s S0597 of S0597
by oral
inhalation.
NCT020 Study of Phase 2 Omalizumab Mar 2014 Investigation Interve Recr McMaster
49294 the prednisone- Phase 3 (anti-IgE) whether ntional uiting University
sparing Placebo addition of
effect Normal Saline Omalizumab
of Xolair enables a
(Omalizumab) reduction
in patients in the dose

with Prednisone-

dependent
asthma with

of prednisone
in patients
with asthma
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Clinical Title Phase Drugs Start Purpose Study Recruit Respon
Trial Date Type  ment sible
Identifier Status Party
eosinophilic and
bronchitis eosinophilic
bronchitis.
NCT019 A study of Phase 2 Placebo Mar 2014 Evaluation Interve Recr Hoffmann-
87492 Lebrikizumab Lebrikizumab of the ntional uiting La Roche
In patients (anti-IL-13) efficacy of
with Lebrikizumab
severe compared
asthma who with
depend on placebo as
oral measured
corticosteroids by the
ability of
patients
to achieve
lower
daily doses
of OCS in
patients
with severe
corticosteroid-
dependent
asthma.
NCT020 Long-term Phase 2 QGE031 Mar 2014 Assessment Interve Recr Novartis
75008 safety of long-term ntional uiting Pharmaceuticals
study of safety of
QGE031 QGEO031 during
in patients 12 months of
with allergic treatment in
asthma who asthma
completed patients who
study completed
CQGE031 study
B2201 CQGE031B2201.
NCT020 Efficacy Phase 3 Placebo Apr 2014 This trial Interve Recr AstraZeneca
75255 and safety Benralizumab is to ntional uiting
study of (anti-IL-5) confirm if
Benralizumab Benralizumab
to reduce can reduce
OCS use in OCS dependence
patients (after dose
with optimization)
uncontrolled in patients
asthma who are
on high-dose uncontrolled
inhaled on high-dose
corticosteroid ICS-LABA,
plus LABA and
and chronically
chronic dependent
OCS therapy on OCS as
part of their
regular
asthma
controller
regimen.
NCT021 A Phase 3a, Phase 3 Mepolizumab May 2014 Collection Interve Recr GlaxoSmithKline

35692 repeat dose,
open-label,
long-term
safety study
of Mepolizumab
in asthmatic
subjects

(anti-IL-5)
Standard
of Care

of clinical
data for
long-term
use and
further
assessment
of efficacy
in patients

ntional uiting
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Clinical Title Phase Drugs Start Purpose Study Recruit Respon
Trial Date Type  ment sible
Identifier Status Party
with loss
of asthma
control.
NCT021 Multiple Phase 1 Placebo May 2014 Investigation Interve Recr Boehringer
26865 rising BI 1060469 of the safety ntional uiting Ingelheim
oral doses and
of BI tolerability
1060469 of repeated
in healthy rising
subjects doses of BI
and mild 1060469
asthma in healthy
patients male and
female subjects
and in
asthmatic male
and female
patients.
NCTO021 A Phase 3 Phase 3 Placebo Jun 2014 Evaluation Interve Recr AstraZeneca
61757 study to Tralokinumab of the ntional uiting
evaluate the (Anti-IL-13) efficacy
efficacy and and safety of
safety of Tralokinumab
Tralokinumab in adults
in adults and and adolescents
adolescents with
with asthma
uncontrolled inadequately
asthma controlled
(STRATOS1) on ICS plus
long-acting
[,-agonist.
NCTO021 A study Phase 3 Placebo Jun 2014 Assessment Interve Recr Hoffmann-
04674 evaluating Lebrikizumab of the efficacy ntional uiting La Roche
the efficacy (anti-IL-13) and safety
and safety of Montelukast of Lebrikizumab
Lebrikizumab in adult
in adult patients with
patients with mild to
mild to moderate
moderate asthma
asthma treated
with SABA
therapy
alone.
NCT020 Steroids In Phase 3 Placebo Jul 2014 Determination Interve Recr Milton S.
66298 eosinophil- Mometasone if patients ntional uiting Hershey
negative Tiotropium who are Medical
asthma (LAMA) persistently Center
(SIENA) non-
eosinophilic
differ in
their
benefit
from inhaled
corticosteroid
treatment
compared to
patients who
are not
persistently
non-
eosinophilic.
NCT020 A study Phase 2 Placebo Nov 2014 Evaluation Interve Recr Hoffmann-
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Clinical Title Phase Drugs Start Purpose Study Recruit Respon
Trial Date Type  ment sible
Identifier Status Party
99656 evaluating Lebrikizumab of the ntional uiting La Roche
the effects of (anti-IL-13) effects of
Lebrikizumab Lebrikizumab
on airway on airway
eosinophilic eosinophilic
inflammation inflammation
in patients in patients
with with
uncontrolled uncontrolled
asthma asthma on
inhaled
corticosteroids
and a second
controller
medication.
NCT022 A safety Phase 3 Benralizumab Nov 2014 Characterization Interve Recr AstraZeneca
58542 extension (anti-IL-5) of safety ntional uiting
study to profile of
evaluate Benralizumab
the safety administration
and in asthma
tolerability patients
of who have
Benralizumab completed
(MEDI-563) one of the
in asthmatic three
adults and predecessor
adolescents studies:
on inhaled D3250C00017,
corticosteroid D3250C00018,
plus LABA or
(BORA) D3250C00020.
NCTO022 Efficacy Phase 2 Placebo Nov 2014 Evaluation Interve Recr Chiesi
96411 of LAMA CHEF 5259 of the ntional uiting Farmaceutici
added to Glycopyrrolate safety and S.p.A.
ICSin bromide superiority
treatment (LAMA) of the
of asthma glycopyrrolate
(ELITRA) bromide
(CHF 5259
pMDI) versus
placebo on
top of
QVAR® pMD],
in terms of
lung
functions
parameters.
NCT022 Cross- Phase 3 Mepolizumab Dec 2014 The Interve Recr GlaxoSmithKline
93265 sectional (anti-IL-5) potential ntional uiting
study for Omalizumab (anti-IgE) overlap of
identification Reslizumab patients
and (anti-IL-5) eligible
description for
of severe treatment
asthma with
patients Mepolizumab
Omalizumab
and/or
Reslizumab
will be
estimated.
NCTO022 Efficacy Phase 3 Placebo Dec 2014 Evaluation Interve Recr GlaxoSmithKline
81318 and safety Mepolizumab of the ntional uiting
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Clinical Title Phase Drugs Start Purpose Study Recruit Respon
Trial Date Type  ment sible
Identifier Status Party
study of (anti-IL-5) efficacy
Mepolizumab Standard and safety
adjunctive of Care of Mepolizumab
therapy in adjunctive
participants therapy in
with severe participants
eosinophilic with severe
asthma on eosinophilic
markers of asthma on
asthma markers of
control asthma
control.
NCT023  Study Phase 3 Placebo Feb 2015 Confirmation Interve Recr AstraZeneca
22775 to evaluate Benralizumab of the safety ntional uiting
the efficacy (anti-IL-5) and clinical
and safety of benefit of
Benralizumab Benralizumab
in adult administration
patients with in asthma
mild to patients
moderate with mild
persistent to moderate
asthma persistent
asthma.
NCT023 Multiple Phase 2 Placebo Feb 2015 Determination Interve Recr Theron
82510 ascending TRN-157 of the ntional uiting Pharmaceuticals,
dose study Tiotropium safety and Inc.
of TRN-157 (LAMA) bronchodilator
in stable activity
mild and of TRN-157 in
moderate approximately
asthmatics 54 mild and
moderate
asthmatics.
NCT023  Study in Phase 1 Placebo Mar 2015 Assessment Interve Notyet Teva
15131 healthy TV46017 of the ntional recruiting Branded
volunteers safety Pharmaceutical
and COPD profile Products
patients and , R&D Inc.
to evaluate duration of
the efficacy bronchodilation
and safety of a single
of inhaled dose of
TV46017 inhaled
TV46017.
NCT021 Low-dose Phase 3 Placebo Apr 2015 Investigation Interve Notyet Universita
24226 Methotrexate Methotrexate of the role ntional recruiting degli
for reduction of an add-on Studi
GINA 5 immunological di Catania
medications modifier in
in chronic patients
severe with chronic
asthma severe
asthma.
NCT023 Pharmaco Phase 2 Mepolizumab Apr 2015 Assessment Interve Notyet GlaxoSmithKline
77427 kinetics (anti-IL-5) of the ntional recruiting
and pharmacokinetics
pharmaco and
dynamics pharmacodynamics
of Mepolizumab of Mepolizumab
administered in children
subcutaneously aged 6-11
in children years with

severe
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Clinical Title Phase Drugs Start Purpose Study Recruit Respon
Trial Date Type  ment sible
Identifier Status Party
eosinophilic
asthma.
NCTO023  Efficacy Phase 2 Placebo Apr 2015 The study Interve Notyet Novartis
36425 and safety QGE031 will assess ntional recruiting Pharmaceuticals
of QGE031 the safety
compared and efficacy
with of different
placebo dose levels
in patients of QGE031 in
aged 18-75 asthma
years patients.
with asthma
NCT024 Comparison Phase 2 Placebo Apr 2015 Assessment Interve Notyet Verona
27165 of RPL554 RPL554 of the ntional recruiting Pharma plc
With (PDE-3/4 effects
placebo and inhibitor) of RPL554
Salbutamol Salbutamol compared
in asthmatic with
patients Salbutamol
and placebo
in patients
with
chronic
asthma.
NCT024 Effect Phase 2 Placebo May 2015 Evaluation Interve Notyet Revalesio
22121 of RNS60 RNS60 of the ntional recruiting Corporation
on the Budesonide effects of
late-phase multiple
asthmatic doses
response of inhaled
to allergen RNS60 and
challenge Budesonide
on the
late-phase asthmatic
response
to allergen
challenge
in patients
with mild
asthma.
NCTO025 Efficacy Phase 3 Vitamin Oct 2015 Evaluation Interven Not yet  Hospital
71660 of vitamin D (Low- of vitamin D tional  recruiting General
D on the and high- supplemen Naval de
clinical supplemen tation Alta
management tation on exacerbation Especialidad -
of pediatric doses) and clinical Escuela
patients control Medico
with of asthma. Naval
asthma

Abbreviations denote: IL: Interleukin; IgE: Immunoglobulin E; PDE: Phosphodiesterase enzyme; ICS: Inhaled
corticosteroids; OCS: Oral corticosteroids; SABA: Short-acting -agonists; LABA: Long-acting 3-agonists; LAMA;
Long-acting muscarinic antagonists.

Table 2. Summary of recent ongoing clinical trials for new drugs used in the treatment of asthma (started in the past 3

years).

6.4.1. Anti-leukotrienes

Leukotrienes are lipid eicosanoids with a wide range of biological activities. They are derived
from arachidonic acid through the enzymatic action of 5-lipooxygenase, and play a crucial role
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in asthma inflammatory pathogenesis, and in other allergic diseases such as allergic rhinitis,
rhinosinusitis, atopic dermatitis, and urticaria [116]. Leukotrienes class includes three main
types: cysteinyl leukotrienes (CysLTs), LTB4, and LTG4. LTG4 is the metabolite of LTE4 in
which the cysteinyl moiety has been oxidized to an a-keto-acid [117]. Since, very little is known
about the LTG4-putative leukotriene, most clinical research studies focus on CysLTs and LTB4.
CysLTs are strong bronchoconstrictors that powerfully affect airway remodeling, whereas
LTB4 is a strong chemoattractant for most leukocyte subsets [118]. Over the last 20 years, since
leukotriene antagonists were introduced to the clinic for asthma management, Montelukast
[119, 120] and Zafirlukast [121] are the most frequently used drugs in this class.

6.4.2. Anti-IgE

At the moment, Omalizumab, which is the only approved targeted monoclonal antibody
against IgE, is used to treat allergic asthma in clinical practice. It can significantly decrease
serum IgE levels (up to 99%) within 2 h following subcutaneous administration, and diminish
serum, sputum, and tissue eosinophilia [122]. Recently, Omalizumab has also been reported
to have steroid-sparing effect, reducing the rate of asthma exacerbations up to 50%, and hence
improving the quality of life [123]. However, nearly 45% of patients treated with Omalizumab
had adverse reaction at the local injection site, which is considered the most commonly
observed adverse event for Omalizumab. Some other minor upper respiratory tract infections
and sinusitis have also been reported as well. Patients treated with Omalizumab display a very
low (0.09%) frequency of anaphylaxis reaction. Importantly, there are no data reporting any
correlation between cancer and Omalizumab treatment [124].

6.4.3. Anti-ILs

Three interleukin pathways are of physiological importance for asthma: IL-5, IL-9, and IL-4/
IL-13 pathways. IL-5 is pivotal for both eosinophil differentiation and maturation in the bone
marrow. Subsequently, it controls eosinophil mobilization, activation, and survival [125].
Hence, antagonizing IL-5 has been proposed to be beneficial for asthma therapy, particularly
for predominantly eosinophilic asthma. A number of anti-IL-5 and anti-IL-5 receptor mono-
clonal antibodies are in the process of development for allergic diseases: Reslizumab [126],
Mepolizumab [127], and Benralizumab [128]. IL-9 is one of the T-helper 2 (Th2) pro-inflam-
matory cytokines that promote mast cell proliferation and T-cell growth [129]. In mouse
models, IL-9 causes several common features of chronic asthma: excessive mucus production,
eosinophilic airway inflammation, smooth-muscle cell hyperplasia, and aryl hydrocarbon
receptor (AHR) [130]. Currently, a phase IIb clinical trial evaluates the efficacy and safety of
subcutaneous Medi-528, a humanized IgG1 anti-IL-9 mAb, in adults with uncontrolled asthma
(NCT00968669). Activated mast cells, eosinophils, basophils, and dendritic cells secrete I1L-4
and IL-13. IL-4 and IL-13 both play an important role in asthma mainly by enhancing IgE
production. They also control mast cells” growth and development, eosinophil recruitment,
and AHR [131]. The first trial aimed at antagonizing the IL-4 used a soluble recombinant
human IL-4 receptor antagonist (IL-4RA), altrakincept, which blocked the binding of IL-4 to
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its cellular receptors [132]. Several humanized IL-13-neutralizing antibodies have entered
asthma phase I/II clinical trials—anrukinzumab [133], QAX576 [134], and CAT354 [135].

6.4.4. Anti-TNF-«a

TNEF-a, a cytokine produced by Th1 cells and macrophages, has diverse biological functions.
TNF-a shows crucial, and previously extensively documented, role in Crohn’s disease,
rheumatoid arthritis, and psoriasis pathogenesis. The association between TNF-«a increase and
these disease progressions had inspired studies aiming to extend anti-TNF-a therapies also
for the treatment of severe asthma and COPD [136]. Infliximab and Golimumab, two anti-TNF-
a mAbs, and Etanercept, a decoy soluble TNF-a receptor, are both able to biologically
neutralize TNF-a cytokine, and blunt the immune response, thereby abolishing TNF-« effects
in asthma [137].

7. Pharmacogenetics of asthma

The US Food and Drug Administration definition for pharmacogenomics is “the study of
variations in DNA and RNA characteristics as related to drug response” [138]. “Pharmacoge-
nomics” differs from “Pharmacogenetics” in that the former is concerned with the whole genome,
its components, and regulators, while the latter is focused only on the DNA sequences of
individual gene. Thus, in sense, pharmacogenetics is thought to be a subset of pharmacoge-
nomics [139].

Because it is a complex trait, the drug response to asthma is diversely heterogeneous even
among patients with apparently similar clinical profiles [7]. It is estimated that up to 50%
difference in therapeutic response has been attributed to genetic variations between individ-
uals [140]. Although several possible mechanisms have been postulated, genetic variants affect
the pharmacogenetic response to drugs in two different ways:

1.  Pharmacodynamic genetic variations are variations in which the receptor binding the drug
ligand or another member of the drug target pathway is altered resulting in different drug
effect. Most of the current pharmacogenetic research fall into this mechanistic category.
Populations are stratified into responders and nonresponders, and then analyzed for DNA
polymorphisms, which distinguish these two groups apart.

2. Pharmacokinetic genetic variations are related to altered uptake, distribution, and/or
metabolism of the administered drug. Fewer examples fall in this category; however, the
most common research subfield here is the area of investigating drug-catabolizing or -
excreting enzymes. An important example here is the cytochrome P450 (CYP450) family,
a widely recognized metabolizing enzyme with several variable pharmacogenetic
patterns.

Single nucleotide polymorphism, SNP, denoted by a reference sequence (rs) number,
represents a class of polymorphism that is derived from a one-base point mutation in which
a single nucleotide is substituted with another one. SNPs may be located in the gene regulatory
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or coding regions, and so it may affect the gene expression in more than one way; however,
in majority of cases, most discovered SNPs do not change the gene function in a significant
manner [141]. Consequently, it is essential to investigate whether the DN A sequence variances
would actually cause significant functional impacts (i.e., resulting in an altered observed
biology), or is a linkage disequilibrium marker of another DNA variant, which is the real cause
of the response variability, or is generally nonsignificant. Because of its strong importance,
since 15 years, catalogs of SNPs have started to outline the most common genetic
polymorphisms among different population groups [141, 142], and this process has attracted
more attention during the last couple of years [143].
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Figure 4. Pharmacogenetically significant genes with relevance to corticosteroids, B-adrenergic, and leukotriene bio-
logical pathways. Left side: Candidate gene approach studies, Right side: GWAS (Genome Wide association studies).

All genes contain huge number of SNPs and copy-number variations (CNVs). CNVs are
another form of structural variations, which account for 13% of the human genome bulkiness,
and manifest as kilo-to-mega bases of deletions or duplications [144]. Conjointly, it is
challenging to outline which polymorphism is influencing the treatment response and which
are not relevant. Two major approaches declaiming this challenge have been practiced so far:
candidate gene approach and GWAS. As it combines transcriptomic, proteomic and
metabolomic profiling traits, a third approach, the integrative system biology approach, had
led to a more comprehensive pharmacogenetic view [3]. To differentiate, candidate gene
approach is based on a prior evidence according to the knowledge of the drug pharmacody-
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namics or/and pharmacokinetics, by contrast, GWAS methodology identifies new associations
with the null hypothesis being that no associations exist. GWAS picks the variations which are
associated with observable phenotypes by scanning SNP markers that tag, via linkage
disequilibrium, the complete human genome. GWAS and integrative system biology
approaches are modern tools contributing to the recent advancements of genotyping and
statistical technologies.

Current pharmacogenetic studies of the corticosteroids, -adrenergic, and leukotriene
pathways are mostly candidate gene studies, with some GWAS, however, altogether have
identified several genetic loci in strong association with therapeutic responsiveness to asthma.
Figure 4 summarizes the pharmacogenetically significant genes with relevance to the
corticosteroids, B-adrenergic, and leukotriene biological pathways.

7.1. Corticosteroid pathway pharmacogenetics

In cytosol, the glucocorticoids bind to their corresponding glucocorticoid receptor, forming a
hetero-complex that is activated by ligand binding, and translocate into the nucleus. In the
nucleus, this complex binds to the glucocorticoid response elements in some target genes’
promoter region resulting in their expression regulation. The core role of glucocorticoids is
mediated via activating the transcription of anti-inflammatory genes, and suppressing the
transcription of pro-inflammatory genes [145, 146]. The glucocorticoid pharmacogenetic
studies formerly focused on candidate gene approach. Those candidate genes covered
functions related to the corticosteroid biosynthetic pathway, the hetero-complex receptor
formation, and the related chaperone proteins.

Corticotrophin-releasing hormone (CRHRI), stress-inducible protein 1 (STIP1), TBX21,
CYP3A4, GLCCI1, T gene, and FBXL7 are the most up-to-date potential pharmacogenetic
biomarker targets for predicting patients” response to ICS [147]. Studies of the corticotrophin-
releasing hormone gene are considered to be as one of the oldest and remarkable footsteps in
asthma pharmacogenetics. CRHR1 protein, also known as CRF1, is the primary receptor
controlling the adrenocorticotropic hormone release; hence, it plays a pleiotropic and vital role
in steroid actions. A candidate gene study of CRHR1 in 1117 asthmatics administrating ICS
therapy, from three clinical cohorts, revealed two SNPs (rs242941 and rs1876828) associated
with different response in lung functions [148]. Tantisira et al. [148] found that CRHRI gene
variation was frequently related to augmented therapy response in each of the three studied
cohorts. Since 2004, CRHR1 gene studies opened the doors for all other corticosteroid phar-
macogenetics and the possible future therapeutic outcomes.

STIP1 or HOP (abbreviated for Hsp70-Hsp90-Organizing Protein) gene mainly functions to
reversibly link Hsp70 and Hsp90 together as a co-chaperone [149]. STIP1 pharmacogenetic
studies in one adult cohort revealed three SNPs (rs2236647, rs6591838, and rs1011219) within
this heat shock-organizing protein and related to improved lung response during ICS therapy
[150]. STIP1 rs2236647 variant analysis in healthy and asthmatic children showed that this SNP
could serve as an asthma marker for choosing the population who receives corticosteroid
therapy[151]; however, further replication studies should be held to confirm those results.
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One significant aspect of pharmacogenomics is that it investigates the interactions with genes
of other pathways. TBX21 gene is one good example for observing the ICS response outside
the glucocorticoid pathway. TBX21 is one of the conserved genes of a family sharing a common
DNA-binding domain; the T-box encodes T-box transcription factor TBx21 protein. Tbx21
protein is a Thl (T-helperl) transcription factor, which regulates one of the Thl cytokine
expression, interferon-gamma (IFNG). In 2004, a nonsynonymous SNP rs2240017 (His*Glu)
in the TBX21 gene was linked to improvements in bronchial hyperresponsiveness or “broncho-
protection” in response to ICS in individuals participating in the Child Asthma Management
Program (CAMP) cohort [152]. This finding was also observed in an independent Korean
cohort in 2009 [153]. Thus, TBx21 may be an important determinant pharmacogenetic candi-
date gene for predicting asthmatics’ response to inhaled corticosteroid therapies.

In 2005, another example demonstrated the glucocorticoid pathway interactions with one other
pathway. ADCY?9, adenylyl cyclase type 9, gene encodes a membrane-bound enzyme in the
[32-adrenergic receptor pathway, which catalyzes the production of cyclic adenosine mono-
phosphate (AMP) from adenosine triphosphate (ATP). This candidate gene contains a
pharmacogenetic nonsynonymous SNP, Met’”?Ile, which was correlated to enhanced Salbu-
tamol (SABA) bronchodilator effects only in patients treated with ICS [154]. An independent
Korean cohort replicated the trial, using Formoterol (LABA) treatment in combination with
ICS, and confirmed those results [155].

Cytochromes P450s belong to a heme cofactor-containing superfamily of metabolizing enzyme
proteins that potentially control the metabolism of drug (i.e., pharmacokinetics), and conse-
quently treatment response in many diseases. For asthma, CYP3A4, CYP3A5, and CYP3A7
candidate genes have been studied among a retrospective analysis of 413 asthmatic children
treated with the ICS Fluticasone propionate [156]. The three candidate CYPs of all subjects
were genotyped for nine SNPs. Results showed that asthmatics with the CYP3A4*22 allele
demonstrated a significant symptom control compared with those lacking that allele. This
study included a small number of participants (n = 20), so further large-scale replication is
required.

Tantisira et al. [157] conducted the first pharmacogenetic GWAS for ICS treatment in asthma
and identified an SNP (rs37972) in the promoter of the glucocorticoid-induced transcript-1
gene (GLCCI1), which significantly associates with lung functions. Replicated in four inde-
pendent populations (935 persons in total), this candidate SNP was linked to substantial
decrements in the response to the ICS in asthmatics. The wild-type allele homozygotes (CC)
showed greater forced expiratory volume in 1 s (FEV1) in response to the ICS compared with
those identified with the homozygote variant allele (TT). Another functionally correlated SNP
(rs37973) in the promoter of the same gene was further validated within in vitro studies [157].
Results showed declined luciferase reporter activity in cells with the minor allele. GLCCI1
GWAS outlines that drug response to asthma treatment is subjected to wide inter-individual
variation, and GWAS would uncover more novel pharmacogenetic associations in the future.
Tantisira et al. conducted a second GWAS among 418 asthmatics randomized to ICS treatment
from the Childhood Asthma Research and Education (CARE), Asthma Clinical Research
Network (ACRN), and CAMP trial cohorts. The T-gene (encoding the Brachyury transcription
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factor protein) compromised two SNPs (rs3127412 and rs6456042) that were associated, out of
the successfully genotyped 47 SNPs, with altered lung function response to ICS [158].

7.2. B-adrenergic receptor pathway pharmacogenetics

[32-adrenergic receptor gene remains to be the most studied pharmacogenetic loci among the
beta-agonist pathways. ADRB2 gene has several polymorphic variants that were discovered
in multi-ethnic genetic asthma cohorts [159, 160]. ADRB2 protein is a cell membrane-spanning
receptor that binds epinephrine, but not norepinephrine, unlike the other adrenergic receptors,
and consequently mediates both smooth muscle relaxation and bronchodilation [161, 162].
Early ADRB2 studies showed that Gly'®Arg, a prevalent coding variant of the amino acid at
position 16 of ADRB2, is associated with altered bronchodilator response to SABAs [163].

The BARGE (Beta-Agonist Response by Genotype) study [164], held by the National Heart,
Lung and Blood Institute Asthma Clinical Network, was one of the first genotype “stratified”
pharmacogenetic studies for asthma. In this study, only Gly'®Arg homozygotes for ADRB2
were included (i.e., Arg/Arg and Gly/Gly). Participants were randomly receiving either
intermittent or regular albuterol, and then crossed over to receive the alternative treatment
dose. For statistical stratification, this study ensured that the Arg'® homozygotes, who are less
frequent, were appropriately randomly distributed to both SABA intermittent and regular
protocols. Compared to Gly'® homozygotes, the BARGE study showed that the Arg'® homo-
zygotes were good responders only to acute intermittent SABAs rather than to long-term
regular treatments, a finding that does not coincide with the current clinical asthma treatment
guidelines [165] which recommend SABA as for on-demand intermittent usage. Since the 16th
amino acid of ADRB2 controls regular response to albuterol, bronchodilator medications other
than SABAs would be more appropriate for Arg/Arg asthmatics.

Collectively, the BARGE study [164], along with some other pharmacogenetic studies [163,
166-168] of Gly'®Arg and SABAs” exposure, provided insights for further studies [169-171] on
LABAs. In contrast to SABAs, a large cohort [169] of 2250 asthmatics, randomly assigned to
formoterol plus budesonide, demonstrated no pharmacogenetic action due to ADRB2
variation on therapeutic response. Furthermore, a multicenter trial [170] showed that asth-
matics with both Arg/Arg and Gly/Gly genetic signatures had improved airway functions, if
they received combination treatment with Salmeterol and ICS, when compared with ICS
therapy alone. Similarly, the results of another prospective trial cohort [171] of 544 subjects,
also randomized by genotyping, demonstrated no evidence of any pharmacogenetic action
due to ADRB?2 variation in response to Salmeterol. Together, these findings, confirmed among
several asthma populations, suggest that in contrast to SABAs, asthmatics can still be treated
with LABAs plus ICS irrespective of their genotyping status.

Genetic variants’ occurrences among different ethnic groups are quantified by their percentage
of allele frequencies. Usually, frequent and common variants have only little or modest impacts
on disease susceptibility and, subsequently, therapeutic response. On the other hand, as the
variant is characterized to be rare or more “private,” its effect size on disease progression and
therapeutic response dramatically increases [172]. Early in vitro studies had investigated a rare
polymorphism of ADRB2 within the fourth transmembrane domain, the Thr'*Ile variant. For
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the Ile'** genotype, results showed significant lowering in Gs-protein signaling and different
SABA- and LABA-binding affinities [173, 174]. While the Thr'*Ile polymorphism is pointed
out to be a rare coding variant (i.e., <5%), population studies showed that this variant is more
common in non-Hispanic white populations [159, 160], a finding that requires further phar-
macogenetic investigation in different and larger populations. To replicate results, a study of
two large Copenhagen population cohorts [175], with more than 55,000 participants, was held
to investigate the relation of Thr'®Ile variation and lung responses. Among the general
population, the Copenhagen study reported that the Thr'** genotype was associated with
decreased FEV1, diminished lung function, and increased the overall COPD risk.

In addition to ADRB2 Gly'®Arg and Thr'®Ile variants, the (-376 In-Del) polymorphism was
extensively studied as another significant pharmacogenetic ADRB2 variant. Presented
primarily among African Americans and Puerto Ricans [159, 160], the 24-bp promoter insertion
at —376, related to the start codon, is associated with asthma-related hospitalization in asth-
matics treated with LABA [160]. Altogether, these variants, being unique to different popula-
tions, highlight the increasing need of personalized-based treatments.

Adenylyl cyclase type 9, encoded in humans by ADCY9 gene, is a membrane-bound enzyme
that catalyzes the formation of cyclic AMP from ATP. ADCY?9 is a widely abundant adenylyl
cyclase, and it is stimulated via beta-adrenergic receptor activation [176]. Ile”?Met is a coding
variant of ADCY9 gene that has been associated with both acute FEV1 bronchodilation in
response to SABAs [154] and long-term FEV1 response for LABAs [155]. CRHR2 (which is
more commonly known as CRF2) is a type-2 G protein-coupled protein receptor for the
corticotropin-releasing hormone [177]. Out of the 28 studied SNPs in CRHR?2, five SNPs were
significantly correlated with acute bronchodilator response in one, or frequently more than
one, cohort. Among those, variant rs7793837 was associated with altered SABA response in
all three cohorts of the CRHR2? study containing 607, 427, and 152 participants, respectively
[178].

Different variants of ARG1 (Arginase 1) and ARG2 (Arginase 2) show altered acute response
to SABAs, while the endothelial nitric oxide synthase (NOS3) shows altered acute response to
LABAs. NO (nitric oxide), an endogenous vasorelaxing bronchodilator, is generated by the
action of NOS3 on L-arginine. Since ARG1 and ARG2 are metabolizing L-arginine, so it is
expected that the entire three genes, ARGI, ARG2, and NOS3, might be implicated in asthma
pharmacogenetics. Combined association evidence, surviving Bonferroni correction for
multiple testing from the CAMP four asthma cohorts [179], points to SNP rs2781659 in
ARGI. C-allele homozygotes for SNP rs2781667 in arginase 1 showed significantly less
response to the inhaled corticosteroid treatments [180]. Arginase-2 variants rs17249437 and
rs3742879 correlated with increased airway obstruction and airway hyperresponsiveness, and
lower reversibility of airway constriction following treatment with beta-2 agonists [180]. A
small candidate gene study [181] of NOS3 had revealed one possible variant (Asp**Glu)
correlated with lung function response to ICS/LABA combined treatment; however, this result
still needs to be replicated in larger cohorts. THRB [182], SLC24A4 [183], SLC22A15 [183],
SPATS2L [184], and SNPs (rs892940, rs77441273, rs1281748/rs1281743, and rs295137, respec-
tively) show promising loci for further pharmacogenetic investigations.
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7.3. Leukotriene pathway pharmacogenetics

Relative to the corticosteroid and (3-adrenergic pathways, the cysteinyl leukotriene pathway
pharmacogenetic studies are generally fewer and have smaller sample sizes. The oldest of these
studies [185], held in 1999, had investigated the tandem repeat polymorphism in ALOX5
promoter. Among 114 asthmatics, it has been shown that the ALOX5 promoter repeat is
associated with altered lung functions in response to a 5-LO inhibitor [185]. It has been shown
in children that those who had more or less than five repeats (3, 4, and 6) of the ALOX5
promoter-binding motif experienced increased urinary leukotriene E4 (the terminal cysteinyl
leukotriene metabolite) concentrations and reduced FEV1 baseline than the wild-type geno-
type with five repeats [186]. Further pharmacogenetic studies revealed that the ALOX5
promoter polymorphism, along with the ALOX5 SNPs rs892690, rs2029253, and rs2115819,
influences leukotriene pathway antagonist therapy [187-190]. Moreover, variants of LTC4S,
encoding Leukotriene C4 synthase, and MRP1 (or ABCC1), encoding multidrug resistance-
associated protein 1, have been linked to lung function response while treatment with Zileuton
and Montelukast [189, 190].

Arg*Gln, rs12422149, which is a coding variant in SLCO2B1 (solute carrier organic anion
transporter family member 2B1 gene), has been related to symptom control during Montelu-
kast therapy. This fact was due to the interindividual variability of carrier-mediated Monte-
lukast transport in the intestines, and consequently its plasma levels [191]. By contrast, two
other studies, probably due to their small sample sizes, were unable to replicate similar
SLCO2B1 pharmacokinetic effects [192, 193]. Overall, larger replicate cohorts, for the leuko-
triene pathway identified loci, are still needed.

8. Current and future challenges facing asthma pharmacogenetics

As demonstrated above, there has been fundamental progress in the field of asthma pharma-
cogenetics; however, these efforts have not yet been introduced into clinical practice to guide
physician. There are several reasons that account for this gap. Most important is the limited
number of asthma pharmacogenetics-focused GWAS, which would compare common
candidate gene methodology that would allow combining all patients from small cohorts
studied. Small sample sizes prevent any expansion of the pharmacogenetic research of asthma,
which needs a large number of subjects for statistical significance. Along with limited cohort
size, study defects due to poor ancestry structuring and stratification substantially result in
replication inconsistencies. Furthermore, genes interact together in networks; therefore,
simply attributing phenotypic variation to individual genes is not appropriate. Epigenetics
studies investigate the changes in gene activities, which are heritable to the subsequent
generations, but are independent of any DNA sequence alterations [194, 195]. Epigenetic
tuning of the genes associated with asthma has a significant impact on determining the drug
response. Several mechanisms, related to epigenetics, are currently being investigated for both
biomarker tagging and therapeutic innovation intervention [196]. Moreover, epigenetic
changes have the ability to override the genetic effects of time, environment, tissue specificity,
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and other conditions such as age and gender of a patient, nutrition and hygiene, and intestinal
microflora, which all highly influence the drug response in addition to the genetic factors. The
collective impact of all combination of these factors requires the application of complicated
algorithm that could take into consideration each of these factors and their interplay. The
prospective genetic profile of an asthmatic should compromise a set of common and rare
variants, on ancestral basis, which will be predictive of the pattern of his/her therapeutic
responsiveness to different treatment options. The current human variant catalog continues
to grow in an exponential manner because of the lower costs associated with whole genomic
sequencing. Despite the steep decline in sequencing costs, the technology of sequencing, in
terms of speed and quality, enormously increases. The future pharmacogenetic profile would
also predict any possible adverse response associated with the chosen line of treatment. Genetic
biomarkers are needed to warn the physician about any potential adverse side effects which
can be life threatening. It is very important for typical genetic profiling to also consider gene-
gene and gene-environment interactions. Gene-gene interactions are predominately crucial in
the framework of combination therapies, for example, ICS and p-adrenergic agonists. Inter-
actions between the surrounding environment and the patients’ genes are assumed to be an
additional element, because environmental stress, apart from the genetic makeup, contributes
to the development of asthma exacerbations. Future pharmacogenetic directions need to cover
also the pharmacokinetic side of the patient profile. Altered drug absorption, metabolism,
distribution, or excretion extensively influence drug dosing and even drug selection. All in all,
the complete asthma pharmacogenetic catalog has many aspects to cover, before being
introduced into the clinical practice.

9. Conclusion

Asthma is a complex respiratory and immune disease. Inadequate (or exaggerated) ability of
genetically predisposed individuals to control inflammation, induced by innate and environ-
mental factors, results in asthma. Further, studies using allergic asthma and atopy models
enable to better understand several interacting gene products and variable responsiveness of
asthmatic subjects to current therapies. Eventually, thorough investigation of the complexity
of asthma might lead to successful designing of personalized therapies for patients suffering
from allergic asthma.
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