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Abstract

Bovine herpesvirus 1 (BoHV-1) is an important pathogen of cattle and cofactor for
bovine respiratory disease, a polymicrobial disease. Acute infection of cattle leads to
abundant  expression of  lytic  cycle  viral  genes,  high levels  of  virus  shedding,  and
clinical symptoms. Following acute infection, lifelong latency is established in sensory
neurons. Only the latency-related (LR) gene locus, which encodes at least two micro-
RNAs and several  proteins,  is  abundantly  expressed  in  latently  infected  neurons.
Increased corticosteroids, due to external stressors, disrupt the maintenance of latency
and increase  the  incidence of  reactivation from latency,  which is  crucial  for  virus
transmission.  For  example,  calves  latently  infected  with  BoHV-1  consistently
reactivate from latency following a single intravenous (IV) injection of the synthetic
corticosteroid dexamethasone. In contrast to wild-type BoHV-1, an LR-mutant virus
that has three in-frame stop codons at the amino terminus of the first open reading
frame in the LR gene (ORF2) does not reactivate from latency following dexametha‐
sone treatment.  The ability of  dexamethasone to initiate BoHV-1 reactivation from
latency  in  calves  makes  it  an  attractive  model  to  identify  early  events  that  occur
during reactivation from latency. Viral and cellular factors that regulate the BoHV-1
latency-reactivation cycle are discussed in this review.

Keywords: bovine herpesvirus 1, latency, sensory neurons, stress-induced reactiva‐
tion, glucocorticoid receptor, Wnt signaling pathway, pioneer transcription factors

1. Introduction

Bovine herpesvirus 1 (BoHV-1) is a large double-stranded DNA virus that causes significant
economical  losses to the cattle  industry.  Acute infection is  typically initiated in mucosal
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epithelium and leads to high levels of virus shedding. Infection of cattle with BoHV-1 can lead
to conjunctivitis,  pneumonia, genital disorders,  abortions, and bovine respiratory disease
complex (BRDC), a life-threatening upper respiratory tract infection, reviewed in [1, 2]. In spite
of high levels of viral replication, cellular and humoral immune responses eventually clear the
virus.

Like other Alphaherpesvirinae subfamily members, BoHV-1 establishes lifelong latency in
ganglionic neurons within the peripheral nervous system [3]. The latency-reactivation cycle
can be operationally divided into three distinct phases: (1) establishment, (2) maintenance,
and (3) reactivation from latency. In contrast to acute infections where all viral genes are
abundantly expressed, the latency-related (LR) gene is the only viral transcript abundantly
expressed in sensory neurons within trigeminal ganglia (TG) of latently infected calves during
the maintenance of latency [4–6]. LR-RNA is antisense with respect to the bICP0 gene [7, 8],
which encodes a major viral transcriptional trans-activator. The LR gene encodes at least two
micro-RNAs and more than one protein. These proteins and micro-RNAs are detected in a
subset of latently infected neurons [9–11] implying that they regulate certain aspects of the
latency-reactivation cycle. LR protein expression is necessary for the latency-reactivation
cycle [12]. The synthetic corticosteroid dexamethasone (DEX) consistently induces reactivation
from latency in calves or rabbits, reviewed in [1, 2]. Reactivation from latency initiated by DEX
reduces LR gene products, which correlates with the induction of lytic cycle viral genes. The
ability of BoHV-1 to reactivate from latency is crucial for viral transmission and complicates
designing effective modified live vaccines.

BoHV-1 is an attractive model to examine the latency-reactivation cycle of Alphaherpesviri‐
nae subfamily members because reactivation from latency can be consistently induced in
calves. Consequently, early events during reactivation from latency can be identified and
characterized. In contrast to mouse models used to examine events that control the herpes
simplex virus 1 (HSV-1) latency-reactivation cycle, the powerful genetic approaches available
in mice are lacking in cattle. In this review, the pathogenic properties of BoHV-1 and details
of the latency-reactivation cycle are discussed.

2. Pathogenesis of BoHV-1

2.1. Clinical disease caused by BoHV-1

Three BoHV-1 subtypes have been described: BoHV-1.1 (1), BHV-1.2a (2a), and BHV-1.2b (2b)
[13]. Subtype 1 strains are frequently found in cattle located in North America, Europe, and
South America. Infection with Subtype 1 isolates can result in infectious bovine
rhinotracheitis (IBR) and can be detected in the upper respiratory tract. In addition, Subtype
1 isolates are frequently detected in aborted fetuses suggesting that infection caused the
abortion. Subtype 2a can also cause IBR and abortions [14] as well as genital infections that can
lead to infectious pustular vulvovaginitis (IPV) or balanopostitis (IBP), reviewed in (2).
Subtype 2a strains of BoHV-1 are frequently detected in Brazil and Europe prior to the 1970s
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(14). Subtype 2b strains, in general, are less pathogenic than Subtype 1 and frequently detected
in Australia and Europe [15]. Subtype 2b strains can be detected in cases of respiratory disease
and IPV/IPB, but not in aborted fetuses [14, 16].

In breeding cattle, abortions and genital infections are relatively common. Genital infections
occur in bulls (IPB) and cows (IPV) within 1−3 days after mating or close contact with infected
animals. Initial clinical signs following genital infection of cows are mild vaginal infection and
frequent urination [17]. Lesions are routinely observed on the penis and prepuce in bulls.
Inflammation of the uterus and transient infertility with purulent vaginal discharge may
persist for several weeks if secondary bacterial infections occur. Transmission, in the absence
of visible lesions, can occur following artificial insemination with semen from a bull
subclinically infected. Abortions can occur at the same time as respiratory disease, but may
also occur up to 100 days after infection, which is presumably due to reactivation from latency.

2.2. BoHV-1 is a cofactor of bovine respiratory disease complex

With respect to feedlot cattle, the respiratory form of BoHV-1 is the most common disease
observed and is usually caused by Subtype 1 strains. BoHV-1 is an important cofactor of
BRDC [18, 19], a polymicrobial disease initiated by stress as well as virus infection. Increased
susceptibility to secondary bacterial infections correlates with depressed cell-mediated
immunity after BoHV-1 infection [20–23]. Mucosal surfaces of the upper respiratory tract,
which promotes the establishment of Mannheimia haemolytica (MH) in the lower respiratory
tract, are compromised by BoHV-1 infection [24–26]. Productive infection increases neutrophil
adhesion and activation [27], which can also amplify the effects of MH. MH is a gram-negative
bacterium [28] that exists as normal flora in the upper respiratory tract of healthy ruminants
[29]. This commensal relationship is disrupted following stress or coinfections [30], and then
MH is the predominant organism that causes bronchopneumonia [24–26, 31]. BoHV-1 also
stimulates inflammasome formation [32], which may contribute to BRDC by enhancing
inflammation in the lung.

BoHV-1 interferes with immune responses by several mechanisms. For example, CD8+ T-cell
recognition of infected cells is impaired by repressing the expression of major histocompati‐
bility complex class I (MHC I) and transporter associated with antigen presentation [33–35].
The gN orthologs encoded by pseudorabies virus (PRV) and BoHV-1 inhibit transporter-
associated antigen processing (TAP)-mediated transport of cytosolic peptides into the
endoplasmic reticulum, which then interferes with the assembly of peptide-containing ternary
MHC-I complexes in vitro in virus-infected cells [36, 37]. gN also targets the TAP complex for
proteosomal degradation [36]. CD4+ T-cell function is impaired during acute infection of calves
because BoHV-1 infects CD4+ T cells and induces apoptosis [1].

Stimulation of beta-interferon (IFN-β)-dependent transcription is an immediate-early
response following virus infection that does not require de novo protein synthesis [38–43].
Activation of existing transcription factors by protein kinases stimulates IFN-β transcription.
In contrast to humans or mice, cattle contain three IFN-β genes regulated by distinct
promoters [44, 45]. BoHV-1 infection of primary bovine cells inhibits expression of all three
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bovine IFN-β genes [46]. Blocking viral protein expression by cycloheximide, a protein
synthesis inhibitor, prevents BoHV-1 from suppressing IFN-β responses [46]. In contrast to
primary bovine cells, BoHV-1 infection of established bovine kidney cells strongly induces
IFN-β3 RNA expression [46]. Two viral regulatory proteins, bovine-infected cell protein 0
(bICP0) [47–49] and bICP27 [50], interfere with IFN-β-promoter activation. The bICP0 protein
induces the degradation of a transcription factor, interferon-regulatory factor 3 (IRF3), which
is necessary for IFN-β-promoter activation [47]. In addition, bICP0 interacts with interferon-
regulatory factor 7 (IRF7), another transcription factor that stimulates IFN-β-promoter
activity [49]. bICP0 also induces the degradation of the promyelocytic leukemia protein (PML)
[51], a crucial component of an intrinsic antiviral complex localized to the nucleus [52–54].

3. Vaccines directed against BoHV-1

Several commercially available BoHV-1 vaccines are available and can be divided into two
categories: modified live attenuated virus (MLV) or killed whole virus [55].

Most MLVs were developed more than 30 years ago by serial passage in tissue culture. MLVs
generally induce humoral and cellular immune responses as a result of virus replication. The
MLVs establish latency and upon reactivation from latency can readily be transmitted to
pregnant cows and cause abortions [56]. One study demonstrated that vaccination with a
common MLV reduced the number of live births relative to no vaccination [57]. MLVs can also
be pathogenic in small calves because their immune system is not fully developed, and most
MLVs are immunosuppressive. Recently, there has been an increase in IBR outbreaks in
vaccinated feedlot cattle, which is likely due to vaccine outbreaks [58, 59]. A number of vaccine
and virulent field strains were sequenced and important differences identified between the
respective strains [60]. Consequently, polymerase chain reaction (PCR) primers are available
that allow one to identify MLV strains versus virulent field strains. This knowledge will make
it possible to identify vaccine strains, or emerging BoHV-1 strains not protected by existing
MLVs that lead to the break.

Killed whole virus vaccines are usually produced by chemical treatments: for example,
formaldehyde, β-propiolactone, or binary ethyleneimine. Killed vaccines are safe but typically
require more than one injection to achieve acceptable neutralizing antibody levels and do not
always induce cellular immune responses. With respect to formaldehyde-inactivated killed
vaccines, antigens may also be denatured, which can affect the immunogenicity of vaccine
preparations. Killed vaccines also require suitable adjuvant formulations and adjuvants can
induce injection-site reactions. Better adjuvants may improve the efficacy while reducing the
number of vaccinations necessary to achieve good protection in cattle. In summary, better
vaccines that do not cause abortions or reactivate from latency need to be developed.
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4. Transition from acute infection to establishment of latency: latency-
related gene products promote latency

4.1. Productive infection

Acute infection of calves induces programmed cell death, inflammation, and high levels of
virus shedding [1, 2, 32]. Viral gene expression during productive infection occurs in three
distinct phases: immediate early (IE), early (E), or late (L). IE transcription unit 1 (IEtu1)
encodes two crucial viral regulatory proteins, bICP0 and bICP4, which activate viral gene
expression and DNA replication [61–63] (Figure 1A). IEtu2 encodes bICP22 [62]. A viral
tegument protein, VP16 (also known as bTIF), is a viral structural protein present in the
tegument that specifically trans-activates IE promoters. VP16 interacts with two cellular
proteins (Oct1 and HCF-1) and this complex binds specific sequences in IE promoters [64, 65].
E genes, in general, encode nonstructural proteins that promote viral DNA replication. L genes
encode proteins that comprise infectious virus particles.

Figure 1. Schematic of BoHV-1 genes encompassing the LR gene. Panel A. Positions of IE transcripts and the LR
transcript (LR-RNA) are presented [62, 63, 161]. The bICP4 protein is translated from the IE/4.2 transcript. The bICP0
protein is translated from the IE/2.9 transcript. The IEtu1promoter activates the expression of IE/4.2 and IE/2.9, and is
denoted by the black rectangle (IEtu1 pro). The bICP0 protein can also be translated from an early transcript designat‐
ed as E/2.6 because exon 2 (e2) contains all of the protein-coding sequences. An early promoter (E pro) drives the ex‐
pression of the E/2.6 transcript. The origin of replication (ORI) separates IEtu1 from IEtu2. The IEtu2 promoter (IEtu2
pro) drives the expression of the bICP22 protein. Solid lines in the transcript position map represent exons (e1, e2, or
e3) and dashed lines denote introns. The viral origin of replication (ori) is located near IETu2 promoter. Panel B.
Partial restriction map of the LR gene. The LR gene contains two open reading frames (ORF-1 and ORF-2) [4]. Reading
frame B (RF-B) and RF-C do not contain a methionine at the beginning of the open reading frame. The asterisks denote
the position of stop codons that are in frame with the respective open reading frame. Panel C. Wild-type sequences
near the N-terminus of ORFS compared to that in the LR mutant virus [12, 73].
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4.2. Sensory neurons are the primary site for establishing latency

Cell-to-cell viral transmission leads to viral entry into sensory neurons. Following a burst of
viral gene expression, lytic cycle viral gene expression is subsequently extinguished. If
infection is initiated within the oral, nasal, or ocular cavity, the primary site for latency is
sensory neurons in trigeminal ganglia. Lytic cycle viral gene expression [66] and infectious
virus [12] are detected in TG from 2 to 6 days after infection. In contrast to infection of mucosal
epithelial cells, significant numbers of infected neurons survive and these surviving neurons
harbor intact viral genomes. This phase is operationally defined as the establishment of latency.
Periodically, reactivation from latency occurs, virus is shed from peripheral sites, and
consequently BoHV-1 is widespread in cattle [1, 7, 8, 67]. Other types of neurons may be latently
infected; however, this has not been explored. Lymphocytes that reside in the tonsil and
circulating blood have been reported to contain viral genomes when collected from latently
infected calves [68].

4.3. The BoHV-1 latency-related gene locus is abundantly expressed in infected TG neurons
and encodes several products

The LR gene is the only locus in the viral genome abundantly expressed in latently infected
neurons [4, 6–8, 67, 69]. LR-RNA has unique start sites in TG and is antisense and overlaps the
bICP0 gene, suggesting that it inhibits bICP0 expression [9, 70] (Figure 1B). The LR gene has
two well-defined open reading frames (ORF1 and ORF2), and two reading frames that lack an
initiating methionine (RF-B and RF-C). Two micro-RNAs encoded by the LR gene are
abundantly expressed in latently infected neurons and they reduce bICP0 protein expres‐
sion, but not ICP0 RNA levels in transient transfection studies [11]. The micro-RNAs have
different predicted binding sites on bICP0 mRNA suggesting that they cooperate to reduce
bICP0 protein levels. A small ORF located downstream from bICP0 (ORF-E) is expressed in
latently infected TG neurons [71] and induces neurite formation in mouse neuroblastoma
cells [72], suggesting that ORF-E regulates certain aspects of the latency-reactivation cycle.

An LR-mutant virus that contains three stop codons at the N-terminus of ORF2 was construct‐
ed and analyzed (see Figure 1C for location of stop codons). Following infection of calves, the
LR-mutant virus exhibits diminished clinical symptoms during acute infection, and reduced
virus shedding from the eye, TG, or tonsils [12, 73, 74]. Although the LR-mutant virus grows
like wild-type BoHV-1 and the LR-rescued virus in cultured bovine cells, it expresses LR-RNA
earlier than wild-type (wt) virus and stimulates a stronger interferon response in cultured cells
and tonsils of acutely infected calves [75]. ORF1 and ORF2 expression are not detected in TG
neurons during latency following infection with the LR-mutant virus [10, 76]. Wt BoHV-1, but
not the LR-mutant virus, efficiently establishes latency and consistently reactivates from
latency following a single injection of the synthetic corticosteroid DEX [12]. Although the LR-
mutant virus grow less efficiently compared to wild-type BoHV-1 in TG [73], the LR mutant
induces higher levels of apoptosis in TG during establishment of latency [77]. ORF2, in the
absence of other viral genes, can inhibit apoptosis in Neuro-2A cells [78] suggesting that ORF2
has important roles during the latency-reactivation cycle.
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ORF2 is a 181-amino acid protein that has little or no amino acid similarity to known pro‐
teins. The protein localizes to the periphery of the nucleus in transfected Neuro-2A cells and
contains a functional nuclear localization signal. When the nuclear localization signal is
deleted, ORF2 localizes to the plasma membrane of transfected Neuro-2A cells. Neuro-2A cells
were used for these studies because ORF2 protein expression is consistently detected;
conversely, other common cell lines that can be readily transfected do not support ORF2
expression. ORF2 preferentially interacts with single-stranded DNA; however, alanine
substitution of threonine or serine residues in consensus protein kinase A (PKA) or protein
kinase C (PKC) phosphorylation sites generates a protein that preferentially interacts with
double-stranded DNA [81]. ORF2 does not appear to specifically bind to DNA sequences or
interact with RNA. ORF2 stability is regulated by C-terminal sequences and PKA/PKC
phosphorylation sites [79, 82].

ORF2 or an ORF2 isoform interacts with three cellular transcription factors (Notch1, Notch3,
and c/EBP-alpha) [83, 84]. Since c/EBP-alpha stimulates IEtu1 promoter activity [85] and
Notch 1 can slightly stimulate productive infection and certain viral promoters [83], ORF2 may
promote the establishment of latency by interfering with lytic cycle viral gene expression. ORF2
amino acid sequences that interfere with Notch functions do not overlap ORF2 sequences
necessary for inhibiting apoptosis [80], suggesting that these functions are separable. The
ability of ORF2 to interfere with Notch functions stimulates the differentiation of Neuro-2A
cells into differentiated neuronal-like cells, as judged by neurite sprouting [79, 82, 86]. It is well
established that Notch family members inhibit differentiation of neural progenitor cells [87–
91], suggesting that ORF2 helps infected neurons recover from infection and promotes normal
neuronal functions. In summary, ORF2, ORF-E, and two micro-RNAs encoded by the LR gene
possess properties that are predicted to enhance the establishment of latency.

5. Maintenance of latency

5.1. LR gene products are likely to promote maintenance of latency

Maintenance of latency lasts for the life of the host. Hallmarks of maintaining latency in‐
clude the following: (1) infectious virus is not detected by standard virus isolation proce‐
dures, (2) abundant expression of lytic cycle viral genes does not occur, and (3) LR gene
products are abundantly expressed in latently infected sensory neurons. The most obvious
difference between maintenance versus establishment of latency is the initial burst of lytic cycle
viral gene expression that occurs following infection of sensory neurons, and is extinguished
during the establishment of latency.

Herpes simplex virus 1 latency-associated transcript (LAT), such as the LR gene, is abundant‐
ly expressed during latency and was reported to promote the maintenance of latency, reviewed
in [7, 67, 92]. A recent study concluded that LAT maintains a pool of latently infected neu‐
rons that have the potential to reactivate from latency [93]. A cellular micro-RNA that interferes
with the expression of the HSV-1 regulatory protein (ICP0) [94] and a cellular transcription
factor (ATF3) [95] that enhances LAT expression are proposed to support the maintenance of
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latency. LR gene products, in particular the ability of both micro-RNAs to inhibit bICP0
expression, are candidates to suppress lytic cycle viral gene expression during maintenance
of latency. The ability of ORF2 and ORF-E to stimulate neurite formation may help latently
infected neurons retain their differentiated phenotype and normal functions.

5.2. Potential roles of cellular genes during maintenance of latency

Our recent studies demonstrated that a cellular transcription factor, β-catenin, is readily
detected in latently infected TG neurons, but not in TG neurons from uninfected calves. Nearly
all β-catenin+ neurons are also ORF2+; however, β-catenin+ neurons do not express the lytic
cycle viral regulatory protein (bICP0) suggesting that ORF2 regulates β-catenin expression.
During the course of reactivation from latency, the number of β-catenin+ neurons decreases
significantly, which correlates with the induction of two Wnt antagonists, dickkopf-1 (DKK-1)
and secreted frizzled-related protein 2 (SFRP2).

Wnt is a family of secreted glycoproteins that interacts with frizzled and the coreceptor LRP5/
LRP6, reviewed in [96]. In the absence of the Wnt ligand or when a Wnt antagonist is ex‐
pressed at high levels, a β-catenin destruction complex forms in the cytoplasm (Figure 2A).
This complex (axin, adenomatous polyposis gene (APC), GSK3β, and CKIα) hyper-phosphor‐
ylates β-catenin: consequently, β-catenin is polyubiquitinated and degraded by the protea‐
some.

Figure 2. Schematic of canonical Wnt signaling pathway. Panel A: Key regulators of inactive Wnt pathway. In the
absence of Wnt ligand, a β-catenin destruction complex, Axin, APC (adenomatous polyposis gene), GSK3β, and CKIa
hyper-phosphorylate β-catenin, which leads to ubiqutination and degradation. Soluble frizzled-like proteins (DKK-1
and FRP2) prevent Wnt binding to its true receptors. In the absence of active Wnt signaling, TCF bound to DNA inter‐
acts with transcriptional repressors and transcription is repressed. Panel B: Key regulators of active Wnt pathway.
Binding of Wnt to LRP and frizzled family members disrupts the β-catenin destruction complex and hypo-phosphory‐
lated β-catenin accumulates in the nucleus. Nuclear β-catenin binds TCF family members, displaces repressors of TCF-
dependent transcription, and recruits additional transcriptional regulators (denoted by X) resulting in transcriptional
activation.
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Wnt binding to its receptor disrupts the β-catenin destruction complex (Figure 2B). Conse‐
quently, the transcription factor β-catenin is stabilized, enters the nucleus, and interacts with
TCF (T-cell factor) family members bound to the consensus site AGATCAAGG. β-catenin
binding to TCF displaces bound corepressors (e.g., Groucho) and recruits coactivators
(denoted as X) to activate Wnt target genes.

β-catenin activation regulates navigation of axons to their synaptic targets and stimulates
axonal growth, reviewed in [97–101]. Several lines of evidence have concluded that disrupt‐
ing the Wnt signaling pathway stimulates neurodegeneration, reviewed in [97, 98, 102]. Wnt
signaling via β-catenin activation also inhibits apoptosis in several cell types [103–105],
including neurons [106]. Chronic stress or increased corticosteroids induce a secreted Wnt
antagonist, dickkopf-1 (DKK-1), which stimulates neuronal damage in the hippocampus [107],
and ischemic neuronal death [108]. DKK-1 also mediates glucocorticoid-induced changes in
human neuronal progenitor cell growth and differentiation [109]. Secreted frizzled-related
protein 2 SFRP2 may also stimulate neuronal survival because it induces cell death in the
developing hindbrain [110]. The ability of LR gene products, ORF2, for example, to stabilize
β-catenin protein levels may promote maintenance of latency [103].

6. Reactivation from latency

6.1. Activation of viral gene expression during reactivation from latency

BoHV-1 reactivation from latency is consistently initiated by the synthetic corticosteroid
DEX [6–8, 12, 67, 111], suggesting that DEX flips a molecular switch that disrupts the mainte‐
nance of latency (see Figure 3 for schematic of putative steps leading to reactivation from
latency). Within 6 h after DEX treatment, LR gene products are nearly undetectable in TG [6,
11, 82], lytic cycle viral RNA expression is detected in TG neurons of latently infected calves
[68, 112], and apoptosis of T cells persisting in TG can be detected [112]. CD8+ T cells also
persist in TG of humans or mice latently infected with HSV-1 [113–119] and have been reported
to promote maintenance of latency [120, 121–124]. CD8α dendritic cells have also been reported
to regulate the HSV-1 latency-reactivation cycle using mouse models of infection [125]. CD8+
T cells and/or CD8α dendritic cells may be important regulators of the BoHV-1 latency-
reactivation cycle.

Two viral regulatory proteins, bICP0 and VP16, are expressed in the same neuron within 90
min after DEX treatment of latently infected calves; conversely, two other late proteins (gC
and gD) are not readily detected until 6 h after DEX treatment [105, 126]. Fewer neurons express
gC or gD relative to bICP0 or VP16. The fact that VP16 is a late gene implies that a novel
mechanism induces VP16 expression very soon after DEX administration. However, the VP16
promoter is not activated by DEX or any of the DEX-induced transcription in transient
transfection assays [127, 128]. With respect to HSV-1, VP16 has been proposed to be an
important factor during initial stages of reactivation [129, 130]. Nearly all bICP0+ and VP16+
neurons express the glucocorticoid receptor (GR) suggesting that GR+ latently infected
neurons are more likely to reactivate. The IEtu1 promoter that drives bICP0 and bICP4 (two
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crucial viral transcriptional regulators; Figure 1A) expression is stimulated by DEX and
contains a consensus GR-binding site bound by the activated GR [128]. Inspection of the
BoHV-1 genome revealed that more than 100 GR-binding sites are present, suggesting that
additional viral promoters are stimulated by corticosteroids during reactivation from latency.

Figure 3. Putative steps leading to reactivation from latency. Stress, as mimicked by the synthetic corticosteroid dexa‐
methasone (DEX), is a molecular switch that is predicted to stimulate viral gene expression via activation of the GR-
and DEX-induced transcription factors. The IEtu1 is a crucial promoter that appears to be stimulated during the early
stages of reactivation from latency. The mechanism by which VP16 expression is stimulated is not known. Many la‐
tently infected neurons lack cellular factors and are unable to support virus production and consequently reestablish
latency. A small subset of latently infected neurons possesses the necessary factors to support extensive lytic cycle viral
gene and production of infectious virus. The fate of these neurons is unclear.

6.2. Regulation of cellular gene expression in TG neurons during early phases of DEX-
induced reactivation from latency

Within 3 h after DEX treatment, Pentraxin 3, a regulator of innate immunity and neurodegen‐
eration [131], and two cellular transcription factors, promyelocytic leukemia zinc finger (PLZF)
and Slug, are induced at least 15-fold in TG [127]. Additional DEX-induced cellular transcrip‐
tion factors were also identified in TG: Sam-pointed domain Ets transcription factor (SPDEF)
and three Kruppel-like transcription factors (KLF), KLF4, KLF6, and KLF15. Immunohisto‐
chemistry studies confirmed that these cellular transcription factors are expressed in TG
neurons during early stages of DEX-induced reactivation from latency. In general, overex‐
pression of a DEX-induced cellular transcription factor stimulated productive infection and
certain viral promoters, including IEtu1and the bICP0 early promoter.

The finding that four KLF family members (KLF4, KLF6, KLF15, and PLZF) are stimulated
during DEX-induced reactivation from latency is significant because KLF family members
resemble the SP1 transcription factor family and both families of transcription factors interact
with GC-rich motifs, reviewed in [132, 133]. In general, genomes of Alphaherpesvirinae
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subfamily members, including BoHV-1 and HSV-1, are GC rich and many viral promoters
contain Sp1 consensus-binding sites and additional GC-rich motifs [132]. KLF15 stimulates
HSV-1 ICP0 promoter activity more than 400-fold, but not the HSV-1 VP16 and ICP4 promot‐
ers [134]. KLF4, SPDEF, and Slug also stimulate ICP0 promoter activity at least 100-fold. These
transcription factors are induced in mouse TG neurons following explant and addition of DEX
generally enhanced their expression. These studies provide evidence that KLF transcription
factors stimulate BoHV-1 and HSV-1 transcription, which may consequently enhance
productive infection and reactivation from latency.

Lytic cycle viral gene expression is not readily detected during the maintenance of latency
because HSV-1 and presumably BoHV-1 genome exist as “silent” chromatin during latency,
reviewed by [135–137]. In contrast to many transcription factors, the activated GR can
specifically bind silent chromatin [138–140], generate a nuclease-hypersensitive site, and then
promote initiation of transcription [141–142]. Activated GR only binds a subset of GREs in
silent chromatin [143–144] and thus fits the criteria for being a “pioneer transcription factor,”
reviewed in [145, 146]. Purified KLF4, a DEX-induced transcription factor in TG neurons [127,
134], is also a pioneer transcription factor [145, 146] that can bind nucleosomes in vitro and
preferentially targets silent sites enriched for nucleosomes in vivo [147]. We suggest that these
two pioneer transcription factors (GR and KLF4) have the potential to convert a silent BoHV-1
genome into a transcriptionally active genome that subsequently expresses abundant levels of
lytic cycle viral genes and produces infectious viral particles.

There appears to be a bottleneck with respect to completion of successful reactivation
(production of an infectious virus particle). Many latently infected neurons apparently do not
support extensive lytic cycle viral transcription and/or cellular factors necessary to produce
an infectious viral particle that are missing or not expressed in sufficient quantities. These
neurons are operationally defined as nonpermissive. Evidence for the existence of nonper‐
missive neurons comes from three studies: (1) few neurons express late proteins (gC and gD)
relative to neurons that express VP16 and bICP0 [126], (2) only a small subset of latently
infected sensory neurons produce infectious viral particles [6], and (3) the LR mutant does not
reactivate from latency following DEX treatment even though the viral genome and LR-RNA
are detected in TG during latency [12]. Many nonpermissive neurons are predicted to survive
a stressful stimulus and reestablish latency. It is unclear whether a permissive neuron that
reactivates from latency and sheds infectious virus can survive and reestablish latency. In a
mouse model of HSV-1, neurons that support reactivation in vivo do not appear to survive
[148].

7. Conclusions and unresolved questions

The latency-reactivation cycle of Alphaherpesvirinae subfamily members, including BoHV-1,
is regulated by a complex series of virus-host interactions. Furthermore, BoHV-1 and cattle
have evolved with each other making it difficult to model the latency-reactivation cycle in
small animal models or cultured neurons. The HSV-1 LAT and BoHV-1 LR gene encode at

Latency of Bovine Herpesvirus 1 (BoHV-1) in Sensory Neurons
http://dx.doi.org/10.5772/63750

247



least three common functions crucial for the latency-reactivation cycle: (1) inhibit apoptosis
[78, 149–152], (2) interfere with productive infection [11, 152, 153], and (3) promote sprout‐
ing of neurites in mouse neuroblastoma cells [79, 82, 154], which is predicted to promote
neuronal repair and restore normal neuronal functions following infection. Although the LR
gene restores wt levels of reactivation to an HSV-1 LAT null mutant [155] and ORF2 plays a
role in this process [156], LAT does not appear to encode a protein. Thus, LAT-encoded micro-
RNAs and other small noncoding RNAs are proposed to regulate the latency-related cycle.

A brief discussion of several unresolved questions is presented as follows:

• Is it necessary for viral DNA replication to occur in a latently infected sensory neuron that
produces an infectious virus particle? Although it is clear that viral DNA replication must
occur at peripheral sites for virus transmission or recurrent disease to occur during a
reactivation episode, published reports that have directly tested whether viral DNA
replication occurs in neurons during reactivation from latency are lacking. From a mini‐
malist’s standpoint, it would seem to be advantageous for the viral genome to merely
express sufficient levels of viral proteins necessary to package the viral genome such that
cell-to-cell transmission will occur. Considering that sensory neurons do not enter the cell
cycle and replicate their chromosomes, there must be ingrained epigenetic signals that
prevent the expression of cellular proteins necessary for DNA replication.

• What is the threshold of stress that leads to successful reactivation from latency? Mammals
face stressful stimuli everyday but reactivation from latency (at least episodes that lead to
virus shedding) does not occur every day. For successful reactivation episodes (one that
leads to virus shedding from peripheral sites), there must be a relatively intense stimulus
or a prolonged stimulus.

• Do neurons that produce infectious virus particles survive and reestablish a latent infec‐
tion? As mentioned above, latently infected neurons yielding infectious virus particles
probably do not survive in a mouse model of HSV-1 infection [148]. However, this study
needs to be confirmed.

• Do other Alphaherpesvirinae subfamily members utilize similar pathways for regulating
the latency-reactivation cycle as BoHV-1? HSV-1 does not reactivate as consistently as
BoHV-1 following DEX treatment, suggesting that the GR is not as important. However, it
should be noted that increased “stress” correlates with a higher incidence of reactivation
from latency in humans [157–159]. DEX also stimulates reactivation from latency in TG
neuronal cultures prepared from latently infected mice [114] and TG organ cultures latently
infected with HSV-1 [160]. Although the exact mechanism is not likely the same, common
pathways may flip a switch that initiates reactivation from latency.
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