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Abstract

Neuroimaging tools have provided novel methods for understanding the impact of
prenatal drug exposure on brain structure and function and its relation to develop‐
ment and behavior.  Information gained from neuroimaging studies allows for  the
investigation of how prenatal drug exposure alters the typical developmental trajecto‐
ry.  The  current  prevalence  and  characteristics  of  prenatal  drug  exposure  and  its
implications for vulnerable periods of brain development are reviewed. Structural and
functional neuroimaging methods are introduced with examples of how study results
from prenatal alcohol, cocaine, marijuana, and tobacco exposure further our under‐
standing of the neurodevelopment impact of prenatal drug exposure. Prenatal drug
neuroimaging studies have advanced our understanding of mechanisms and function‐
al deficits associated with prenatal drug exposure. Studies have identified brain circuits
associated with the default mode network, inhibitory control, and working memory
that show differences in function as a result of prenatal drug exposure. The informa‐
tion gained from studies of prenatal drug exposure on brain structure and function can
be used to make connections between animal models and human studies of prenatal
drug exposure, identify biomarkers of documented effects of prenatal drug exposure
on behavior, and inform prevention and intervention programs for young children.

Keywords: fMRI, prenatal substance exposure, alcohol, cocaine, marijuana, tobacco

1. Introduction

This chapter begins with a review of issues surrounding the assessment of the impact of
prenatal drug exposure on developmental outcomes in children followed by a brief update of
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current trends in prenatal drug exposure including the prevalence, patterns, and characteris‐
tics of prenatal drug use, including alcohol, tobacco, marijuana, and other illicit drugs. Then,
the impact of current neuroimaging methodology on our understanding of the effects of
prenatal drug exposure is explored. The review considers examples of how neuroimaging
tools have increased our understanding of the often subtle and complex impact of prenatal
substance exposure on child brain development and behavior. The impact of prenatal drug
exposure is challenging to assess due to characteristics of maternal drug use such as poly‐
drug exposure and differences in the purity and legality of drugs. Developmental outcomes
associated with prenatal drug exposure will also be affected by the timing, dose, and pat‐
tern of drug use during pregnancy, and the varying impact of other environmental factors
such as maternal health and nutrition, access to prenatal care, and the home environment [1,
2]. For over 40 years, the impact of prenatal drug exposure has been studied in relation to
growth,  behavior,  and  cognitive  outcomes  using  both  longitudinal  and  cross-sectional
designs, which have provided a depth of understanding. Overall, the most important outcome
of decades of research has been that no safe levels of any type of prenatal drug use during
pregnancy have been identified. Furthermore, the impact of prenatal drug exposure is often
subtle and combined with other environmental risk factors, contributes to poor developmen‐
tal outcomes for young children and adolescents.

2. Methodological Issues and Current Trends in Prevalence and
Characteristics of Prenatal Drug Exposure

Prenatal drug exposure is a major public health concern for mothers and their children. In
addition, society bears significant financial costs associated with social and child welfare
services utilization [3, 4], neonatal intensive care unit costs, and longer hospital stays after
delivery [3–8]. Children with prenatal drug exposure are also more likely to need interven‐
tion services to address medical, developmental, behavioral, academic, and socio-emotional
issues [9]. Decades of research have documented the negative impact of prenatal drug
exposure on child developmental outcomes including growth, emotion and behavior regula‐
tion, and cognitive function. The impact of prenatal drug exposure on the developing child
has also been shown to interact with the quality of the child’s environment. Given the
complexities related to prenatal drug exposure and the influence of many potential external
factors, the prevalence, characteristics, and effects on developmental outcomes can be difficult
to assess. Difficulties arise from the dose, timing, and duration of prenatal drug exposure, the
use of multiple drugs during pregnancy, methodology limitations in the ability to document
prenatal drug exposure, differentiating between delayed and longer-term effects, genetic
factors, and variability introduced by environmental experiences including the quality of
relationships and the home environment [10]. In addition, methods used to measure prena‐
tal drug exposure are varied, ranging from survey methods (e.g., national surveys) to prenatal
interviewing (e.g., longitudinal cohort studies).

The main strategy for dealing with the complexities of research aimed at elucidating the impact
and mechanisms of prenatal drug exposure on child development is to use longitudinal
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research designs that incorporate measurement of explanatory variables. Pregnant sub‐
stance abusers are not studied based on whether they classify as “recreational” users or addicts.
Rather, the timing (first, second, third trimester), dose, and pattern of drug use (continuous
vs. binge exposure) are key variables. Among cohort studies, there are differences in sample
characteristics that are important for the interpretation of any study results that suggest
negative developmental outcomes associated with prenatal drug exposure. For example, some
studies focus on “high- dose” exposure (e.g., Seattle Longitudinal Study of Fetal Alcohol
Syndrome), whereas other studies focus on the full spectrum of exposures ranging from light-,
moderate-, to high-dose exposure (e.g., Pittsburgh Maternal Health Practices and Child
Development Project). Most studies have attempted to quantify the pattern of drug expo‐
sure as either continuous (e.g., average number of drinks/day) or binge (e.g., ≥4 drinks/
occasion). Cross-sectional study designs are also used to study clinical populations, captur‐
ing the important characteristics of young children who have been referred for assessment and
services.

Current trends suggest that while the prevalence of women using drugs during pregnancy is
relatively low, maternal substance use has an impact on many children. Approximately
400,000–440,000 infants, 10–11% of all births, are prenatally exposed to alcohol, tobacco, or
illicit drugs [11]. In addition, current trends in prenatal drug exposure suggest shifts in both
the prevalence and patterns of maternal substance use that reflect both wide spread knowl‐
edge and perceptions of the impact of drugs of abuse in general, and prenatal drug exposure
more specifically. Alcohol and tobacco are the most commonly used drugs during pregnan‐
cy, followed by marijuana, cocaine, and opioids [12]. For all types of prenatal drug exposure,
the data show that reported use in pregnant women is lower compared to nonpregnant women
in the same age category and that more pregnant women report use in the first trimester
compared to second and third trimesters [12]. In general, a greater number of younger
pregnant women (ages 18–25) report use compared to older women (ages 26–44) [12].

2.1. Current prevalence estimates of prenatal drug exposure

Recent estimates [12] show that the rates of prenatal alcohol use are approximately 9.4%, of
which 2.3% of women report binge drinking and 0.4% report heavy drinking. Higher levels of
drinking are reported in the first trimester compared to second and third trimesters. Patterns
of alcohol use among pregnant women have changed over time. More recently, pregnant
women are reported to drink more heavily and are more likely to develop an alcohol use
disorder compared to earlier studies [13]. In addition, women of childbearing age have shown
an increase in binge drinking, a trend that has decreased in males over time [14, 15]. Women
who binge drink during pregnancy report, on average, 4.6 binge drinking episodes (nonpreg‐
nant women report 3.1 episodes) and the number of drinks consumed, while binge drinking
does not differ from nonpregnant drinkers [2]. The Centers for Disease Control reports that
medical record analysis shows a rate of 0.3 out of 1000 children ages 7–9 are diagnosed with
fetal alcohol syndrome (FAS), while in-person assessments find higher rates (6–9 per 1000
children). Rates of fetal alcohol spectrum disorders are more difficult to ascertain, but
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community based studies in both the United State and Western Europe suggest that 24–48
per 1000 school children are affected by prenatal alcohol exposure [16, 17].

Reflecting national trends, the NSDUH [12] reports that cigarette use among women has been
steadily decreasing from a rate of 30.7% in 2002–2003 to 24.0% in 2012–2013. However, during
the same time period, the prevalence rate of cigarette use among pregnant women did not
show a similar significant reduction. Eighteen percent of pregnant women reported cigarette
use during pregnancy in 2002–2003 compared to 15.4% in 2012–2013. Other studies have shown
that efforts to reduce smoking prevalence among female smokers before pregnancy have not
been effective; however, efforts targeting pregnant women have met some success as rates
have declined during pregnancy and after delivery [18,19].

The most commonly used illicit drug is marijuana, but illicit drug use also includes cocaine,
opioids, and amphetamines. Among pregnant women, the rate of any illicit drug use is 5.4%
and has not changed significantly since 2010–2011 [12]. Use remains higher in younger
women (14.6%, ages 18–25) compared to older women (3.2%, ages 26–44). A high proportion
of women are using marijuana illegally and fail to disclose their use to their providers. A recent
study showed 81 percent of providers in urban outpatient clinics are asking their pregnant
patients about illicit drug use and; of the women surveyed, 11% of women disclosed current
use of marijuana, while 34% tested positive for one or more substances with marijuana being
the most commonly detected (27%) [20]. Women who use methamphetamine during preg‐
nancy show decreased prevalence and frequency of use from first to third trimester and women
who decreased their use were more likely to seek prenatal care during pregnancy [21].

2.2. Maternal and environmental variables

There are a number of maternal and environmental characteristics that are associated with
substance use during pregnancy [22]. Prenatal substance use is associated with younger
maternal age [12] and socioeconomic factors such as lower level of education, unemploy‐
ment, and higher levels of poverty [1]. Physical and mental health factors such as the uti‐
lization of health care during pregnancy [23, 24], fear of criminalization and/or stigma [25],
higher rates of affective disorders including depression [1], and poly-substance exposure [1]
are highly prevalent in pregnant substance users. Women using drugs during pregnancy
are also more likely to have had either current and/or childhood exposure to violence and/
or abuse [24]. Domestic violence is also associated with a higher proportion of substance
use in women [24, 26].

The complex interactions of social, psychological, and physical variables that are at play in
pregnant substance abusers also have an impact on the stability and quality of the child–parent
relationship, a significant factor in healthy child development. The care that infants receive
from their primary caretaker lays the foundation for the development of behavior and emotion
regulation, social skills, and cognitive ability [18, 19, 27, 28], as well as physical and mental
health [29, 30]. Substance abusing mothers show decreased responsivity to their infants. For
example, opioid abusing mothers show a decreased ability to identify their infant’s cues and
to respond appropriately to them [31]. Addiction and mental illness, two factors associated
with prenatal substance exposure are also associated with difficulty in forming healthy
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attachments [32]. The complex interactions of variables associated with prenatal substance
exposure is important because the events that occur early in life, both in terms of the quality
of relationships and environment, play a significant role in brain development. The impor‐
tant neural connections that support the brain circuitry that underlies emotional, social, and
cognitive behavior are established early in life [33].

Prenatal drug exposures, the timing, and quality of other early experiences have a profound
impact on child development because of their influence on early brain development. Early life
experiences have an impact on the development of brain structure by influencing the timing
and pattern of gene expression and the refinement of neural circuitry [34]. Neuroimaging
methods that examine the structure and function of the brain have provided access to study
the impact of prenatal drug exposure on the developing brain. Methods such as magnetic
resonance imaging (MRI), diffusion tensor imaging (DTI), and functional magnetic reso‐
nance imaging (fMRI) are noninvasive allowing for their use in children. Neuroimaging tools
have been used to better understand typical patterns of structural and functional develop‐
ment in the brain. This information can be used to examine how prenatal drug exposure affects
normal brain development and how it relates to physical and behavioral outcomes.

3. Prenatal drug exposure and brain structure

3.1. Volume, symmetry, and cortical thickness

MRI uses the inherent magnetic properties of the body to create detailed images. Short
radiofrequency pulses inside a strong magnetic field create patterns of excited molecules that
can be used to create an image of the structure [35]. Offering detailed structural images of the
brain, MRI is an essential tool for assessing structural characteristics including global and
regional brain volumes, symmetry, and cortical thickness. Structural brain differences serve
as biomarkers of the impact of the prenatal drug exposure and, eventually, may aid in
identification and intervention. Overall, studies of prenatal drug exposure show consistent
reductions in head circumference, overall and regional reductions in brain volumes, and
differential reduction in gray and white matter volumes, results which are dependent on the
accumulation of polydrug exposures [36].

Recent reports are consistent with previously documented widespread changes in brain
structure in children and adolescents with moderate to heavy prenatal alcohol exposure [37].
Prenatal alcohol is associated with overall reductions in global [38, 39] and regional brain
volume including the hippocampus, basal ganglia, cingulate cortex, and corpus callosum [37,
40–43]. Several studies indicate that reductions in brain volume linked to prenatal alcohol
exposure were associated with deficits in cognitive function and facial dsymorphology. For
example, prenatal alcohol exposed is linked to reductions in caudate volume which are also
associated with deficits in cognitive control and verbal learning and memory [44] as well as
palpebral fissure length [45]. Moreover, reductions in brain volume increase as a function of
the amount of alcohol consumed during pregnancy and the severity of diagnosis [38, 46] and
were reported from early childhood through young adulthood, suggesting long-term and
persistent alterations in brain structure.
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Prenatal alcohol exposure was also associated with increased asymmetry in the caudate
nucleus, cingulate cortex, and corpus callosum. Specific to the caudate nucleus, moderate
alcohol exposure was associated with increased volume in the left caudate compared to the
right [43, 47]. Asymmetry in the cingulate cortex was due to reduced volume localized to the
right caudal region of the cingulate [48], which may be related to differential loss of white
matter compared to gray matter in this brain region [49].

Studies have evaluated the effects of prenatal alcohol on cortical morphology by examining
cortical thickness. Several studies have reported increased cortical thickness in diffuse regions
across the frontal, temporal, and parietal lobes [50–52] while another study reported cortical
thinning [53]. Longitudinally, children with prenatal alcohol exposure show less develop‐
mentally appropriate cortical thinning across time compared to controls [54]. When cortical
thickness is examined in contrast to surface area, prenatal alcohol exposure affects global
surface area to a greater degree than cortical thickness especially in the right temporal gyrus
[55].

Past neuroimaging studies show that prenatal cocaine exposure was also associated with long-
term changes in brain structure. Recent studies confirm overall reductions in global brain
volume as well as in the caudate, corpus callosum, and right cerebellum [56–58] differences in
shape and volume characteristics of the striatum [45], and cortical thickness and volume of the
right prefrontal cortex [59]. In adolescence, prenatal cocaine exposure was associated with
specific reductions in gray matter volumes in frontal cortical and posterior regions [60]. In one
study, the structural changes were correlated with impulsivity [59]. However, the prenatal
cocaine exposure-related structural changes were subtle and may lose significance when
covariates including other prenatal exposures are properly controlled [36].

Prenatal tobacco exposure was linked to overall reductions in intrauterine growth [61], which
is also reflected in the brain. Prenatal tobacco exposure was associated with reductions in fetal
head growth, reduced volume of the frontal lobes and cerebellum, and smaller width of the
lateral ventricles [62, 63]. During childhood, prenatal tobacco exposure is associated with
additional changes in brain structure including smaller total brain volume and smaller cortical
gray matter volume [36, 64], cortical thinning in superior frontal and parietal cortices [64] and
reduced gray matter volume in subcortical regions including the amygdala, thalamus, and
pallidum [59, 65]. Increased volume in the frontal cortex with corresponding decreases in the
anterior cingulate cortex was also observed [66]. Regional brain volume changes persisted into
adolescence but may be explained by current adolescent tobacco use because children with
prenatal tobacco exposure are at increased risk for early initiation and smoking behavior [67].

Fewer recent studies have been conducted on the impact of prenatal marijuana, methamphet‐
amine, and opioid exposure on global and regional brain volume. But, some initial research
indicates that prenatal exposure to these drugs is also associated with difference in brain
structure. In contrast to other types of prenatal drug exposure, prenatal marijuana exposure
was not related to reductions in global brain volume [36]. A small sample of children with
prenatal opioid exposure showed reduced global brain volume as well as regional differen‐
ces including reduced volume in the cerebral cortex, amygdala, nucleus accumbens, puta‐
men, pallidum, brainstem, cerebellar cortex, cerebellar white matter, and inferior lateral
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ventricles [68]. Prenatal methamphetamine exposure was linked to regional volume reduc‐
tions in both striatal and limbic structures including the caudate, anterior and posterior
cingulate, inferior frontal gyrus, and ventral and lateral temporal lobes; regions that are
vulnerable to the neurotoxic effects of methamphetamine in adult abusers [69]. Another study
showed similar results, as well as sex-specific effects of prenatal methamphetamine expo‐
sure on brain structure, including increased volume in the striatum in males and increased
cortical thickness in females [70].

3.2. Integrity of white matter tracts

DTI uses MRI to examine white matter microstructure by measuring the diffusion of water
molecules in tissue and the integrity of water diffusion in one direction across a membrane.
Unrestricted water molecules are capable of diffusing in any direction, however; in the
presence of structural barriers such as cell membranes and myelin, water tends to diffuse in
an increasingly directional manner. The degree to which water molecules are isotropic
(directionally independent) versus anisotropic (directionally dependent) is determined using
DTI. Anisotropy occurs in white matter tract fibers, particularly in myelinated axons [35, 71].
Functional anisotropy (FA) is used as a quantitative measure of diffusion and ranges in value
from 0 (isotropic) to 1 (anisotropic) [72]. FA is highly sensitive to microstructural changes in
white matter, but not to the type of change (radial or axial) [71]. Developmentally, FA
undergoes the greatest amount of change during early childhood (through 5 years) [73, 74]
and can be used to distinguish between stages of brain development [75]. In general, abnor‐
mal brain development or brain damage is associated with lower FA values in white matter
[76]. Abnormalities in white matter that leads to decreases in FA may result from either
increased radial (perpendicular and associated with changes in myelination) diffusivity and/or
reduced axial (parallel and associated with axonal integrity) diffusivity [77]. Prenatal sub‐
stance exposure is linked to lower FA and alterations in the structural integrity of myelin [78].
White matter microstructure, however, has been most widely studied in children with prenatal
alcohol or cocaine exposure.

The impact of prenatal alcohol exposure on measures of white matter microstructure shows
that effects can be detected at multiple stages of development, are associated with behavior,
and fall on a continuum ranging from mild to severe Abnormalities in the corpus callosum are
frequently reported, but also in anterior–posterior fiber bundles, corticospinal tracts, and the
cerebellum [79–82]. Effects of prenatal alcohol exposure are linked to reduced white matter
structural integrity in the cerebellum [83] and abnormalities in axial diffusivity [84] as early as
infancy. In addition, subtle changes in FA have been associated with deficits in cognitive
function including processing speed, math ability, executive function, and eye-blink condi‐
tioning [50, 81, 85–92] A recent study was also able to demonstrate that structural white matter
changes are linked to disturbances in functional connectivity while at rest [83].

In contrast, DTI studies of the impact of prenatal cocaine or methamphetamine exposure on
white matter integrity are mixed. Cocaine exposure has been associated with increased
diffusion in left frontal callosal and right frontal fibers [93], but do not appear to remain
significant after controlling for other prenatal drug exposures [36]. Another study that
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controlled carefully for other prenatal drug exposures showed that prenatal cocaine-related
FA differences in fiber pathways including right cingulum, right arcuate fasciculus, left inferior
longitudinal fasciculus, and splenium of the corpus callosum were associated with deficits in
attention and response inhibition [94]. Only one study has reported a trend for higher FA
associated with prenatal methamphetamine exposure [95]. These early studies and the lack of
research on the impact of prenatal tobacco and marijuana exposure on white matter integri‐
ty indicate the need for additional research to better understand the impact of prenatal drug
exposure on DTI measures.

4. Prenatal drug exposure and brain function

Neural circuits that control brain function have different patterns of activity that can be
measured using fMRI. fMRI provides an indirect measure of brain function by quantifying the
blood oxygen level-dependent (BOLD) response, which reflects changes in blood oxygen
utilization throughout the brain. When neural circuits become active, MR signals will increase
by a small amount, reflecting a signal change of approximately one percent. The ability to
detect a change in MR signal depends on the different magnetic properties of oxygenated vs.
deoxygenated blood and that blood flow to areas of the brain that are working are very
sensitive. Different types of experimental designs are used in conjunction with fMRI meth‐
ods to determine the location of brain activity. In the simplest type of experiment, patterns of
brain activity are examined as a subject alternates between an experimental and control
condition. The signal will increase and decrease as a function of the experimental conditions
after adjusting for time. Functional neuroimaging studies produce group-averaged maps that
show the level of brain activation that is associated with a specific task or in response to a
specific stimulus. The group maps are then compared between conditions and/or between
groups to examine the magnitude and extent of brain activation for a given response [96].

fMRI research has been used to determine if prenatal drug exposure has an impact on areas
of the brain that receive more or less oxygenated blood in response to performing a cogni‐
tive task. The method has been used to demonstrate the effect of prenatal drug exposure on
brain activation during a variety of cognitive behaviors. Recent work converges on three
domains, the default mode network, inhibitory control, and working memory; all of which
illustrate how fMRI methods can be used to better understand the impact of prenatal drug
exposure on brain function. In addition, innovative functional connectivity studies have
combined information from structural (MRI and DTI) with functional (fMRI) methods to
understand the temporal relations between spatially distinct brain regions.

4.1. Default mode network

The default mode network (DMN) is comprised of a set of brain regions including ventral
medial prefrontal cortex, posterior cingulate, inferior parietal lobe, lateral temporal cortex,
dorsal medial prefrontal cortex, and the hippocampus (see Figure 1) [97]. This network is active
when one appears to be at rest but is actually engaged in spontaneous and goal-directed mental
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tasks such as free-thinking, remembering, and making future plans [98]. In contrast, the
network is inhibited while performing tasks with high-cognitive demand and increased task
difficulty [99, 100]. Behaviorally, both prenatal cocaine and alcohol exposure are associated
with early and persistent deficits in arousal regulation and attention deficits [101–105] and an
increased risk for a diagnosis of attention-deficit/hyperactivity disorder [106, 107]. One
interpretation of the results of these studies is that the dysregulation of arousal and attention,
in part, explains other observable deficits in higher-cognitive function.

Figure 1. Key regions associated with the default mode brain network.

Current neuroimaging research suggests, however; that the underlying impact of prenatal
cocaine or alcohol exposure on arousal and attention reflects changes in function of the DMN
network. Results are summarized in Table 1(A). Using resting-state fMRI, a recent large-scale
study of neonates with prenatal cocaine exposure or polydrug exposure showed polydrug-
related connectivity disruptions within frontal-amygdala, frontal-insula, and insula-sensori‐
motor circuits; and specific effects of prenatal cocaine exposure on the frontal-amygdala
network [108]. Results showed that polydrug exposure was associated with negative connec‐
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tivity within these networks. Negative connectivity is interpreted as a dysregulation in
excitatory and inhibitory inputs [109–111], and in this case, a failure to inhibit the amygdala
response from prefrontal cortex inputs.

A number of studies indicate that the effect of prenatal cocaine exposure on functional
differences within the DMN persist into childhood and adolescence. Adolescents with prenatal
cocaine exposure show overall reductions in regional cerebral blood flow at rest with
compensatory, relative increases in anterior and superior brain regions [112]. Additionally,
while in the resting state, adolescents with prenatal cocaine exposure show increased
functional connectivity in the DMN compared to controls [113], and less deactivation of the
network in the DMN, while performing a working memory task with emotional distracters.

Furthermore, the effects of prenatal cocaine and alcohol exposure on the DMN can be
dissociated. Similar to prenatal cocaine exposure, prenatal alcohol exposure is associated with
less deactivation in the DMN while performing a cognitive task [114]. In contrast to prenatal
cocaine exposure, prenatal alcohol exposure is associated with decreased functional connec‐
tivity within the DMN at rest [114]. These results suggests that the underlying mechanism for
prenatal cocaine or alcohol exposure effects on cognitive ability are due, in part, to changes in
baseline levels of arousal and dysregulation of excitatory and inhibitory control of neural
resources allocated to perform cognitive tasks.

4.2. Inhibitory control

The ability to engage in voluntary, goal-directed behavior requires activation of neural
circuitry that supports cognitive control mechanisms. Response inhibition is considered to be
a key component of cognitive control and refers to the ability to inhibit a response that is no
longer needed or inappropriate given a change in either internal or external states [115]. The
go/no-go task is a cognitive paradigm that can be used in conjunction with fMRI to evaluate
response inhibition [115, 116]. In the go/no-go task, participants are required to respond or
withhold a response depending on whether they are presented with a “go” stimulus or a “no-
go” stimulus, respectively.

The go/no-go task has been used to determine independent effects of prenatal alcohol, cocaine,
marijuana, and tobacco on response inhibition, allowing for a comparison across studies.
Results are summarized in Table 1(B). Children with prenatal tobacco [117] or marijuana [118]
exposure were more likely to commit commission errors while performing the go/no-go task,
but children with prenatal alcohol or cocaine exposure showed no behavioral differences in
task performance. Prenatal alcohol exposure was associated with increased brain activation in
prefrontal regions and less activation in the caudate compared to controls [119]. A similar
pattern is demonstrated in adolescents with prenatal alcohol exposure suggesting long-term
changes in brain function associated with response inhibition [120]. In contrast, prenatal
cocaine exposed children showed increased activation in inferior frontal cortex and caudate
and less activation in temporal and occipital regions [121]. Prenatal marijuana was associat‐
ed with differential activation of frontal regions including and increased BOLD response in
bilateral the prefrontal cortex and right premotor cortex, and a decreased response in the
cerebellum [118]. Children with prenatal tobacco exposure showed increased activation in a
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more diverse set of brain regions including left frontal, right occipital, bilateral temporal, and
parietal regions, and less activation in the cerebellum [117]. Young adults with prenatal tobacco
exposure showed a similar pattern of results with increased activation inferior frontal, inferior
parietal, basal ganglia, and cerebellum [122].

Results across multiple studies indicate that prenatal drug exposure leads to differential
activation in frontal–striatal circuits, while performing the go/no-go task. In addition, across
studies, prenatal drug-related increases in activation were reported in many brain regions,
which indicates an increase in the demand for cognitive resources, while performing the
response inhibition task. This pattern of results is indicative of an immature brain circuitry.
Across development, the typical pattern observed in neuroimaging data is that for response
inhibition, there is an increase in the magnitude of activation and a decrease in the extent of
activation in frontal–striatal brain regions [123, 124]. Increased efficiency of neural process‐
ing is also associated with a peak in behavioral performance. Younger children show greater
activation in similar brain regions as reported in the prenatal drug imaging studies [125, 126].
Although, the data collected in each of the studies were cross-sectional, the reported effects of
prenatal drug exposure in childhood, adolescence, and adulthood indicate that the changes in
brain circuitry underlying response inhibition may not be due to developmental delay, but
instead due to long-term changes in the activation of the circuit.

4.3. Working memory

Working memory refers to the cognitive ability to hold and manipulate information for a short
period of time. Brain imaging studies have shown a load-dependent role for the prefrontal
cortex in working memory [127, 128]. Using fMRI methods, prenatal drug exposure is
associated with differential brain activation within the prefrontal cortex, while performing
working memory tasks. Results are summarized in Table 1(C). For example, children
prenatally exposed to tobacco experience more activation in the inferior parietal regions of the
cortex, whereas children not exposed showed activation in the bilateral inferior frontal region
of the cortex [129]. Prenatal marijuana is also associated with patterns of increased activation
associated with working memory including the inferior and middle frontal gyri [130].

fMRI methods have also been used to demonstrate specific effects of prenatal drug exposure
in both the visual–spatial and verbal working memory domains. Prenatal alcohol exposure
leads to increased activation of the frontal–parietal–cerebellar network including the left dorsal
frontal and left inferior parietal cortices, and bilateral posterior temporal regions during verbal
working memory compared to controls [131]. The results showed that individuals prenatal‐
ly exposed to alcohol recruit a larger, more extensive neural network than their peers. Across
three studies, prenatal alcohol exposure was also associated with differential patterns of
activation, while performing spatial working memory tasks [132–134]. In contrast, offspring
with prenatal methamphetamine exposure had less activation than their unexposed counter‐
parts in both the frontal and striatal regions; primarily in the left hemisphere of the brain on a
spatial working memory task [135], but increased activation in bilateral temporal regions in
response to performing a verbal working memory task [136].
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(A) Default mode network

Drug Effects on network Behavioral effects References

Alcohol Increased activity in DMN

during cognitive tasks

Deficits in arousal regulation [101–107, 114]

Decreased activation of

DMN at rest

Increased risk of ADHD diagnosis

Cocaine Increased activity in

DMN during cognitive tasks

Deficits in arousal regulation [101–107, 113, 114]

Increased activation of

DMN at rest

Increased risk of ADHD diagnosis

(B) Inhibitory control

Alcohol Increased activity in prefrontal

regions

Increased effort required for response inhibition [119]

Decreased activity in the caudate

Tobacco Increased activity in left frontal,

right occipital, bilateral temporal,

and parietal regions

Increased effort required for

response inhibition

[117]

Decreased activity in the

cerebellum

More likely to commit

commission errors

Cocaine Increased activity in inferior

frontal cortex and caudate

Increased effort required for

response inhibition

[121]

Decreased activity in

temporal and occipital regions

(C) Working memory

Alcohol Increased activation in bilateral

dorsal frontal, bilateral

posterior temporal, and left

inferior parietal regions

More effort required to maintain

working memory

[131, 137, 138]

Tobacco Activation of inferior

parietal cortex as opposed

to bilateral inferior frontal

cortex

Different mechanisms are employed

to maintain working memory

[129]

Methamphe

tamine

Decreased activation in frontal

and striatal regions,

particularly in left hemisphere

Decreased working

memory performance

[135]

Table 1. Summary of prenatal drug exposure effects on (A) default mode network, (B) working memory, and (C)
inhibitory control.
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The impact of prenatal alcohol exposure can be dissociated from other potential explanatory
variables. When examined in relation to family history of alcohol use disorders, prenatal
alcohol exposure independently predicted increased activation in left middle and superior
frontal brain regions [137]. In a direct comparison of adolescents with prenatal alcohol
exposure or ADHD, behavioral profiles were similar but the two groups showed differences
in how cortical brain regions were recruited for spatial working memory [138]. Overall,
prenatal alcohol exposure was associated with an increased effort to compensate in relation to
increasing task demands compared to the ADHD group.

Alterations in behavioral and brain function measures of working memory extend to prena‐
tal cocaine exposure as well. The aforementioned deficits in arousal regulation associated with
prenatal cocaine exposure appear to underlie brain and behavior-related working memory
function. Li et al. [139] showed differential patterns of activation as a function of emotion–
memory interactions. Increased demands on memory load diminished emotion-related
activation in the amygdala in controls but not in the exposed group. In contrast, the exposed
group failed to show an expected decrease in activation in the prefrontal cortex as memory
load decreased in the presence of emotional stimuli. Results suggest that the impact of prenatal
cocaine exposure on arousal regulation acts through both the dorsal cognitive and ventral
emotional systems.

Overall, multiple studies demonstrate the complexities of prenatal drug-related effects on
working memory. Patterns of brain activation associated with working memory are differ‐
ent by type of prenatal drug exposure, are present in the absence of behavioral differences,
and show more extensive networks of activation compared to controls. Specific alterations in
prefrontal cortex activation in response to working memory demand suggest that these regions
are taxed to a greater degree as a result of prenatal drug exposure. Furthermore, changes in
activation remained after controlling for other explanatory variables such as intelligence.
Collectively, studies demonstrate that the effect of prenatal drug exposure on brain activa‐
tion associated with working memory is less efficient and that increased levels of activation
serve to compensate for any deficits in working memory function. Compensatory action,
however, may not be sufficient in real-life situations characterized by increased demands on
working memory function.

4.4. Novel applications of imaging methods and statistical techniques

Recently, a number of novel applications of functional neuroimaging and statistical methods
have been employed to improve upon the limitations of current methods in detecting the subtle
effects of prenatal drug exposure on brain function, develop connectivity maps, and aid in
diagnosis. First, a variety of model-based or data-driven methods have been employed to
analyze functional neuroimaging data. General linear modeling has been used most widely
because it is effective, simple, and robust [140]. However, typical approaches to the statisti‐
cal analysis of fMRI data are limited in that they are not able to detect activation in heteroge‐
neous brain regions that have the potential to play diverse roles in multiple types of task
performance [141]. A recent study successfully demonstrated the advantages of group-wise
sparse representation of fMRI data and statistical coefficient mapping to evaluate the effect of
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prenatal alcohol exposure on functional activity. The advantages reported for this method
included increased adaptability, more systematic in detecting diverse brain networks, and
better able to identify commonalities and differences across subjects and groups [141].

fMRI data can also be analyzed to show how components of a neural system are working
together when performing a specific task. The identification of associations between anatom‐
ically distinct time series is referred to as “functional connectivity” [140]. The ability to identify
consistent, reproducible, and accurate regions of interest is the key to developing connectivi‐
ty maps [142]. Using a new strategy to develop cortical landmarks (dense individualized and
common connectivity-based cortical landmarks, DICCOLs), Li et al. [143] used functional
connectomics signatures to identify 10 brain regions with structurally disrupted landmarks
that could be used to distinctly identify prenatal cocaine exposed brains from that of controls.

Finally, a novel application of machine learning has been used to test whether brain images
can be used to correctly identify prenatal cocaine-exposed young adults from socioeconomi‐
cally matched controls [144]. Regional features were extracted from both structural and
functional MR images, and the power of each to discriminate between prenatal cocaine
exposed and control brains was accomplished through machine learning methods. The
method accurately identified 91.8% of prenatally cocaine-exposed brains. The use of both
structural and functional images was critical to improving the accuracy of the classification
system compared to either type of image alone.

5. Conclusions

Prenatal drug exposure is a risk factor for increased vulnerability to difficulties in both
behavior and cognition. Continued research to identify the structural and functional targets
of prenatal drug-related neurotoxicity is important. Identifying biomarkers of prenatal drug-
related changes in brain development and relating those changes to behavior, or in the case of
alcohol to physical features, has the potential to inform diagnostic and treatment strategies.
MRI, fMRI, and DTI neuroimaging methods provide powerful tools for visualizing the brain
and, because they are noninvasive, are especially suited for research in young children. The
impact of prenatal drug exposure on brain structure and function is subtle and often ac‐
count for a small amount of variance that contributes to deficits in behavior regulation and
cognition. These subtle effects can be explained by the complex interactions of the pattern of
prenatal drug exposure both in terms of the timing and dose as well as the combination of
multiple drugs, genetic, and environmental factors. Changes in brain structure and function
in children and adolescents with prenatal drug exposure can be difficult to assess for a number
of other reasons. To date, a neuropsychological profile for prenatal drug-related deficits in
cognitive function has not been identified and there are diffuse individual differences in the
expression of the impact of prenatal drug exposure on the brain and behavior. Furthermore,
limitations in statistical approaches to the analysis of neuroimaging data can often lead to
difficulty in detecting these subtle effects. Future studies will require large sample sizes and
longitudinal research designs, and increasingly sophisticated neuroimaging and statistical
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methods. A focus on connectivity measures will provide a better understanding of underly‐
ing mechanisms for the associations between brain structure and function, and behavior.
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