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Abstract

This chapter offers anumerical simulation of fractional differential equations by utilizing
Chebyshev-simulated annealing neural network (ChSANN) and Legendre-simulated
annealing neural network (LSANN). The use of Chebyshev and Legendre polynomials
with simulated annealing reduces the mean square error and leads to more accurate
numerical approximation. The comparison of proposed methods with previous methods
confirms the accuracy of ChSANN and LSANN.

Keywords: neural network, fractional Riccati, Legendre polynomial, Chebyshev poly-
nomial, simulated annealing

1. Introduction

During the last few decades, fractional calculus has gained massive attention of physicists and
mathematicians because of its numerous interdisciplinary applications. Many recent
researches are ended up demonstrating the significance of fractional-order differential
equations as valuable instruments to model several physical phenomena such as the non-
linear oscillation of earthquake and the fluid dynamics traffic can be elegantly modelled with
fractional derivatives [1, 2]. Various physical processes show fractional-order behaviour that
might change with respect to time or space. The adoption of fractional calculus concepts is
well known in many scientific areas such as physics, diffusion and wave propagation, heat
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transfer, viscoelasticity and damping, electronics, robotics, electromagnetism, signal
processing, telecommunications, control systems, traffic systems, system identification, chaos
and fractals, biology, genetic algorithms, filtration, modelling and identification, chemistry,
irreversibility, as well as economy and finance [3-5].

Modelling of different physical phenomena gave rise to a special differential equation
known as Riccati differential equation that was named after an Italian mathematician Count
Jacopo Francesco Riccati. Due to many applications of fractional Riccati differential
equations such as in stochastic controls and pattern formation, many researchers studied
it to get the exact or approximate solutions. Such as fractional variational iteration method
was applied in [6] to give an approximate analytical solution of non-linear fractional Riccati
differential equation. His modified homotopy perturbation method (MHPM) was used on
quadratic Riccati differential equation of fractional order [7]. The results of fractional Riccati
differential equation were also obtained on the basis of Taylor collocation method [8].
Fractional Riccati differential equations were solved by means of variational iteration
method and homotopy perturbation Pade technique [9, 10], and the numerical results were
attained by using Chebyshev finite difference method [11]. Adomian decomposition method
was presented for fractional Riccati differential equation [12], the problem was described
by means of Bernstein collocation method [13], and enhanced homotopy perturbation
method (EHPM) was used to study this problem [14]. Recently, artificial neural network
and sequential quadratic programming have been utilized to obtain the solution of Riccati
differential equation [15]. The problem was also explained by Legendre wavelet operational
matrix method [16] and the results of fractional Riccati differential equation by new
homotopy perturbation method (NHPM) [17] were obtained.

In recent years, artificial neural network (ANN) is one of the methods that are attaining
massive attention of researchers in the area of mathematics as well as in different physical
sciences. The concept of ANN started to develop in 1943 when a neurophysiologist and a
young mathematician [18] gave the idea on working of a neuron with the help of an electric
circuit. Later, a book [19] was written to clarify the working of neurons then in 1949.
Bernard Widrow and Marcian Hoff developed a model MEDALIN that was used to study
the first real-world problem of neural network. Researchers continued to study the single-
layered neural network, but in 1975, the concept of multilayer perceptron (MLP) was
introduced, which was computationally exhaustive due to multilayer architecture. The
excessive training time and high computational complexity of MLP gave rise to functional
neural network by which the complexity of multilayers was overcome by introducing
variable functions [20]. Functional link neural network has been implemented to several
problems such as modified functional link neural network for denoising of image [21],
active control of non-linear noise processes through functional link neural network [22],
and the problem of channel equalization in a digital communication system was solved by
functional link neural network [23]. Due to less computational effort with easy to implement
procedure, functional link neural network was also implemented to solve differential
equations [24, 25].
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2. Definitions and preliminaries

The Riemann-Liouville, Griinwald-Letnikov and Caputo definitions of fractional derivatives
of order @ >0 are used more frequently among several definitions of fractional derivatives and
integrals, but in this chapter, the Caputo definition will be used for working out the fractional
derivative in a subsequent procedure. The definitions of commonly used fractional differential
operators are discussed in the study of Sontakke and Shaikh [26].

Definition 1: The Riemann-Liouville fractional derivative operator can be defined as follows:

g(B)

a — d_éx — -
D8 = s dxgg(x_ﬂ)w_f dp. &l<a<s

where here a>0, x>a, @, a andx €R.

Definition 2: The definition of fractional differential operator was introduced by Caputo in
late 1960s that can be defined as follows [27]:

g(é) (/5')

L
Dig(x)=
8= o] B

dp, é&é-l<a<é

where here a>0, x>a, @, a andx € R.
The Caputo fractional derivative satisfies the important attribute of being zero when applied

to a constant. In addition, it is attained by computing an ordinary derivative followed by the
fractional integral, while the Riemann-Liouville is acquired in the contrary order.

3. ChSANN and LSANN
3.1. Methodology

The functional mapping of (LSANN) and (ChSANN) is shown in Figure 1 demonstrating the
structure of both methods, but for the convenience of the reader, a stepwise explanation of
both the methods is also presented.
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Figure 1. Model diagram of ChSANN and LSANN.

The combined steps for both the methods are explained because of the structural similarity in
them, except the polynomial basis that affects the accuracy of the results.

Step 1: The summation of the product of network adaptive coefficients (NAC) and Chebyshev
or Legendre polynomials is calculated for the independent variable of fractional differential
equation for an arbitrary value of m as shown in Figure 1.

Step 2: The activation of y or p will be performed by the first three terms of the series of tangent
hyperbolic function tanh (®), these terms have been mentioned in Figure 1.

Step 3: The trial solution will be calculated by using initial conditions as in the study of Lagaris
and Fotiadis [28].

Step 4: Required derivatives of the trial solution will be calculated.

Step 5: The optimization of mean square error (MSE) or learning of NAC will be executed by
the thermal minimization methodology known as simulated annealing. The equation used to
calculate MSE would be discussed in next section. Before optimization, the independent
variable will be discretized by an array of trial points.
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Step 6: If the value of MSE is in an acceptable range, then the values of trial points and NAC
will be replaced in trial solution to get the output. On the other hand, the procedure will be
repeated from step 1 with a different value of m.

3.2. Implementation on fractional Riccati differential equation

In this section, the ChSANN and LSANN are employed for the fractional Riccati differential
equation of the type:

dy(1) _

— f(ty), y0)=4, 0<a<l (1)

For implementing both methodologies, Eq. (1) can be written in the following form:
Vaytr(t’l//)_F(taytr(tal//)) = 0, t S [0,1] (2)

¥, (t, ) can be defined as trial solution, where ¢ is defined as NAC, generally known as

weights, and V is defined as differential operator. Trial solution will be obtained by applying
Taylor series on the activation of y by using the initial conditions, while u being the sum of
the product of network adaptive coefficients and Chebyshev polynomials. For obtaining the
trial solution of LEANN, the above procedure will be pursued, but n will be calculated in spite
of u, that is the sum of the product of NAC and Legendre polynomials. Here, tanh ( ® )is used
as activation function, but for fractional derivative based on Caputo sense, first three terms of
the Taylor series of tanh () are considered that are given for ChSANN as follows:

3 5

Mo 2u
N=pu-"—+ 3
SEERETY )

while for ChSANN, u can be defined as follows:
=2 i, 4)
where here T,_; are Chebyshev polynomials with the following recursive formula:
T, (x) =2xT, (x) -T

m m—1 (x)’ m 2 2 (5)

while hile T(x)=1 and T,(x)=x.

For LSANN, the activation function and 1 can be defined as follows:
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N=p-L 3L (6)
n=>"wl_ 7)

whereas hereas L ;_, are the Legendre polynomials with the recursive formula:
= ! Cm+1)x L, (x)— mL, [(x), m=2 8)

(m+1) (m+1)

where here L j(x)=1 and L ,(x)=x, and value of m is adjustable to reach the utmost accuracy.

For Eq. (1), the trial solution can be written as defined in the study of Lagaris and Fotiadis [28],
but N will be used according to the method.

Vo(t,y)=A+t N ©)

Trial solution can be written in expanded form for ChSANN at m =2 as follows:
1 3 2 5
ytr(t’(//) =A+t (l//l +y, _5(‘//1 +ﬂ//z) +E(‘//1 +W/2) j (10)

Fractional derivative in Caputo sense of Eq. (10) is as follows:

3

a Fz l-a l//l 21//]5 (2j F6 5-a 4
\Y% t, =—f PR LU ¥ g SN iy I W Wl B
ytr( W) F(Z—a) {l/ll 3 + 15 j—i_ 3 F(7—a) (l//llr//Z)

+(£j—r7 tﬁ’“(vls)+—r3 t”’(v/ —yly +zw“l//j 11
15)0(7-a) Y r(3-a) SR ] e b

I'4 a4 5 2} I'5 P P
+— = -~ " = -2
F(4—a) (3V/IW2 l//ll/jz F(S—a) 3W1W2 3
The mean square error (MSE) of the Eq. (1) will be calculated from the following:

n

MSE(y,) = Z%(V“y,, (ep0)=Fltpn (0] e<[01] (12)

Jj=1
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whereas here as n can be defined as number of trial points. The learning of NAC will be
performed from Eq. (10) by minimizing the MSE to the lowest possible acceptable minimum
value. The thermal minimization methodology and simulated annealing is applied here for
the learning of NAC. The process of simulated annealing can be described as a physical model
of annealing, where a metal object is first heated and then slowly cooled down to minimize
the system energy. Here, we have implemented the procedure by Mathematica 10, but the
interested readers can learn the details of simulated annealing from the study of Ledesma et
al. [29].

Example 1:
Consider the following Riccati differential equation with initial condition as:

a"y(t)

e +y*(t)-1=0, y(0)=0, 0<a<l

The exact solution for a=1 is given by the following;:

e -1
y(t)_62t+1

The above fractional Riccati differential equation is solved by implementing the ChSANN and
LSANN algorithms for various values of a and the results are compared with several methods
to exhibit the strength of proposed neural network algorithms. The ChSANN and LSANN
methods are employed on the above equation for a=1 with 20 equidistant training points and
6 NAC and attained the mean square error up to 5.501631x 10 %and 1.21928 x10™ for ChSANN
and LSANN, respectively. Figure 2 shows the combined results of ChSANN for different

0.7 -
a=0.5,0.75,0.9 and 1
0.6 -
0.5
0.4
0.3
(x)
0.2

0.1

0.0 0.2 0.4 fd 0.6 0.8 1.0

Figure 2. ChSANN results at different values of @ =1.
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values of a. Table 1 depicts the comparison of results obtained from both the methods with
exact solution and the absolute error values for both the methods. Absolute error (AE) values
for ChSANN and LSANN can be viewed in Table 1 but can be better visualized in Figure 3.
Implementation of ChSANN and LSANN for a=0.75 with 10 equidistant training points and
6 NAC on the above equation gave the mean square error up to 1.66032x 10~ for ChSANN and
4.8089x107 for LSANN. Table 2 shows the numerical comparison for a=0.75 with 10 equidis-
tant training points of ChSANN and LSANN with the methods in [13, 14], while Tables 3 and
4 demonstrate the numerical comparison of the proposed methods with the methods in [7, 13,
14] for a=0.5and a=0.9 correspondingly. Numerical values of ChSANN for a=1 at t=1 are

presented in Table 5.

x Exact ChSANN LSANN AE of ChSANN AE of LSANN
0.05  0.049884 0.0499572 0.0499441 1.20167 x 10°® 1.49267 x 10°°
0.10  0.099668 0.0996676 0.0996552 4.32269 x 107 1.27675 x 107°
0.15  0.148885 0.148884 0.148876 1.13944 x 10°® 9.07723 x 10°°
0.20  0.197375 0.197372 0.197367 2.91448 x 10°° 7.92946 x 10
0.25  0.244919 0.244915 0.244909 413612 x 10°° 9.23796 x 10°®
0.30  0.291313 0.291309 0.291301 3.63699 x 10 1.12070 x 107
035 0.336376 0.336374 0.336363 1.41863 x 10°® 1.22430 x 10°°
0.40  0.379949 0.379949 0.379937 1.42762 x 10°° 1.17881 x 10°®
0.45 0.421899 0.421902 0.421889 3.33093 x 10°¢ 1.03088 = 107
050  0.462117 0.462117 0.462108 3.05535 x 10°¢ 8.76900 x 10°®
0.55  0.500520 0.500521 0.500512 3.81254 x 10°¢ 7.95700 x 10°°
0.60  0.537055 0.537046 0.537042 3.62984 x 10°° 8.00729 x 10
0.65 0.571670 0.571663 0.571662 6.95133 x 10°° 8.33268 x 10°¢
0.70  0.604368 0.604360 0.604360 7.47479 x 10 8.04113 x 10°¢
0.75  0.635149 0.635145 0.635142 4.22458 x 107 6.62579 x 10
0.80  0.664037 0.664038 0.664032 1.57001 x 10°® 4.48924 x 10°¢
0.85  0.691069 0.691076 0.691067 6.23989 x 10°¢ 2.58549 x 10°¢
0.90 0.716298 0.716303 0.716298 5.13615 x 10°° 2.66632 x 107
095 0.739783 0.739780 0.739793 3.29187 x 10°¢ 9.67625 x 107
1.00 0.761594 0.761584 0.761644 9.94216 x 10°° 4.97369 x 107

Table 1. Numerical comparisons of ChRSANN and LSANN values with exact values for fractional Riccati differential

equation.
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Figure 3. Absolute error of ChSANN and LSANN at & =1 for test example 1.

x ChSANN LSANN IABMM [14] EHPM [14] MHPM [7] Bernstein [13]
0 0 0 0 0 0 0

0.2 0.30018 0.29937 0.3117 0.3214 0.3138 0.30997

0.4 0.47512 0.47486 0.4885 0.5077 0.4929 0.48163

0.6 0.59334 0.59320 0.6045 0.6259 0.5974 0.59778

0.8 0.67572 0.67571 0.6880 0.7028 0.6604 0.67884

1.0 0.73748 0.73430 0.7478 0.7542 0.7183 0.73683

Table 2. Numerical comparison for & =0.75.

x ChSANN LSANN MHPM [7]

0 0 0 0

0.1 0.299658 0.299416 0.273875
0.2 0.422837 0.422808 0.454125
0.3 0.494204 0.494145 0.573932
0.4 0.545856 0.545773 0.644422
0.5 0.585660 0.585619 0.674137
0.6 0.616648 0.616647 0.671987
0.7 0.641558 0.641543 0.648003
0.8 0.662486 0.662452 0.613306
0.9 0.681101 0.681237 0.579641
1.0 0.702813 0.703857 0.558557

Table 3. Numerical comparison for & =0.5.
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x ChSANN LSANN IABMM [14] EHPM [14] MHPM [7] Bernstein [13]
0 0 0

0.2 0.234602 0.236053 0.2393 0.2647 0.2391 0.23878

0.4 0.419229 0.419898 0.4234 0.4591 0.4229 0.42258

0.6 0.563627 0.564474 0.5679 0.6031 0.5653 0.56617

0.8 0.672722 0.673241 0.6774 0.7068 0.6740 0.67462

1.0 0.753188 0.755002 0.7584 0.7806 0.7569 0.75458

Table 4. Numerical comparison for & =0.9.

No of NAC No of training points Mean square error y(t) Absolute error
4 10 9.7679 x 10°° 0.760078 1.51570 x 10°®
5 20 2.3504 x 107 0.761644 5.02121 x 10°°
6 20 5.5016 x 107 0.761584 9.94216 x 10°°

Table 5. Numerical values of ChRSANN at f=1 and for a=1.

Example 2:

Consider the nonlinear Riccati differential equation along with the following initial condition:

d“y(t)
dat®

+y2(t)—2y(t)—1:0, y(O)zO , 0<a <l

The exact solution when a=1is given by [7]:

J’(f)=1+\/2_tanh(\/2_t+%log{g;1j]

ChSANN and LSANN algorithms are executed on the above test experiment with 6NAC, a=1
and 20 equidistant points that gave the mean square error up to 1.6127x10"and 4.68641x107°
for ChSANN and LSANN, respectively. Table 6 shows the absolute errors and the numerical
comparison with exact values for both the methods, while graphical comparison can be better
envisioned through Figure 4. Tables 7 and 8 display the numerical comparison of the proposed
methods with the results obtained in [7] for a=0.75and [13] for a=0.9, respectively, whereas
the mean square error, number of training points, and NAC for different values of a are
presented in Table 9. The effects on accuracy of results with variable NAC and training points
can be understood through Table 10.
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x ChSANN LSANN Exact AE of ChSANN
0.05 0.052620 0.053034 0.052539 8.0725 x 10°°
0.10 0.110385 0.110899 0.110295 8.9742 x 10°°
0.15 0.173488 0.173936 0.173419 6.8944 x 10~
0.20 0.242027 0.242359 0.241977 5.0509 x 10°°
0.25 0.315977 0.316226 0.315926 5.0577 x 10
0.30 0.395175 0.395419 0.395105 6.9946 x 10°°
0.35 0.479313 0.479634 0.479214 9.9086 x 10°°
0.40 0.567937 0.568390 0.567812 1.2488 x 10
0.45 0.660455 0.661048 0.660318 1.3690 x 10*
0.50 0.756146 0.756840 0.756014 1.3149 x 10*
0.55 0.854184 0.854907 0.854071 1.1284 x 10™*
0.60 0.953657 0.954329 0.953566 9.0888 x 10°°
0.65 1.053601 1.054165 1.053524 7.6914 x 10
0.70 1.153027 1.153472 1.152949 7.8337 x 107
0.75 1.250962 1.251332 1.250867 9.4552 x 10°°
0.80 1.346479 1.346852 1.346364 1.1576 x 10™*
0.85 1.438740 1.439172 1.438614 1.2625 x 10
0.90 1.527024 1.527452 1.526911 1.1292 x 10*
0.95 1.610762 1.610859 1.610683 7.8852 x 107
1.00 1.689559 1.688555 1.689498 6.1063 x 10°°

Table 6. Numerical comparison of ChRSANN and LSANN values with exact values at @ =1 for fractional Riccati
differential equation test example 2.

Figure 4. Absolute error of ChSANN and LSANN at @ =1 for test example 2.
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x ChSANN LSANN MHPM [7]

0 0 0 0

0.1 0.22983 0.21885 0.216866
0.2 0.46136 0.45018 0.482292
0.3 0.69478 0.68545 0.654614
0.4 0.92279 0.91423 0.891404
0.5 1.13531 1.12664 1.132763
0.6 1.32357 1.31532 1.370240
0.7 1.48314 1.47660 1.594278
0.8 1.61485 1.61045 1.794879
0.9 1.72401 1.71972 1.962239
1.0 1.81844 1.80882 2.087384

Table 7. Numerical comparison for a=0.75.

x ChSANN LSANN Reference [13]
0.2 0.31018 0.30567 0.314869
0.4 0.69146 0.68661 0.697544
0.5 0.89758 0.89230 0.903673
0.6 1.10220 1.09708 1.107866
0.8 1.47288 1.46889 1.477707
1.0 1.76276 1.76355 1.765290

Table 8. Numerical comparison for =0.9.

a ChSANN LSANN

NAC Training points MSE NAC Training points MSE
1 6 20 1.6127 x 1077 6 20 4.68641 x 10°°
09 6 10 7.2486 x 107 6 10 7.36985 x 10
075 6 20 6.9229 x 107 6 10 1.91318 x 10°°

Table 9. Value of mean square error at different values of .

No. of NAC No of training points MSE y(t) AE

4 10 1.1531 x 10°® 1.67997 9.52973 x 107
5 10 4.9226 x 107 1.69016 6.61306 x 10
6 20 1.6127 x 107 1.68956 6.10629 x 10

Table 10. Numerical values of ChSANN at t=1 and for a=1.
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4. Results and discussion

In this chapter, two new algorithms have been developed and verified for the Riccati differ-
ential equation with fractional order, based on the functional neural network, Chebyshev and
Legendre polynomials and simulated annealing for fractional differential equations. Substan-
tiation of the methods is carried out by examining two benchmark examples that were already
solved by some previously renowned methods. The numerical evaluation with previously
obtained results for fractional-order derivative exhibited the achievement of proposed
methods.

For test example 1, better results with less value of mean square error were obtained for each

method. Comparison of the mean square errors 5.501631x10~° and 1.21928 x10~ for ChSANN
and LSANN, respectively, showed that the mean square error is less for LSANN when a=1.
However, it can be observed from Table 1 and Figure 2 that ChSANN gave the better results
with slightly more mean square error than LSANN. It can be noted from Table 5 that better
results can be attained with variable number of weights and training points, while the trend
witnessed from Table 5 indicated that for ChSANN, decreasing value of mean square error is
directly proportional to the absolute error for a=I.

The test example 2 showed quite similar trends as of example 1. Tables 6 and 9 exhibited that
for a=1, less mean square error for ChSANN than LSANN was noted due to which, more
accurate results were achieved by ChSANN at a=0.9 as compared to LSANN that can be
viewed in Figure 4. The results obtained for fractional values of derivatives are compared with
MHPM for a=0.75 and a collocation-based method of Bernstein polynomials for a=0.9 as
presented in Tables 7 and 8. The comparison showed that the results achieved by ChSANN
and LSANN are quite similar to the results obtained by MHPM and collocation-based method
of Bernstein polynomials. However, according to the observations from the case of a=1, it can
be assumed that the results obtained for a=0.75 will be accurate up to 2-3 decimal places

because the MSE was detected up to 6.9229x10° for ChSANN and 1.91318x10° for LSANN.
While the results achieved for @ =0.9 will be accurate up to 3—4 decimal places as the MSE was

noticed up to 7.2486x10° for ChSANN and 7.36985x 10 for LSANN.

The methods proposed in this study are capable of handling highly non-linear systems. Both
the proposed neural architectures are less computational and exhaustive than MLP. With ease
of computation, the suggested activation function has made fractional differential equations
possible to solve. Training of NAC by simulated annealing with Chebyshev and Legendre
neural architecture minimized the MSE up to a tolerable level that leads to more accurate
numerical approximation. Simulated annealing is a probabilistic procedure that is mostly free
of initial values and can easily escape from local optimum to global optimum unlike other
methods. As well as it can successfully optimize the functions with crests and plateaus. The
methods can be enhanced by introducing more advanced optimization techniques. The
motivation behind the work is the successful implementation of neural algorithms in the field
of calculus that gave the solution of fractional differential equations a new direction with ease
of implementation.
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5. Conclusion

In this chapter, ChSANN and LSANN have been developed for fractional differential equa-
tions and successfully employed on two benchmark examples of Riccati differential equations.
The proposed methods gave the excellent numerical approximation of the Riccati differential
equation of fractional order. The most remarkable advantage of the proposed methods is the
accurate prediction of the result for the fractional values of derivative. These procedures are
easy to implement and can be used to find the exact solution in the fractional values of
derivative. ChSANN displayed more accurate results than LSANN for the similar applied
conditions. Both the proposed algorithms are non-iterative and can be implemented through
mathematical software and Mathematica 10 was used in this study to obtain all the results
displayed in Tables 1-10 and Figures 2—4.
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