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Abstract

The insufficiency of labeled data is an important problem in image classification such
as face recognition. However, unlabeled data are abundant in the real-world applica‐
tion. Therefore, semisupervised learning methods, which corporate a few labeled data
and a large number of unlabeled data into learning, have received more and more
attention in the field of face recognition. During the past years, graph-based semisu‐
pervised learning has been becoming a popular topic in the area of semisupervised
learning.  In  this  chapter,  we  newly  present  graph-based  semisupervised  learning
method  for  face  recognition.  The  presented  method  is  based  on  local  and  global
regression regularization. The local regression regularization has adopted a set of local
classification functions to preserve both local discriminative and geometrical informa‐
tion, as well as to reduce the bias of outliers and handle imbalanced data; while the
global regression regularization is to preserve the global discriminative information and
to calculate the projection matrix for out-of-sample extrapolation. Extensive simula‐
tions based on synthetic and real-world datasets verify the effectiveness of the proposed
method.

Keywords: Semi-supervised Learning, Dimensionality Reduction, Local and Global
Regressions, Face Recognition, Transductive and Inductive Learning

1. Introduction

In the real world, there are ever-increasing vision face data generated from Internet surfing and
daily social communication. These metadata can be labeled or unlabeled, and accordingly be
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utilized for image retrieval, summarization, and indexing. To handle these datasets for realizing
the above tasks, automatic annotation is an elementary step, which can be formulated as a pattern
classification problem and accomplished by learning-based techniques.  Traditionally,  the
supervised-learning-based methods, such as Linear discriminant analysis (LDA) and Support
Vector Machine (SVM), can deliver satisfactory recognition accuracy given that the number of
labeled data is adequate. But labeling a huge amount of data is expensive and time consum‐
ing. On the other hand, the unlabeled data are sufficient and can be easily obtained from real-
world application. Therefore, semisupervised learning-based methods that utilize a few of
labeled data and a huge amount of unlabeled data are becoming more and more popular than
only relying on the supervised learning methods [27–33].

Recently, since two pioneer semisupervised methods, i.e., Gaussian Fields and Harmonic
Functions (GFHF) and Learning with Local and Global Consistency (LLGC), have been
proposed in 2003 and 2004, respectively, graph-based semisupervised learning methods have
received considerable research interest in the area of semisupervised learning. These methods
usually represent both labeled and unlabeled sets by a graph, and then utilize their graph
Laplacian matrix to characterize the manifold structure. Finally, different learning tasks such
as image classification, clustering, and dimensionality reduction are performed on the graph
Laplacian matrix. For example, GFHF and LLGC work in a transductive way by directly
propagating the class label information from the labeled set to the unlabeled set along the
graph, where the labels of unlabeled data can be estimated. Other similar works include
Random Walk [5] and Special Label Propagation (SLP) [8]. However, the transductive learning
methods cannot predict the class labels of new-coming samples, hence suffering the out-of-
sample problem.

To solve the out-of-sample problem, inductive learning methods are proposed during the past
decades. Typical methods for inductive learning are Manifold Regularization (MR) [1] and
Semisupervised Discriminant Analysis (SDA) [2]. The MR tries to learn a projection matrix by
adding the graph Laplaican regularized term to the cost function of original supervised
methods. Therefore, both unlabeled and new-coming data can be cast into a low-dimensional
subspace, hence the out-of-sample problem can be naturally solved [7, 9, 10, 16]. For example,
MR has extended the regularized least square and SVM to their semisupervised learning
extensions, i.e., Laplacian regularized least squares (Lap-RLS) and Laplacian SVM by adding
a manifold regularized term. Similarly, Cai et al. [2] have extended LDA to SDA for semisu‐
pervised dimensionality reduction.

It should be noted that the success of semisupervised learning is based on how to utilizing the
unlabeled data for characterizing the distribution of labels in data space. Several methods
including Locally Linear Reconstruction [11, 12, 20], Local Regression and Global Alignment
[13, 14], and Local Spline Regression [18, 19] have been developed to discover the intrinsic
manifold structure of data. However, when we do semisupervised classification, the data
points lying far away the data manifold are noisy for learning the correct classifier and can
deteriorate the classification performance. On the other hand, sampling in real-world appli‐
cations is usually not uniform. As a result, the sampled data may be imbalanced or with multi-
density distribution. None of the aforementioned methods focus on solving the two problems.
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In this chapter, we develop an effective semisupervised dimensionality reduction method, i.e.,
Local and Global Regression (LGR), for face recognition with outliers and imbalanced face
data. In order to both handle transductive and inductive learning problems, LGR aims to
sufficiently learn the classification function by using all data. In detail, the presented method
first extends the original supervised regression term to a supervised loss term and a global
regression regularized term, where the loss term is to fix the inconsistency between the
predicted labels and initial labels, while the global regression term is to sufficiently learn the
classification function using all training data and to obtain the projection matrix for handling
out-of-sample problem. Furthermore, to capture the local discriminative information, a set of
weighted local classification functions are adopted for each dataset to estimate the labels of its
nearby data, where the weight is to reduce the outliers bias and to deal with imbalanced data.
Thus, both local and global discriminative information of dataset can be preserved by the
proposed LGR method.

The main contributions of this work are as follows: (1) we propose a new effective method for
semisupervised dimensionality reduction, which can handle both transductive and inductive
learning problems; (2) we develop a graph Laplacian matrix, which can characterize both local
geometrical and discriminative information, as well as reduce the bias of outliers and handle
imbalanced data; (3) we have also established the connection between the proposed method
and other state-of-the-art methods. Theoretical analysis has shown that many popular semi‐
supervised methods such as LRGA can be viewed as the special cases of the proposed method.
Extensive simulations based on synthetic and real-world datasets verify the effectiveness of
the proposed method.

This chapter is organized as follows. In Section 2, the notations and motivations are first given.
We then propose our LGR method for both handling transductive and inductive learning
problems. Finally, we also establish the connection between the proposed method and other
state-of-the-art methods. Section 3 demonstrates the extensive simulations and the final
conclusions are drawn in Section 4.

2. The proposed method

2.1. Notation and motivation

In semi-supervised learning, we define X = {X l , Xu}= {x1, x2, …, xl+u}∈R D×(l+u) be the data
matrix where the first l and the remaining u columns are the labeled and unlabeled samples,
respectively; Y l = {y1, y2, …, yj}∈R c×l  be the binary label matrix with each column yj repre‐
senting the class assignment of xj, i.e. yij =1, as the class matrix, where yij =1, if xj belongs to the
ith class; yij =0, otherwise, D and c are the numbers of features and classes, respectively. We
also let L = D −W  be the graph Laplacian matrix associated with both labeled and unlabeled
sets [17],where W is the weight matrix defined as wij =exp(− ∥ xi − xj∥

2 / 2σ 2), if xi is within the k
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nearest neighbor of xj or if xj is within the k nearest neighbor of xi; wij =0, otherwise, D is a

diagonal matrix satisfying Dii =∑ j=1
l+u wij.

Most semi-supervised learning methods utilize the Gaussian function based affinity matrix.
As point out in references [11, 12], the Gaussian function based affinity matrix is found to be
oversensitive to the Gaussian variance; only a slight variation on the variance may affect the
results dramatically. Thus, Gaussian function based affinity matrix is not a good method for
handling image classification. The method developed should be robust to the parameters.

Second, when carrying out semisupervised classification, the samples lying far away from the
data manifold are outliers which may lead to learn an incorrect classifier and deteriorate the
classification performance. Considering Figure 1(a and b) as examples, we generalize a two-
cycle and two-moon datasets with outliers. Considering the distribution of two data, the ideal
decision boundary should lie in the gap between two data sub-manifolds. However, since there
are many outliers around the data manifold, these outliers will blur the clear distribution of
the whole data and are noisy to learn a correct classifier. Therefore, it is very important to
develop a method that can adaptively reduce the effects of outliers.

Third, in real-world applications, sampling is usually not uniform. Consequently, the sampled
data can be imbalanced or follows multi-density distribution. Figure 1(c) shows a two-plate
dataset with two classes: each class follows a Gaussian distribution but with different cores
and density. Obviously, the data points (left data points) in the high-density area will take
more important part than those (right data points) in the low-density area when to learn a
classifier, which may cause incorrect classification results. The method developed should
handle such imbalanced data with multi-density distribution.

The method developed should also solve the out-of-sample problem. To address the above
problems, we, in this paper, propose a new semisupervised learning method, which is based
on local and global regression.

Figure 1. (a) Two-cycle dataset; (b) two-moon dataset; (c) two-plate dataset.
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2.2. Local and global regression

We start from the supervised least-squares regression. The least-square regression is to fix a
linear model yj =V T xj + b T  by regressing X on Y:

2 2
1

min ,
l T T

j j t Fj F
V x b y Va

=
+ - +å (1)

where V is the projection matrix that is to project the new-coming samples and b is the bias
term. Although the label yj of xj ( j ≤ l) has already been known, since l is usually very small,
the classification function zj =V T xj + b may not be sufficiently trained due to the small sample

size. To solve this problem, we introduce Z = {Zl , Zu}= {z1, z2, …, zl+u}∈R c×(l+u) as a set of

estimated labels to play the same roll by replacing V T xj + b with zj and add a regression term
to Eq. (1) as follows:

22 2
1 1

min .
l l u T T

i i r j j FFi j F
z y V x b z Va h

+

= =

æ ö
- + + - +ç ÷

è øå å (2)

According to Eq. (2), the classification function zj =V T xj + b can be sufficiently learned by using
all the predicted labels and to fix to their original labels. In other meaning, the global discrim‐
inative information can be preserved by the regression term of Eq. (2). Furthermore, to grasp
the local discriminative information, we induce a local regression function for each data sample
xj. We denote Nk (xj) as the k neighborhood set of xj with itself, X j = {x j0

, x j1
, …, x jk −1}∈R D×k  as

the local data matrix formed by all samples in Nk (xj), where { j1, j1, …, jk } is the index set of

Nk (xj) and j1 = j, x j1
= xj. We also denote Zj = {z j0

, z j2
, …, z jk −1}∈R c×k  as the local low-dimensional

label matrix in Nk (xj). Then, the local regression function for all data samples can be given as
follows:

21 2
, , 1 0

min .
j j j i i

l u k T T
Z V b j j j j j Fj i F

V x b z Vh
+ -

= =

æ ö
+ - +ç ÷

è øå å (3)

However, minimizing the above total errors over all data samples tends to force each local
error α ji

= V j
T x ji

+ bj
T − z ji F  similar to each other. Given some cases that the dataset includes

some outliers, assuming all the local regression errors equally may emphasize the effects from
outliers and weaken the effects from normal data. In this section, to weaken the effects from
outliers, we add a weight vector Γj = {τ j1

, τ j2
, …, τ jk }∈R 1×k  for each local data patch xj in order

to penalize each regression error, which can be shown as
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21 2
, , 1 0

min .
j j j i i i

l u k T T
Z V b j j j j j j Fj i F

V x b z Vt h
+ -

= =

æ ö
+ - +ç ÷

è øå å (4)

In the following section, we will discuss how to select the weight τ ji
. Our motivation is to let

the weight of local error α ji
 be large given x ji

 are the normal data and in the contrast to let the

weight be small given x ji
 is outlier. In detail, to obtain local projection matrix Vj and bias bj, we

perform derivatives to Eq. (4) w.r.t. Vj and bj to zeros. Then, Eq. (4) will be reduced to

( ) ( )1
min min ,

l u T T T
Z j j j Z dj

Tr ZS L S Z Tr ZL Z
+

=
=å (5)

where L j = H j −H j X j
T (X jH j X j

T + ηI )−1X jH j; Sj∈R (l+u)×k  is the selected matrix satisfying

(Sj) pq =1, if xp is the qth neighbors to xp; (Sj) pq =0, otherwise, L d =∑ j=1
l+u (Sj L jSj

T ) is the local graph

Laplacian matrix. Similarly, by setting the derivatives of Eq. (2) w.r.t. V and b to zero, we have

( )
( ) 1 ,

T T T

T T
c c

b eZ eX V ee

V XL X I XL Zh
-

ì = -ï
í
ï = +î

(6)

where e∈R 1×(l+u) is a unit vector and L c = I − e T e / ee T  is used for centering the samples by
subtracting the mean of all samples. With b and V in Eq. (6), the global regression term in Eq.
(2) can be written as

( )2 2 ,T T T
gFF

V X b e Z V Tr ZL Zh+ - + = (7)

where L g = L c − L c X T (X L c X T + ηI )−1X L c is the global graph Laplacian matrix. By integrating
Eq. (7) with Eq. (2), we formulate our method as follows:

( ) ( ) ( )( ) ( ) ( )min ,T T T
Z m d r gJ Z Tr Z Y U Z Y Tr ZL Z Tr ZL Za a= - - + + (8)

where U ∈R (l+u)×(l+u) is the diagonal matrix with the first l and the remaining u diagonal
elements as 1 and 0, respectively; the second term describes the local discriminative structure
of data; the third term describes the global discriminative structure; and αm and αr  are the two
balancing parameters. Since both local and global regressions are regularized in our method,
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we refer our method as LGR. Finally, by performing derivatives of J (Z ) w.r.t. z to zero, we can
calculate the solution of z as

( ) 1
.m d r gZ YU U L La a

-
= + + (9)

Then, we can obtain the optimal projection matrix and bias term by replacing z in Eq. (6).

2.3. Weight selection for bias reduction

In this section, we consider how to select the weights in the proposed method suggested in
Section 2.2. Note, our goal of using the weights is to weaken the effects of outliers and the
weight τ ji

 should be set to a small value if x ji
 is an outlier. Then we can make the weight τ ji

inversely proportional to the distance between x ji
 and a center μj, i.e., τ ji

=1 / x ji
−μj . Such a

center is expected to represent the idea center of data in the neighborhoods of xj and should
be far away from outliers. Hence, the weight τ j1

 is usually small if x ji
 is an outlier. But this

center μj is unknown. We next present an iterative approach to calculate μj and the weight τ j1

simultaneously. The approach is converged and proved afterward.

1. Initialize μj
0 as the average center of all data points in the local patch of xj.

2. Update τ ji
t  for each x ji

 as τ ji
=1 / ∥ x ji

−μj
t−1∥  and form the weight matrix Γj

t .

3. Update μj
t =∑i=0

k−1 τ ji
t x ji /∑i=0

k−1 τ ji
t = X jΔj

te / e T Δj
te.

4. Iterate steps 2 and 3 until ∑i=0
k−1 ∥ x ji

−μj
t ∥  no changes. Outputτ ji

t .

Table 1. Iterative approach for calculating the weight.

Table 1 shows the basic steps of the iterative approach. Following Table 1, the weight τ ji
t  at

each iteration is updated from the last μj
t−1 and the newly updated center μj

t  is calculated from
current τ ji

t . The whole iterations are continued until convergence, so that the weight τ ji
t  can be

adaptively and iteratively re-weighted to minimize ∑i=0
k−1 ∥ x ji

−μj
t ∥ . In addition, as can be seen

in simulation of Figure 2, the updated μj
t  will be adaptively re-weighted to be close to the main

center of most data points, while the updated τ ji
t  will be weaken if x ji

 is outliers or be strength‐
ened if x ji

 is close to the ideal center. We next discuss a theorem to guarantee the convergence
of the approach of Table 1.

Theorem 1. The approach in Table 1 will monotonically decrease the objective function
∑i=0

k−1 ∥ x ji
−μj

t ∥  until convergence.
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Proof. According to step 3 in Table 1, we know that

21

0
argmin ,t

i ij

kt t t
j j j ji F

xmm t m
-

=
= -å (10)

where τ ji
=1 / ∥ x ji

−μj
t−1∥  as in step 2 of Table 1. Following Eq. (10), we have

2 21 11 1 1
0 0

.
i i i i

k kt t t t
j j j j j j j ji i
x x x xm m m m

- -- - -
= =

ì ü ì ü
- - £ - -í ý í ý

î þ î þå å (11)

Based on the lemma in reference [6] that 2 a−a / b≤2 b−b / b holds for any two nonzero value,
we have

2 21
1 1 1

1 10 0
2 2 .i i

i i

i i

t t
k kj j j jt t

j j j jt ti i
j j j j

x x
x x

x x

m m
m m

m m

-
- - -

- -= =

ì ü ì ü
- -ï ï ï ï

- - £ - -í ý í ý
- -ï ï ï ï

î þ î þ

å å (12)

By summing Eqs. (11) and (12) in two sides, we have

1 1 1
0 0

.
i i

k kt t
j j j ji i
x xm m

- - -
= =

- £ -å å (13)

Eq. (14) indicates that the objective function ∑i=0
k−1 ∥ x ji

−μj
t ∥  is monotonically decreased in each

iteration. Since there is a lower bound in the objective function (∑i=0
k−1 ∥ x ji

−μj
t ∥ ≥0), the iterative

approach will certainly converge. We thus prove Theorem 1. Finally, by incorporating the
weight for reducing the bias for each local regression error into Eq. (4), we can reduce the bias
of outliers of data samples.

Here, in order to show the convergence of the approach, we simply show an example in Figure
2(a), where we generalize eight normal data points and two outliers in R2. Figure 2(b) shows
the converged route of μ, where we start μ 0 as the average mean of all data points and mark
μ t  in each iteration with t. From Figure 2(b), we can observe that the optimal solution μ t  will
iterative close to the main center of normal data while be far away from the outliers. Figure
2(c) shows the converged curve of approach as discussed in Table 1. From Figure 2(c), we can
observe that the objective ∑i=0

k ∥ xi −μ t ∥  will monotonically decrease until convergence. Figure
2(d) shows the converged weight of data points. From Figure 2(d), we can observe the weights
of normal data points are strengthen while those of outliers can be reduced.

Face Recognition - Semisupervised Classification, Subspace Projection and Evaluation Methods36



Figure 2. The convergence of the approach in Table 1: (a) original data, (b) the converged route of mean, (c) the con‐
verged curve of objective, (d) the converged weight.

2.4. Normalizing graph Laplacian matrix

It can be easily proved that Ld is a graph Laplacian matrix ( see the Appendix). But Ld may not
be a normalized graph Laplacian matrix. As pointed in references [8, 23], the normalization
can strengthen the local regressions in the low-density region and weaken those in the high-
density region. Since the data sampling is usually uniform in practice, normalization is useful
for handling the case when the density of dataset varies dramatically. In this section, we show
that by choosing a special weight vector Γj for each Xj, Ld can be a normalized graph Laplacian
matrix.

Specifically, let us consider a data sample xj and let Kl be the index set of those neighborhoods;
set Nk (xj) contains xj as a neighbor of xj, i.e., if j∈K l , then xl∈Nk (xj), where xl can be denoted
as x ji

 in the neighborhood set Nk(xj), and i = i(l , j) is the local index depending on l and j.
Obviously, if xl is in the low-density area, it has sparse neighbors and Kl is relatively small. As
a result, its connections to other samples will be weaker than that which has large Kl. Here, to
strengthen the connections of samples in the low-density area, we need to normalize the
weights corresponding to each Kl. Let τj

l  be the weight of x ji
 and l be the global index of x ji

.

We then define τ ji
=τj

l  as follows:

.
i

l

l
jl

j j l
ii K

t
t t

tÎ

= ¬
å

(14)
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Hence, based on this definition, we have the following theorem:

Theorem 2. With the normalization for each w ji
 as in Eq. (14), Ldis both graph Laplaican matrix and

normalized graph Laplacian matrix.

Proof. The proof that Ld is a graph Laplacian matrix can be seen in the Appendix. In order to

prove Ld is a normalized graph Laplacian matrix, we need prove Ld can be reformulated in the

form of L d = I −Wd  and the sum of each row or column of the affinity matrix Wd is equal to 1.

Note L d =∑ j=1
l+u (Sj L jSj

T ) and L j = H j −H j X j
T (X jH j X j

T + ηI )−1X jH j, where

H j =Δj − (Δjek
T ekΔj) / (ekΔjek

T ), we first define the affinity matrix Wd as follows:

( )1 ,l u d T
d j j jjW S W S+

==å (15)

where each W j
d  satisfies

( ) ( ) 1( ) .d T T T T
j j k k j k j k j j j j j j jW e e e e H X X H X I X Hh -= D D D - + (16)

Then, Ld can be reformulated as

( ) ( )1 1 .l u l uT d T
d j j j j j jj jL S S S W S+ +

= == D -å å (17)

Here, for each SjΔjSj
T , we have Sj

T e T = ek
T ⇒SjΔjSj

T e T =SjΓj
T , where SjΓj

T ∈R (l+u)×1 is a column

vector by putting each τj
l to its global index l corresponding to x ji

. We thus have

( ){ } ( )1 1 .l u l uT T T T
j j j j jj jS S e S e+ +

= =D = G =å å (18)

The second equation holds as ∑i∈K l
τi

l =1; hence, the sum of all SjΓj
T  in each element is equal

to 1. Then, following Eq. (18), it indicates ∑ j=1
l+u (SjΔjSj

T ) is an identity matrix, i.e.,

∑ j=1
l+u (SjΔjSj

T )= I . Then based on the above analysis, we can reformulate Ld in the form of

L d = I −Wd . In addition, since Ld is a graph Laplaican matrix (as proved in the Appendix), it

satisfies L de T =0, then we have
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=
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å å

å å

å
(19)

which indicates that the sum of each column or row of Wd is equal to 1. We thus prove the
theorem. Theorem 2 indicates that by choosing a special weight vector τ ji

 for each x ji
, Ld can

be both graph Laplacian matrix and normalized graph Laplacian matrix.

Here, it should be noted that if xl is an outlier, its local weights can be significantly de‐
creased, whether taking xl as a neighbor of itself or of other data points. Otherwise, the nor‐
malization does not change the magnitude of its original local weights. For some data points
in the low-density area, normalizing the weights can increase the information convection
through those points. Finally, the basic steps of the proposed LGR are given in Table 2 and
the flowchart by utilizing the proposed LGR method for face recognition is given in Figure
3.

Input: Data matrix X ∈R D×(l+u), the initial label matrix Y ∈R c×(l+u), and other related parameters.

Output: The projection matrix V *∈R D×d  and estimated label matrix Z *∈R c×(l+u).

Algorithm:

1. Determine the weight for each local patch based on Table 1.

2. Normalize the weight as in Eq. (14).

3. Form local regression regularized term Ld as in Eq. (5) with special local weight vector.

4. Form global regression regularized term Lg as in Eq. (7).

5. Solve the regression problem as in Eq. (8):

( ) ( ) ( )( ) ( ) ( )min ,T T T
Z m d r gJ Z Tr Z Y U Z Y Tr ZL Z Tr ZL Za a= - - + +

and calculate estimated label matrix Z * =YU (U + αmL d + αr L g)−1 as in Eq. (9). Output

V * = (X L c X T + ηI )−1X L cZ
*T .

6. Calculate the projection matrix V* by replacing z* to Eq. (6) as V * = (X L c X T + ηI )−1X L cZ
*T . Output V*.

Table 2. The proposed LGR.
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Figure 3. Flowchart by utilizing the proposed LGR for face recognition.

2.5. Discussion and relative work

In this section, we discuss the relationship of Learning from Local and Global Information
(LLGDI) with other state-of-the-art methods including MR, Flexible Manifold Embedding
(FME), and Local Regression and Global Alignment (LRGA).

2.5.1. Relationship to manifold regularization (Lap-RLS/L) [1]

The goal of MR [1] is to develop a semisupervised learning strategy by extending the original
supervised methods, such as RLS and SVM to their semisupervised learning versions, i.e.,
Laplacian RLS and Laplacian SVM. For example, Lap-RLS/L is to fix a linear model
yj =V T xj + b T  by regressing X on Y and simultaneously to preserve the manifold smoothness
in the embeddings of both the labeled and the unlabeled set. The objective function of Lap-
RLS/L can be given as

( ) ( )2 2
1

, min .
l T T T T

j j t mFj F
J V b V x b y V Tr V XLX Va a

=
= + - + +å (20)

However, it can be observed that Lap-RLS/L cannot sufficiently train the classification function
due to the utilization of labeled samples, though it uses manifold term as complementary.
Hence, the proposed LGR is superior to Lap-RLS/L.

2.5.2. Relationship to FME [7, 10]

Nie et al. has proposed another unified framework, i.e., FME [7, 10], for semisupervised
dimensionality reduction, in which they verify that LLGC, GFHF, and Lap-RLS/L are only
special cases in the framework. The basic objective function of FME can be given as

( ) ( ) 22 2
1

, , min .
l T T T

i i m r FFi F
J V Z b z y Tr ZLZ V X b e Z Va a h

=

æ ö
= - + + + - +ç ÷

è øå (21)

It can be observed that Eq. (22) is almost the same as the objective function of LGR in Eq. (10),
when we consider L d → L . However, LGR has utilized a weighted and normalized local
discriminative Laplacian matrix to preserve manifold and discriminative structure in a dataset.
This is a better way than only relying on neighborhood graph.
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2.5.3. Relationship to LRGA [13, 14]

Recently, Yang et al. has proposed semisupervised transductive learning method, namely,
LRGA [13, 14], for multimedia retrieval. They share the similar concept with the proposed
method. The basic objective function of LRGA can be given as

( )
2 22

, , 1 1 1
min .

j j i i

l l u k T T
Z V b i i m j j j j jF Fi j i F

J Z z y V x b z Va h
+

= = =

æ ö
= - + + - +ç ÷

è øå å å (22)

It can be noted that LRGA is a special case of LGR when αr =0. Therefore, LRGA is only a
transductive learning method and cannot handle the out-of-sample problem, while LGR is a
transductive and inductive learning method. Another superiority of LGR over LRGA is that
LGR has adopted a weighted normalized each local regression term. Thus, as shown in the
simulation results, LLGDI can handle outliers and multi-density dataset remarkably.

3. Simulation results

In this section, we will evaluate the proposed LGR based on three synthetic datasets and two
real-world datasets.

3.1. Synthetic datasets

In this section, we evaluate the performance of the proposed LGR and SLP for transductive
learning. The SLP is an extensive method to GFHF, LLGC, and Random Walk (RW) hence, it
is representative. Here, we utilize two-moon and two-cycle datasets in Figure 1(a and b) for

Figure 4. Toy examples for transductive learning: (a) and (d) the original data of two-moon and two-cycle datasets; (b)
and (e) the results of LGR; (c) and (f) the results of SLP.
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evaluation. Figure 4 shows the results of LGR and SLP for transductive learning. From Figure
4, we can see that LGR can achieve better simulation result than SLP, in a way that less data
are misclassified in LGR than SLP. This indicates the proposed LGR is robust to the outliers.

We also evaluate the inductive performance of the proposed LGR for handling the out-of-
sample problem. Figure 5 shows the gray images of decision surfaces and boundaries learned
by LGR, which are formed as follows: for each pixel, we form the its gray value as the difference
from each pixel to its nearest labeled data of different classes in the reduced subspace. Here,
we set the reduced dimensionality as 1. Then, we form the decision boundaries by the pixels
with the value 0. Following Figure 5, we can observe that the proposed LGR can learn clear
decision boundary that can well separate two classes, which verifies the effectiveness of LGR
for handling the out-of-sample problem.

To show the merit of normalization, we utilize two-plate dataset in Figure 1(c) for evaluation.
Our goal is to show LGR can handle multi-density dataset. Figure 6 shows the gray images of
decision surfaces and boundaries learned by LGR without normalization and LGR with
normalization. From Figure 6, we can observe that LGR without normalization cannot find
proper boundary. However, LGR with normalization can achieve better performance, as there
are less missing-classified data points separated by the decision boundary, which becomes
more distinctive and accurate. The improved results are believed to be due to the fact that
normalization can strengthen the local regressions in the low-density region and weaken those
in the high-density region. This is proved to be advantageous to be used for multi-density
dataset.

Figure 5. Toy examples for inductive learning: decision surfaces and boundaries learned by LGR. (a) and (c) Two-
moon dataset; (b) and (d) two-cycle dataset.
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Figure 6. Gray image of reduced space learned by LGR without normalization and LGR with normalization: two-plate
dataset. (a) Original dataset; (b) LGR without normalization; and (c) LGR with normalization.

3.2. Semisupervised face recognition based on real-world benchmark datasets

For handling the face recognition problem, we use three real-world face datasets to evaluate
the performance of methods, which include UMNIST: cannot find the full name [24], Extended
Yale-B [25], and Massachusetts Institute of Technology Center for Biological and Computa‐
tional Learning (MIT-CBCL) [26] datasets. The UMIST dataset is a multi-view face dataset,
consisting of 1012 images of 20 peoples, each covering a wide range of poses from profile to
frontal views. Therefore, the UMIST has widely been used for general purpose face recognition
under different face poses. The size of each image is 112×92 with 256 gray levels per pixel. In
our simulation, we down-sample the size of each image to 28×23 and no other preprocessing
is performed. The Extended Yale-B dataset contains 16,123 images of 38 human subjects under
9 poses and 64 illumination conditions. Because of the illumination variability, the same object
can appear dramatically different even when viewed in fixed pose. Hence, this is another
challenge for face recognition, and Extended Yale-B dataset are extensively used for testing
appearance-based face recognition methods. Similar to the UMIST dataset, the images are also
cropped and resized to 32×32 pixels. This dataset now has around 64 near frontal images under
different illuminations per individual. The MIT-CBCL dataset provides 3240 synthetic images
rendered from 3D head models of 10 peoples. The head models are generated by fitting a
morphable model to the high-resolution training images. Different from UMNIST dataset, the
MIT-CBCL dataset is based on the 3D morphable model, which is rendered under varying
pose and illumination conditions making the face recognition task more challengeable. The
size of each image is originally 200×200 with 256 gray levels per pixel. In our simulation, we
down-sample the size of each image to 32×32 and no other preprocessing is performed. The
detailed information of dataset and some sampled images of real-world datasets can be shown
in Table 3 and Figure 7. For each dataset, we randomly select 10, 50 and 30 samples from each
class as training samples for UMNIST, Extended Yale-B, and MIT-CBCL datasets. The test set
is then formed by the selected or all remaining samples. The data partitioning for each dataset
is also given in Table 3.

Next, we compare our method with other supervised and semisupervised dimension reduc‐
tion methods. These methods include Regularized Linear discriminant analysis (RLDA), SDA
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[2], Lap-RLS/L [1], least-square solution for solving SDA in Eq. (16) (in Table 1, we refer to it
as LS-SDA) [28], FME [7, 10], and the proposed LGR. Note that Principal Component Analysis
(PCA) is an unsupervised method while RLDA is supervised methods, and the remaining
methods LGR are all semisupervised methods. The simulation settings are as follows: for SDA,
Lap-RLS/L, two parameters, i.e., αt and αm, need to be determined for balancing the trade-off
between the manifold and Tikhonov terms. We use fivefold cross validation to determine the
best values and the candidate set is {10−9, 10−6, 10−3, 100, 103, 106, 109}. The above candidate set
is also used for determining the best value for the Tikhonov term parameter αt in RLDA and
the addition regularized parameter αr in FME and LGR. In order to eliminate the null space
before performing dimension reduction, the training sets in all datasets are preliminarily
processed with PCA operator. Since most of methods, such as RLDA, SDA, Lap-RLS/L and
FME, and the proposed LGR have a limited rank of c–1, we simply reduce the dimensionality
of all methods to c–1. All methods used labeled set in the output reduced subspace to train a
nearest neighborhood classifier in order to evaluate the classification accuracy of test set. We
also compare the performance of nearest neighborhood classifier with other state-of-the-art
methods as a baseline.

Dataset Database Type #Samples #Dim #Class #Training per Class #Test per Class

UMNIST Face 1012 1024 20 20 Remains

Extended Yale-B Face 16123 1024 38 50 Remains

MIT-CBCL Face 3240 1024 10 30 30

Table 3. Dataset information and data partition for each dataset.

Figure 7. Sample images of real-world datasets: (a) UMNIST dataset, (b) Extended Yale-B dataset, (c) MIT-CBCL data‐
set.

The average accuracies over 20 random splits with the above parameters for each dataset are
shown in Table 4. From the simulation results, we can obtain the following observation: (1)
given sufficient labeled samples, all the supervised and semisupervised dimension reduction
methods outperform nearest neighborhood classifier due to the utilization of label information
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and feature extraction; (2) the semisupervised dimension reduction methods are better than
the corresponding supervised methods. For example, SDA outperforms RLDA by about 5–6%
in COIL100 dataset with two labeled samples per class. For other datasets, it can outperform
by 2–3%. This indicates that by incorporating the unlabeled set into the training procedure,
the classification performance can be markedly improved, as the manifold structure embedded
in the dataset is preserved; (3) we also observe that both SDA and the least-square solution in
Table 1 can achieve the same classification results due to the reason as analyzed in Section 3;
(4) the proposed LGR can deliver better accuracies than those delivered by other semisuper‐
vised dimension reduction methods such as SDA and Lap-RLS/L by about 3–4% in most
datasets. The improvement can even achieve almost 8% in ETH80 dataset with two labeled
samples per class. The improvement is believed to be true that LGR aims to characterize both
local and global discriminative information embedded in dataset, which is better to handle
classification problem; (5) we observe that LGR outperform FME by about 2% in most cases.
The main reason is that LGR has utilized a weighted normalized local discriminative Laplacian
matrix to preserve both manifold and discriminative structures in dataset, which is better than
only relying on neighborhood graph.

Dataset Method 4 labeled samples per class 7 labeled samples per class 10 labeled samples per class

Unlabeled Test Unlabeled Test Unlabeled Test

Mean±std Mean±std Mean±std Mean±std Mean±std Mean±std

UMNIST Baseline 81.1±0.9 80.2±1.0 88.6±0.7 88.3±0.7 93.1±0.6 93.0±0.7

RLDA 85.2±0.6 85.0±0.7 90.7±0.5 90.4±0.6 95.3±0.4 94.4±0.5

SDA 86.4±0.7 86.3±0.7 92.1±0.6 91.7±0.7 96.2±0.4 95.4±0.5

LS-SDA 86.4±0.7 86.3±0.7 92.1±0.6 91.7±0.7 96.2±0.4 95.4±0.5

Lap-RLS/L 86.6±0.7 86.0±0.8 91.9±0.3 91.9±0.4 95.7±0.5 95.3±0.6

FME 88.2±0.6 87.7±0.6 93.1±0.3 92.9±0.4 96.7±0.5 96.1±0.5

LGR 89.2±0.4 88.9±0.5 94.2±0.2 93.8±0.4 97.9±0.6 97.2±0.4

Table 4. Average classification accuracy over 20 random splits on unlabeled set and test set of different datasets
(means±standard derivations).

4. Conclusion

In this chapter, we propose a semisupervised method, namely LGR, for face recognition. With
the above analysis, the following conclusions can be drawn: (1) the proposed LGR can achieve
better results in face recognition than those delivered by other state-of-the-art methods as more
discriminative information are captured based on local and global regressions, (2) the pro‐
posed LGR is robust to outliers and can handle the imbalanced data, and (3) the proposed LGR
can deal with out-of-sample extrapolation to estimate the labels of new-coming face data by
casting it to the global projection matrix.
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Appendix

In order to prove that Ld is graph Laplacian matrix, we need to prove Ld is positive semidefinite
matrix and the sum of each row or column of Ld is equal to zero. We first have the following
Lemmas:

Lemma 1. For each local patch Xj, Ljcan be reformulated as follows:

( ) 1
,T T T

j j j j j j jL G G X X G I Gh h
-

= + (23)

where Gj = (I −Δjek
T ek / (ekΔjek

T ))Δj
−1/2∈ R k ×k .

Proof. First, it can be easily noted that GjGj
T = H j, which is verified as follows:
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The second equation holds as A(A T A + λI )−1 = (AA T + λI )−1A, for any matrix A. Thus, Lemma 1
is proved.

Lemma 2. Given a positive semidefinite matrix C, DCDTis a positive semidefinite matrix for any matrix
D.
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Lemma 3. Given a set of positive semidefinite matrixes{C1, C2 …, Cn}then∑ j=1
n Cjis a positive semide‐

finite matrix.

We neglect the proofs of Lemmas 2 and 3 as they can be seen in reference [15]. Then with
Lemmas 1–3, we can easily prove Theorem 2 as follows:

Proof of Theorem 2. Note that following Lemma 1, we reformulate each Lj as
L j =ηGj(Gj

T X j
T X jGj + ηI )−1Gj

T . It can be noted (Gj
T X j

T X jGj + ηI )−1 is a positive semidefinite
matrix, then, following Lemmas 2 and 3, we have each ηSjGj(Gj

T X j
T X jGj + ηI )−1Gj

T Sj
T  is a

positive semidefinite matrix and Ld, i.e.,
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is also a positive semidefinite matrix. In addition, for each ηSjGj(Gj
T X j

T X jGj + ηI )−1Gj
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which indicates that the sum of each row or column of Ld is equal to zero. We thus prove Ld is
graph Laplacian matrix.
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