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Abstract

Parkinson's disease (PD) is a neurodegenerative disorder characterized by the
degeneration of dopaminergic neurons in the substantia nigra pars compacta, the
consequent dopamine deficit in the striatum and the accumulation of aggregated oa-
synuclein (a-syn) in specific brain regions. The underlying pathophysiology of PD
remains poorly understood. Animal models are the best tools to study the pathogene-
sis of PD. Most studies in PD animal models have focused on the motor features
associated with dopamine depletion but still the molecular basis of PD and the
molecular pathways of cell death remain unknown. While cellular models have helped
to identify specific events, in vivo animal models have simulated most, although not
all, of the hallmarks of PD and are useful for testing new neuroprotective approaches.
In this chapter, we provide a summary of the most used PD animal models, including
their advantages and limitations. Classically, in vivo PD animal models can be divided
into those using environmental or synthetic neurotoxins (toxin-based models) or those
utilizing the in vivo expression of PD-related mutations (genetic models). These models
include 6-hydroxydopamine (6-OHDA), 1-methyl-1,2,3,6-tetrahydropyridine (MPTP),
rotenone, and paraquat, as well as genetic models such as those related to a-syn, PINK1,
Parkin, DJ-1, and LRRK2.
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1. Introduction

Parkinson's disease (PD)is acommonneurodegenerative disorder characterized by the classical
motor symptoms: resting tremor, bradykinesia, akinesia, rigidity, and postural instability. PD
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is characterized by the loss of ~50-70% of the dopaminergic neurons in the substantia nigra pars
compacta (SNpc) and the consequent loss of dopamine (DA) in the striatum, and the presence
of intracytoplasmic inclusions called Lewy bodies (LB) that are composed mainly of a-synu-
clein (a-syn) and ubiquitin [1]. Although the complete PD pathogenesis is not well under-
stood, thanks to the use of animal models, we have gained a better understanding of its etiology,
pathology, and molecular mechanisms. Importantly, none of the current available models is
able to fully recapitulate PD symptoms and pathology [2].

The use of animal models in PD (both in vitro and in vivo) has greatly augmented thanks to
new strategies for producing sophisticated models, such as the temporal- and/or cell-specific
expression of mutated genes in vertebrates [3], human pluripotent cells coaxed into a specif-
ic type of neurons [4], and a host of different invertebrate organisms such as Drosophila [5],
Medaka fish [6], or Caenorhabditis elegans [7]. Current PD experimental models can still be
categorized into two main groups: toxic and genetic (or both of them combined). Over the
years, a collection of strategies have been used to produce other animal models to model PD.
Some of them included those based neither on neurotoxins nor on genetic mutations that are
directly linked to familial PD. Some of these models lack transcription factors that are required
for the survival of dopaminergic neurons, such as sonic hedgehog [8], nuclear receptor related
protein-1 (Nurrl) [9], pituitary homeobox 3 (Pitx3) [10], or engrailed 1 [11]. Even so, the
reproducibility and reliability of most of these new models are still under debate.

Therefore, the neurotoxins covered in this chapter focus on models produced by 6-hydroxy-
dopamine (6-OHDA) and 1-methyl-1,2,3,6-tetrahydropyridine (MPTP) administration, and
paraquat and rotenone which are more recent additions to the stable of toxic agents used to
model PD. The recent identification of different genetic mutations related to PD (mainly
SNCA (a-syn, PARK1, and 4), PRKN (parkin RBR E3 ubiquitin protein ligase, PARK2),
PINK1 (PTEN-induced putative kinase 1, PARK®6), DJ-1 (PARK?7), and LRRK2 (leucine-rich
repeat kinase 2, PARKS) has led to the development of a range of genetic models [12]. Although
the expression of all these proteins in invertebrate models offers experimental advantages and
can potentially address some important questions regarding the cellular processes underly-
ing PD, in this chapter, we focus on the different expression of these proteins in mammalian
models. Also, although the aforementioned genes are mutated in PD and are not overex-
pressed or knocked out (KO), these animal models are relevant in the way that may reveal
specific molecular events that lead to the death of dopaminergic neurons.

In this chapter, we describe the classical and the most useful animal models to model PD.
Readers with minimal knowledge of PD will eventually find out the different possibilities
offered by each of these models, and their strengths and limitations.

2. Neurotoxic models

2.1. 6-OHDA (2,4,5-trihydroxyphenethylamine)

The classic and more often used neurotoxic in animal models of PD is 6-OHDA [13, 14]. Most
animals are sensitive to 6-OHDA intoxication, including monkeys, cats, dogs, and rats. The
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rats were the more frequently used [15, 16]. Its effect was first described in the 1950s during
the study of central nervous system; 6-OHDA caused a noradrenaline depletion for several
months and a selective loss of noradrenergic terminals [17, 18] and was firstly isolated by
Ungersted to lesion the nigrostriatal pathway in the rat decades ago [19].

Although 6-OHDA is structurally similar to DA (and noradrenaline), the presence of an
additional hydroxyl group makes it toxic to dopaminergic neurons. Also, this compound does
not cross the blood-brain barrier, and it makes necessary the direct injection in the brain,
normally in subtantia nigra pars compacta, medium forebrain bundle, or striatum [17, 20, 21].
Lesion size depends on the amount of 6-OHDA, site of injection, and species. Typically, 6-
OHDA is administered in a unilateral manner and its results are very attractive since the intact
side can be used as control. Furthermore, even if there is success rate in ventricular adminis-
tration [22], the bilateral administration normally leads to severe adipsia, aphagia, and also
death [23, 24]. When administered intrastriatally, the 6-OHDA provokes a progressive and
retrograde neuronal loss in SNpc and ventral tegmental area (VTA). Actually, in animals with
full lesions (>90%) it is also observed the typical pattern seen in PD patients, with a greater loss
in SNpc compared to VTA [21, 25]. Although 6-OHDA interacts with a-syn, it does not induce
the formation of LB inclusions [17, 26]. The motor evaluation in these animal models is usually
performed after the administration of drugs such as apomorphine which induces rotational
behavior, but novel tests lacking the use of any drug have also been developed in rodents [27].
One use of this model is to ascertain whether the nigrostriatal degeneration is retrograde, i.e.,
tyrosine hydroxylase (TH) terminals die before the TH-neurons in SNpc as it happens in
patients [21, 28] (Figure 1).

This model is a good model on the base that it can replicate parkinsonian features as DA
depletion, nigral DA cell loss, and behavior deficits. Nevertheless, it does not affect other
regions in the brain as olfactory bulbs, lower brainstem areas, or locus coeruleus.

2.2. MPTP (1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine)

Even if the discovery of MPTP in 1982 due to an error in drug synthesis process could cause
some mayhem in certain circles, for PD researchers it was an invaluable gift. Its toxicity was
discovered after some young addicts developed idiopathic PD when they injected the
compound intravenously. MPTP can be considered a gold standard for toxin-based animal
models since it mimics some of the hallmarks of PD such as damage to the nigrostriatal DA
pathway with a profound loss of DA in the striatum and SNpc, oxidative stress, reactive oxygen
species, energy failure, and inflammation [29, 30]. However, MPTP does not induce the
formation of LB, definitive characteristic of PD [31, 32]. Some studies have attempted to
demonstrate the production of LB-like inclusions after MPTP administration, but those
findings are not easy to replicate and make necessary to play with different dosing and timing
schedules [33, 34].

MPTP is not a dopaminergic toxin, but its high lipophilia makes it to cross the blood-brain
barrier after systemic administration. Once astrocytes enter the brain, they are metabolized to
MPP+ by monoamine oxidase-B (MAO-B). MPP+ enters the dopaminergic neurons through
the DA transporter (DAT), and once in the cytoplasm it binds to VMAT?2 or it is stored in the
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vesicles in the mitochondria, where it inhibits the complex I of the mitochondrial electron
transport chain leading to neuronal death by oxidative stress [35-37]. Thus, in mice lacking
DAT, MPTP is not toxic [38]. Since the storage vesicles have a limited capacity, MPP+ most
likely pushes DA out into the intercellular space where it can be metabolized to a number of
compounds some of which are toxic, such as DOPAL [39] and where it can be subjected to
superoxide radical (5-cysteinyl-DA) and hydroxyl radical attack (6-OHDA) (Figure 1).
Principally, MPTP is used in primates and mice, and it is still unknown why it is not toxic in
rats [40, 41]. And in primates, the resemblance with human PD features goes beyond the loss
of dopaminergic neurons in the SNpc. In these animals, it also causes a greater loss of DA in
SNpc than in VTA or retrorubral field [42, 43]. The classic way of administration is intrave-
nous and systematic [44]. Some researchers also use an alternative route and they inject
unilaterally in the internal carotid. This technique presents the same benefits as described
before but it's more difficult to perform [45]. In primates, traditionally, the animals have been
treated with high doses of MPTP, and acute models were obtained. However, in the recent
years, researchers have introduced new administration protocols in order to obtain more
progressive models, which would mimic more exactly the pathology in PD patients. These
progressive models would give a chance to study the compensatory mechanism which takes
place before the onset of the symptoms [43, 46, 47]. Additionally, in primates treated with low
doses of MPTP, a greater degeneration of dopaminergic nerve terminals has been observed in
the putamen than in the caudate nucleus [43, 48]. Interestingly, in primates, there is a high
variability in the animal’s susceptibility to MPTP and normally older animals are the most
susceptible ones [49]. Also, primates treated with MPTP usually respond well to anti-parkin-
sonian treatments such as L-DOPA or apomorphine, and they also develop dyskinesias after
long-term treatment.

The MPTP model in primates can be used in order to study other features of the PD as the
nonmotor symptoms, which have recently become a target for researchers since mice do not
develop a level of impairment similar to the humans [50, 51]. In the electrophysiological field,
this model has also contributed to many advances including deep brain stimulation, current-
ly the major surgical method to alleviate PD symptoms in patients [52, 53]. In the present,
MPTP is more often used in mice than monkeys, mainly because of economic and practical
reasons. Mice allow researchers to understand better the molecular mechanisms involved in
cell death, to explore the neuronal death process or other pathological effects of PD. One
remarkable aspect of the research in mice is the possibility of working with genetically
modified animals [54, 55]. In sum, MPTP can be considered as the standard bearer for toxin-
based PD animal models.

2.3. Rotenone

Rotenone is the most intoxicating member of the rotenoid family and is typically found in
tropical plants. It is both an herbicide and insecticide having a half-life of 3-5 days depend-
ing on light conditions and degrades quickly in soil and water [56]. The toxicity of rotenone
comes from its high lipophilia, and it can easily cross the blood-brain barrier (Figure 1). It is
mainly used in rats since, so far, the studies attempting to lesion in mice or monkeys have not



Animal Models of Parkinson’s Disease
http://dx.doi.org/10.5772/63328

been successful [57, 58]. Recently, some studies have tested the toxicity of rotenone when
administrated intragastric [59] or directly in the brain [60]. The administration of rotenone can
be done via different routes. The most commonly used regime has typically been the system-
ic administration using osmotic pumps in rats, especially in Lewis rats which present a higher
susceptibility to the toxic than other strains [61]. Oral administration is considered the least
effective one [61, 62]. Intraperitoneal injections might induce behavioral and neurochemical
deficits, and it also presents a high mortality [60]. In the case of intravenous administration,
rotenone may lead to loss of nigrostriatal DA neurons and it is able to induce a-syn aggrega-
tion and LB formation, apart from other features such as oxidative stress or gastrointestinal
problems [63]. It is the last aspect that makes this model so attractive, since it seems to replicate
almost all of the hallmarks of PD [64]. Similar to what happens in PD, rotenone intoxication is
associated with 35% reduction in serotonin, 26% in noradrenergic, and 29% in cholinergic
neurons [65].

On the contrary, there is some controversy about the use of rotenone as a model of PD since
in spite of the DA oxidation there is not much evidence of depletion of DA in the nigrostria-
tal system [66], and there are no well-documented cases of PD patients from rotenone
intoxication. This makes the model not very advantageous compared to other toxic-based ones,
such as 6-OHDA and MPTP.

2.4. Paraquat (N,N-dimethyl-4-4-4-bypiridinium)

Paraquat (PQ) is an herbicide that exhibits similar structure to MPP+, and this is the reason
why it was suggested that it could have a parkinsonian toxic effect. However, so far, only 95
cases of PD patients linked to PQ have been reported [67] even if being widely used in
agriculture. Typically, PQ exerts its deleterious effect through oxidative stress mediated by
redox cycling and generating reactive oxygen species, more exactly, superoxide radical,
hydrogen peroxide, and the hydroxyl radical, which in turn would lead to the damage of lipids,
proteins, RNA, and DNA [68, 69]. The evidence of PQ toxicity in the nigrostriatal DA system
is somehow ambiguous. Some studies carried out in mice have been able to demonstrate that
systemic administration can reduce motor activity, and there is a dose-dependent loss of TH-
positive striatal fibers and SNc neurons [70, 71]. In contrast, other researchers claimed that
there are no PQ-induced changes after administration [72]. Interestingly, in a recent study,
Rappold et al. [73] could evidence that when administered in high doses, PQ can employ the
organic cationic transporter-3 (OCT-3) and the DAT becomes toxic to neurons in SNpc. They
also suggest that PQ damages are caused by radicalized PQ and facilitated by glial cells, as it
does MPP+. One of the most striking aspects of PQ with respect to PD is its ability to induce
LB-like structures in dopaminergic neurons of the SNpc [74] mimicking the PD-like patholo-
gy. Nevertheless, how oxidative stress and cell death are linked because of PQ remains
unknown, limiting the research to the study of the process of LB formation in dopaminergic
neurons (Figure 1).

Additionally, PQ is not the only pesticide or agricultural chemical known to provoke dam-
age in the dopaminergic system. Maneb (manganese ethylenebisdithiocarbamate) or ziram are
other examples of compounds that when exposed to them have a greater risk of developing
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PD [75, 76]. In any case, results from studies using pesticides give credence to the theory that
environmental pesticides can cause PD [77, 78]. However, further studies are required to
determine the precise involvement of these compounds in the etiology of PD.
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Figure 1. Pathogenesis of toxin-induced models. MPTP crosses the blood-brain barrier and is metabolized to 1-meth-
yl-4-phenylpyridinium (MPP*) by the enzyme monoamine oxidase B (MAO-B) in glial cells and then to the active toxic
compound. MPP* is then taken up by dopamine transporter where it impairs mitochondrial respiration by inhibiting
complex I of the electron transport chain, causing oxidative stress and activation of programmed cell death molecular
pathways. Both paraquat and 6-hydroxydopamine (6-OHDA) easily cross cell membrane through the dopamine trans-
porter and may also exert their toxicities, in part, by targeting mitochondria with the subsequent production of ROS
and quinones causing the degeneration of the nigrostriatal dopaminergic neurons. Rotenone is extremely hydrophobic
and penetrates easily the cellular membrane inducing the formation of a-synuclein aggregates and mitochondrial im-
pairment with the subsequent production of ROS and quinones.

3. Genetic models

Although PD is mainly a sporadic disorder, about 10% of all PD cases are caused by genetic
mutations [79]. Animal models of these mutations are important as they represent potential
therapeutic targets. Having said that, the pathological and behavioral phenotypes of these
genetic models are often quite different from the human condition [80]. For example, almost
all of these genetic models failed to find significant loss of dopaminergic neurons, the main
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pathological hallmark of PD [81-84]. Below, we describe different genetic models that
reproduce the most known mutations observed in familial PD (Figure 2).
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Figure 2. Genetic animal models in Parkinson disease (PD). Many genetic mouse models have been developed in
order to understand PD pathogenesis and identify potential therapeutic targets. Genetic models are adjusted based on
genetic mutations identified in the human disease. These genes are part of signaling pathways important for neuronal
dopaminergic function. These models contribute to know mechanisms on disease onset or progression of PD or to
understand the case and effect of these genetic mutations.

3.1. a-syn

SNCA (a-syn) was the first gene linked to a dominant-type, familial PD, called Park1 [85]. The
duplication or triplication of a-syn is sufficient to cause PD, suggesting that the level of a-syn
expression is a critical determinant of PD progression [86]. Three missense mutations of a-syn,
encoding the substitutions A30P, A53T, and E46K, have been identified in familial PD so far
[87, 88]. The pathological accumulation of misfolded a-syn plays an essential role in the
pathogenesis of PD since a-syn is the main component of LB. While LBs are found principal-
ly in nigral neurons of PD patients, they are also found in other brain regions such as locus
coeruleus, nucleus basalis of Meynert, hypothalamus, cerebral cortex, and cranial nerve motor
nuclei [89]. Numerous animal models have been developed trying to replicate a-syn neuro-
degeneration and propagation. These include transgenic mice (KO and overexpression),
grafting models, intracerebral protein injections, or virally induced expression of a-syn. The
main handicap of these models is that no significant nigrostriatal degeneration has been found
in most of them, although some of these mice showed decreased striatal levels of TH or DA
and behavioral impairments [80].
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In general, the models of a-syn overexpression in mice produced some behavioral altera-
tions in both the A30P and A53T mice [90-92]. Also, depending on the promoter, some models
showed loss of terminals and DA in the striatum [93-98] although almost of them failed to
reproduce the dopaminergic cell loss characteristic of PD [2, 94, 99-101]. Only the TH promoter
led to dopaminergic cell loss in a few studies [102, 103]. Janezic et al. [104] generated bacteri-
al artificial chromosome (BAC) transgenic mice (SNCA-OVX) that express WT human a-syn
and display an age-dependent loss of SNc DA neurons preceded by early deficits in DA release
from terminals in the dorsal striatum, protein aggregation, and reduced firing of SNc DA
neurons [104]. Regarding viral vectors injections, largely lentiviruses and adeno-associated
viruses (AAVs), have been used to drive exogenous a-syn in mice, rats, and primates [105-
109]. In this case, viral vector-mediated a-syn models display a-syn pathology and clear
dopaminergic neurodegeneration. The injection of human mutant a-syn by AAVs into the
SNpc of rats induces a progressive, age-dependent loss of DA neurons, motor impairment, a-
syn cytoplasmic inclusions, and degenerative changes in striatal axons both in rats [110, 111]
and mice [109, 112]. In the last years, the suggested prion-like behavior of a-syn has been
examined in animal models of PD. These models not only explore the pathology and spread-
ing of a-syn but the cell-to-cell transfer. Importantly, to date, numerous studies have demon-
strated that a-syn may be transmissible from cell to cell in animal models in different ways
using different approaches [33, 113-120].

Thus, despite the limitations of these a-syn models, some of them could be useful to eluci-
date the role of a-a-syn in PD and the suggested prion-like mechanism of propagation of this
protein [121].

3.2. LRKK2

Mutations in LRRK2 are known to cause a late-onset autosomal dominant form of PD [122].
The most frequent mutations are the G2019S and the R1441C [123]. Many different LRRK2
rodent models have been developed with different approaches but as it happens with a-syn,
although they show a-syn or ubiquitin accumulation, progressive motor impairments, and
slight reduction of striatal DA, they do not display functional disruption of the nigrostriatal
dopaminergic neurons [82, 124-128]. Similarly, overexpression of G2019S or R1441C LRRK2
leads to none or slight loss of dopaminergic neurons in the SNpc and no alteration in striatal
DA levels or locomotor activity in both mice and rats [129-131].

BAC transgenic mice expressing mutated LRKK2 have also been developed showing no
nigrostriatal degeneration [132-134]. On the contrary, a rat LRRK2 model with neuron-specific,
adenoviral mediated expression of LRRK2 G2019S in the nigrostriatal system has been
produced, which develops a progressive degeneration of nigral dopaminergic neurons [135].
Additionally, using viral vector-based models, Lee and colleagues [28] reported that the
expression of G2019S LRRK2 resulted in a 50% neuronal loss in the ipsilateral SNc associat-
ed with reduced striatal dopaminergic fibers [136]. In summary, we can conclude that the
transgenic LRRK2 animal models are not a useful model for studying the pathology of PD.
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3.3. Pink1 and Parkin

Homozygous mutations in the Parkin and PINK1 genes were discovered in families with
autosomal recessive PD [137]. In fact, parkin mutations are the most common cause of
autosomal recessive PD. Likewise, mutations in PINK1 are the second most common. Despite
this early onset, patients with these mutations have an indistinguishable phenotype from that
of sporadic patients. Many PINK1 and parkin KO mice have been generated, and the pheno-
types of these mice are very similar. PINK1 and Parkin KO mice have an age-dependent,
moderate reduction in striatal DA levels accompanied by low locomotor activity, but do not
exhibit major abnormalities in the DA neurons or striatal DA levels, and they do not show LB
formation either [81, 138-145]. A new approach consisting in overexpression of T240R-parkin
and of human WT parkin in rats leads to progressive and dose-dependent DA cell death [146].
Noteworthy, the Parkin-Q311X-DAT-BAC mice exhibit multiple late onsets and progressive
hypokinetic motor deficits, age-dependent DA neuron degeneration in the SNc, and a
significant reduction in striatal DA and dopaminergic terminals in the striatum [147]. Overall,
PINK1 and Parkin models do not produce functional disruption of the nigrostriatal pathway
or other PD-related pathology, thus their usefulness is questionable.

3.4.DJ-1

Missense DJ-1 mutations are linked to autosomal recessive and early-onset PD. DJ-1 KO mice
showed no loss of SNpc dopaminergic neurons but reduced striatal DA release and de-
creased locomotor activity [148, 149]. Recently, a new DJ-1 KO mouse, backcrossed on a C57/
BL6 background, displayed an early-onset unilateral loss of DA neurons in the SNpc,
progressing to bilateral degeneration with aging. Also, these mice exhibit age-dependent
bilateral degeneration in the locus coeruleus and mild motor behavioral deficits [150]. If

confirmed, this model could provide a possible tool to study the progression of PD.

4. Concluding remarks

Our current understanding of PD pathology greatly benefited from the use of animal mod-
els. However, despite these accomplishments, current PD animal models still have to be
improved a lot. It seems difficult that a single model can fully recapitulate the complexity of
the human PD in the short term. Because there is no perfect model to date, it is very impor-
tant to choose the correct animal model for each experiment. By providing an overview of the
different animal models available to modeling PD, readers would find that there are a lot of

options addressing a specific experimental need.
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