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1. Introduction  

Optimization techniques play an important role as a useful decision making tool in the design 
of structures. By deriving the maximum benefits from the available resources, it enables the 
construction of lighter, more efficient structures while maintaining adequate levels of safety 
and reliability. A large number of optimization techniques have been suggested over the past 
decades to solve the inherently complex problem posed in structural design. Their scope varies 
widely depending on the type of structural problem to be tackled. Gradient-based methods, 
for example, are highly effectively in finding local optima when the design space is convex and 
continuous and when the design problem involves large number of design variables and 
constraints. If the problem constraints and objective function are convex in nature, then it is 
possible to conclude that the local optimum will be a global optimum. In most structural 
problems, however, it is practically impossible to check the convexity of the design space, 
therefore assuring an obtained optimum is the best possible among multiple feasible solutions. 
Global non-gradient-based methods are able to traverse along highly non-linear, non-convex 
design spaces and find the best global solutions. In this category many unconstrained 
optimization algorithms have been developed by mimicking natural phenomena such as 
Simulated Annealing (Kirkpatrick et al., 1983), Genetic Algorithms (Goldberg, 1989), and 
Bacterial Foraging (Passino, 2002) among others. Recently, a new family of more efficient 
global optimization algorithms have been developed which are better posed to handle 
constraints. They are based on the simulation of social interactions among members of a 
specific species looking for food sources. From this family of optimizers, the two most 
promising algorithms, which are the subject of this book, are Ant Colony Optimization 
(Dorigo, 1986), and Particle Swarm Optimization or PSO. In this chapter, we present the 
analysis, implementation, and improvement strategies of a particle swarm optimization 
suitable for constraint optimization tasks. We illustrate the functionality and effectiveness of 
this algorithm, and explore the effect of the different PSO setting parameters in the scope of 
classical structural optimization problems. 

1.1 The Structural Design Problem 

Before we describe the implementation of the particle swarm approach, it is necessary to 
define the general structural design problem to understand the different modification and 

Source: Swarm Intelligence: Focus on Ant and Particle Swarm Optimization, Book edited by: Felix T. S. Chan and Manoj
Kumar Tiwari, ISBN 978-3-902613-09-7, pp. 532, December 2007, Itech Education and Publishing, Vienna, Austria
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improvements made later to the basic algorithm. Mathematically, a structural design 
problem can be defined as: 

( )

[ ] ( ) [ ]{ }

∈

∈ ⊂ ℜ ≤ ∀ ∈n
l u j

min f x,p s.t. x D

where D = x|x x ,x ,g x,p 0 j 1,m
 (1) 

where a specific structural attribute (e.g. weight) is defined as an objective or merit function 
f which is maximized or minimized using proper choice of the design parameters. The 
design parameters specify the geometry and topology of the structure and physical 
properties of its members. Some of these are independent design variables (x) which are 
varied to optimize the problem; while others can be fixed value parameters (p). From the 
design parameters, a set of derived attributes are obtained some of which can be defined as 
behaviour constraints (g) e.g., stresses, deflections, natural frequencies and buckling loads 
etc., These behaviour parameters are functionally related through laws of structural 
mechanics to the design variables. The role of an optimization algorithm in structural design 
will be then to find the best combination of design variables that lead to the best objective 
function performance, while assuring all constraints are met.  

2. The Particle Swarm Algorithm 

The PSO algorithm was first proposed in 1995 by Kennedy and Eberhart. It is based on the 
premise that social sharing of information among members of a species offers an 
evolutionary advantage (Kennedy & Eberhart, 1995). Recently, the PSO has been proven 
useful on diverse engineering design applications such as logic circuit design (e.g. Coello & 
Luna, 2003), control design (e.g. Zheng et al., 2003) and power systems design (e.g. Abido, 
2002) among others. A number of advantages with respect to other global algorithms make 
PSO an ideal candidate for engineering optimization tasks.  The algorithm is robust and well 
suited to handle non-linear, non-convex design spaces with discontinuities. It is also more 
efficient, requiring a smaller number of function evaluations, while leading to better or the 
same quality of results (Hu et al., 2003; and Hassan et al., 2005). Furthermore, as we will see 
below, its easiness of implementation makes it more attractive as it does not require specific 
domain knowledge information, internal transformation of variables or other manipulations 
to handle constraints. 

2.1 Mathematical Formulation 

The particle swarm process is stochastic in nature; it makes use of a velocity vector to 
update the current position of each particle in the swarm. The velocity vector is updated 
based on the "memory" gained by each particle, conceptually resembling an 
autobiographical memory, as well as the knowledge gained by the swarm as a whole 
(Eberhart & Kennedy, 1995). Thus, the position of each particle in the swarm is updated 
based on the social behaviour of the swarm which adapts to its environment by returning to 
promising regions of the space previously discovered and searching for better positions over 
time. Numerically, the position x of a particle i at iteration k+1 is updated as: 

i i i
k+1 k k+1x = x + v t  (2) 
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where i
k+1v  is the corresponding updated velocity vector, and t  is the time step value 

typically considered as unity (Shi & Eberhart, 1998a). The velocity vector of each particle is 
calculated as: 

g ii i
k kk ki i

k+1 k 1 1 2 2

p - xp - x
v = wv + c r + c r

t t
 (3) 

where i
kv  is the velocity vector at iteration k, i

kp  & g
kp  are respectively the best ever position 

of particle i and the global best position of the entire swarm up to current iteration k, and r
represents a random number in the interval [0,1]. The remaining terms are configuration 
parameters that play an important role in the PSO convergence behaviour. The terms c1 and 
c2 represent "trust" settings which respectively indicate the degree of confidence in the best 
solution found by each individual particle (c1 - cognitive parameter) and by the swarm as a 
whole (c2 - social parameter). The final term w, is the inertia weight which is employed to 
control the exploration abilities of the swarm as it scales the current velocity value affecting 
the updated velocity vector. Large inertia weights will force larger velocity updates 
allowing the algorithm to explore the design space globally. Similarly, small inertia values 
will force the velocity updates to concentrate in the nearby regions of the design space.  
Figure 1 illustrates the particle position and velocity update as described above in a two-
dimensional vector space. Note how the updated particle position will be affected not only 
by its relationship with respect to the best swarm position but also by the magnitude of the 
configuration parameters. 
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k kc r p x−

Figure 1. PSO Position and Velocity Update 

2.2 Computational Algorithm 

As with all numerical based optimization approaches the PSO process is iterative in nature, 
its basic algorithm is constructed as follows: 

1. Initialize a set of particles positions i
0x  and velocities i

0v  randomly distributed 

throughout the design space bounded by specified limits. 

2. Evaluate the objective function values ( )f i
kx  using the design space positions i

kx . A 

total of n objective function evaluations will be performed at each iteration, where n is 
the total number of particles in the swarm. 
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3. Update the optimum particle position i
kp  at current iteration k and global optimum 

particle position g
kp .

4. Update the position of each particle using its previous position and updated velocity 
vector as specified in Eq. (1) and Eq. (2). 

5. Repeat steps 2-4 until a stopping criterion is met. For the basic implementation the 
typical stopping criteria is defined based on a number of iterations reached. 

The iterative scheme behaviour for a two-dimensional variable space can be seen in Figure 
2, where each particle position and velocity vector is plotted at two consecutive iterations. 
Each particle movement in the design space is affected based on its previous iteration 
velocity (which maintains the particle “momentum” biased towards a specific direction) and 
on a combined stochastic measure of the previous best and global positions with the 
cognitive and social parameters. The cognitive parameter will bias each particle position 
towards its best found solution space, while the social parameter will bias the particle 
positions towards the best global solution found by the entire swarm.  For example, at the kth

iteration the movement of the tenth particle in the figure is biased towards the left of the 
design space. However, a change in direction can be observed in the next iteration which is 
forced by the influence of the best design space location found by the whole swarm and 
represented in the figure as a black square. Similar behaviour can be observed in the other 
particles of the swarm. 
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Figure 2. PSO Position and Velocity Update 

An important observation is that the efficiency of the PSO is influenced to some extent by 
the swarm initial distribution over the design space. Areas not initially covered will only be 
explored if the momentum of a particle carries the particle into such areas. Such a case only 
occurs when a particle finds a new individual best position or if a new global best is 
discovered by the swarm. Proper setting of the PSO configuration parameters will ensure a 
good balance between computational effort and global exploration, so unexplored areas of 
the design space are covered. However, a good particle position initialization is desired. 
Different approaches have been used to initialize the particle positions with varying degrees 
of success. From an engineering design point of view, the best alternative will be to 
distribute particles uniformly covering the entire search space. A simpler alternative, which 
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has been proven successfully in practice, is to randomly distribute the initial position and 
velocity vectors of each particle throughout the design space. This can be accomplished 
using the following equations: 

( )i
0 min max minx = x + r x - x  (4) 

( )min max mini
0

x + r x - x
v =

t
 (5) 

where xmin and xmax represent the lower and upper design variables bounds respectively, and 
r represents a random number in the interval [0,1]. Note that both magnitudes of the 
position and velocity values will be bounded, as large initial values will lead to large initial 
momentum and positional updates. This large momentum causes the swarm to diverge 
from a common global solution increasing the total computational time. 

2.2 Algorithm Analysis 

A useful insight of the PSO algorithm behaviour can be obtained if we replace the velocity 
update equation (Eq. (3)) into the position update equation (Eq. (2)) to get the following 
expression:

g ii i
k kk ki i i

k+1 k k 1 1 2 2

p - xp - x
x = x + wV + c r + c r t

t t
 (6) 

Factorizing the cognitive and social terms from the above equation we obtain the following 
general equation: 

( )
gi

i i i i1 1 k 2 2 k
k+1 k k 1 1 2 2 k

1 1 2 2

c r p + c r p
x = x + wV t + c r + c r - x

c r + c r
 (7) 

Note how the above equation has the same structure as the gradient line-search used in 

convex unconstrained optimization ( ˆ
i i

kk+1 k
px = +x ) where: 

ˆ
i ii

k k k

1 1 2 2

gi
1 1 k 2 2 k i

kk
1 1 2 2

= x + wV tx

= c r + c r

c r p + c r p
= -xp

c r + c r

 (8) 

So the behaviour of each particle in the swarm can be viewed as a traditional line-search 

procedure dependent on a stochastic step size (α) and a stochastic search direction (
k

p ). 

Both the stochastic step size and search direction depend on the selection of social and 
cognitive parameters. In addition, the stochastic search direction behaviour is also driven by 
the best design space locations found by each particle and by the swarm as a whole. 

Behaviour confirmed from the Fig. 2 observations. Knowing that [ ]∈1 2r ,r 0,1 , then the step 

size will belong to the interval [ ]2c+10,c with a mean value of ( ) 21 2c + c . Similarly, the 

search direction will be bracketed in the interval ( )gi i i
k 1 k 2 k 1 2 k-x , c p + c p c + c - x t .
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Two questions immediately arise from the above analysis. The first question is what type of 
convergence behaviour the algorithm will have. The second one is which values of the social 
and cognitive parameters will guarantee such convergence. To answer both questions let us 
start by re-arranging the position terms in equation (6) to get the general form for the ith

particle position at iteration k+1 as:  

( ) gi i i i
k+1 k 1 1 2 2 k 1 1 k 2 2 kx = x 1 - c r - c r + wV t + c r p + c r p  (9) 

A similar re-arrangment of the position term in equation (2) leads to: 

( ) gi
1 1 2 2i i i k k

k+1 k k 1 1 2 2

c r + c r p p
V = -x + wV + c r + c r

t t t
 (10) 

Equations (8) and (9) can be combined and written in matrix form as:  

( )
i1 1 2 2i i 1 1 2 2
kk+1 k

2 21 1 2 2 g1 1i i
k+1 k k

1 - c r - c r w t c r c r
px x

= + c rc r + c r c r
pV V- w

ttt

 (11) 

which can be considered as a discrete-dynamic system representation for the PSO algorithm 

where
T

i ix V,  is the state subject to an external input 
Tgip ,p , and the first and second 

matrices correspond to the dynamic and input matrices respectively.   
If we assume for a given particle that the external input is constant (as is the case when no 
individual or communal better positions are found) then a convergent behaviour can be 
maintained, as there is no external excitation in the dynamic system. In such a case, as the 
iterations go to infinity the updated positions and velocities will become the same from the 
kth to the kth+1 iteration reducing the system to: 

( )
( )

ii 1 11 1 2 2 2 2
kk

2 2 g1 1 2 2 1 1i
k k

c r c r- c r + c r w t
0 px

= + c rc r + c r c r
0 pV- w - 1

ttt

 (12) 

which is true only when i
kV = 0  and both i

kx  and pi
k  coincide with pg

k . Therefore, we will 

have an equilibrium point for which all particles tend to converge as iteration progresses. 
Note that such a position is not necessarily a local or global minimizer. Such point, however, 
will improve towards the optimum if there is external excitation in the dynamic system 
driven by the discovery of better individual and global positions during the optimization 
process.
The system stability and dynamic behaviour can be obtained using the eigenvalues derived 
from the dynamic matrix formulation presented in equation (11). The dynamic matrix 
characteristic equation is derived as:  

( )2
1 1 2 2- w - c r - c r + 1 + w = 0  (13) 

where the eigenvalues are given as:  

( )
2

1 1 2 2 1 1 2 2

1,2

1+ w - c r - c r ± 1+ w - c r - c r - 4w
=

2
 (14) 
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The necessary and sufficient condition for stability of a discrete-dynamic system is that all 

eigenvalues (λ) derived from the dynamic matrix lie inside a unit circle around the origin on 

the complex plane, so i=1,…,n|< 1 . Thus, convergence for the PSO will be guaranteed if the 

following set of stability conditions is met: 

( )
1 1 2 2

1 1 2 2

c r + c r > 0

c r + c r
- w < 1

2

w < 1

 (15) 

Knowing that [ ]∈1 2r ,r 0,1 the above set of conditions can be rearranged giving the following 

set of parameter selection heuristics which guarantee convergence for the PSO: 

( )
( )

1 2

1 2

0 < c + c < 4

c + c
- 1 < w < 1

2

 (16) 

While these heuristics provide useful selection bounds, an analysis of the effect of the 
different parameter settings is essential to determine the sensitivity of such parameters in 
the overall optimization procedure. Figure 3 shows the convergence histories for the well-
known 10-bar truss structural optimization problem (described in more detail on Section 4) 
under different social and cognitive parameter combinations which meet the above 
convergence limits. The results are representative of more than 20 trials for each tested case, 
where the algorithm was allowed to run for 1000 iterations, with a fixed inertia weight value 
of 0.875, and the same initial particles, velocity values, and random seed. 
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From the figure we can clearly see that when only social values are used to update the 
particle velocities, as is the case when c1=0 & c2=3, the algorithm converges to a local 
optimum within the first ten iterations. As no individual (local) exploration is allowed to 
improve local solutions, all the particles in the swarm converge rapidly to the best initial 
optimum found from the swarm. We can also see that by increasing the emphasis on the 
cognitive parameter while reducing the social parameters, better solutions are found 
requiring less number of iterations for convergence. When we place slightly higher 
emphasis in the local exploration by each particle, as is the case with c1=2.0 & c2=1.0 and 
c1=2.5 & c2=0.5, the algorithm provides the best convergence speed to accuracy ratio. This 
result is due to the fact that individuals concentrate more in their own search regions thus 
avoiding overshooting the best design space regions. At the same time, some global 
information exchange is promoted, thus making the swarm point towards the best global 
solution. However, increasing local exploration at the expense of global agreement has its 
limits as shown in the case where only cognitive values are used to update the particle 
velocities (c1=3 and c2=0). In this case, each particle in the swarm will explore around its 
best-found solution requiring a very large number of iterations to agree into a common 
solution, which for this example is not the global optimum. 
In a similar way to the above analysis, Figure 4 shows the effect of varying the inertia 
weight between its heuristic boundaries for a fixed set of "trust" settings parameters with 
c1=2.0 and c2=1.0 values. As before, the results are representative of more than 20 trials for 
each tested case where the algorithm was allowed to run for 1000 iterations with the same 
initial position, velocity and random seed. From the figure it is clear that reducing the inertia 
weight promotes faster convergence rates, as it controls the particle “momentum” bias 
towards a specific direction of the search space. Reducing the inertia weight beyond its 
allowable convergence limits comes at a cost as particles are forced to reduced their 
momentum stagnating at local optima as shown in the figure for the w=0.5 case. 
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It is important to note at this stage that the optimal selection of the PSO parameters is in 
general problem-dependent. However, the obtained results for our example confirms the 
expectations as derived from the theoretical analysis (see i.e. van den Bergh & Engelbrecht, 
2006; Trelea, 2003; and Clerc & Kennedy, 2002) and experiments (see i.e. Shi & Eberhart, 
1998b; Shi & Eberhart, 1999; and Eberhart & Shi, 2000) regarding the sensitivity and 
behaviour of such tuning parameters. As long as the stability conditions presented in Eq. 
(16) are met, it is observed that maintaining an approximately equal or slightly higher 
weighting of the cognitive vs. the social parameter (in the interval of 1.5 to 2.5) will lead to 
the optimal convergent behaviour for the PSO. 

3. Algorithm Improvements 

Thus far, we have only dealt with the most basic PSO algorithm. Two important concerns 
when dealing with practical engineering problems have been left out up to now: how to 
improve the convergence rate behaviour as particles converge to a solution, and how to 
handle constraints. As we will see below, different modifications can be made to the original 
algorithm to address these concerns making it much stronger to deal with constrained 
optimization problems such as those traditionally present in structural design. 

3.1 Updating the Inertia Weight 

As shown before, the PSO global convergence is affected by the degree of local/global 
exploration provided by the "trust" settings parameters while the relative rate of 
convergence is provided by the inertia weight parameter. An interesting observation can be 
made from the inertia weight analysis presented in Figure 4. For a fixed inertia value there is 
a significant reduction in the algorithm convergence rate as iterations progresses. This is the 
consequence of excessive momentum in the particles, which results in detrimentally large 
steps sizes that overshoot the best design areas. By observing the figure, an intuitive strategy 
comes to mind: during the initial optimization stages, allow large weight updates so the 
design space is searched thoroughly. Once the most promising areas of the design space 
have been found (and the convergence rate starts to slow down) reduce the inertia weight, 
so the particles momentum decreases allowing them to concentrate in the best design areas. 
Formally, different methods have been proposed to accomplish the above strategy. Notably, 
two approaches have been used extensively (see Shi & Eberhart, 1998a; and Fourie & 
Groenwold, 2002). In the first one, a variation of inertia weight is proposed by linearly 
decreasing w at each iteration as: 

max min
k+1 max

max

w - w
w = w - k

k
 (17) 

where an initial inertia value wmax is linearly decreased during kmax iterations.  
The second approach provides a dynamic decrease of the inertia weight value if the swarm 
makes no solution improvement after certain number of iterations. The updated is made 

from an initial weight value based on a fraction multiplier [ ]∈wk 0,1  as: 

kwk+1 ww = k  (18) 
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The effect of the described inertia update methods against a fixed inertia weight of 0.875 is 
shown in Figure 5 for the 10-bar truss example used before. For the linear decrease method, 
the inertia weight is varied in the interval [0.95, 0.55]. This interval meets the specified 
convergence conditions (Eq. (16)) with c1=2.0 and c2=1.0 values. For the dynamic decrease 
case a fraction multiplier of kw = 0.975 is used if the improved solution does not change after 
five iterations, with an initial inertia weight specified as 0.95. As expected, an initial rapid 
convergence rate can be observed for the fixed inertia test, followed by a slow convergence 
towards the global optimum. The effect of dynamically updating the inertia weight is clear 
as both the linear and dynamic decrease methods present faster overall convergence rates. 
The dynamic update method provide the fastest convergence towards the solution, taking 
approximately 100 iterations as compared to 300 iterations taken by the linear decrease 
method, and the 600 iterations taken by the fixed inertia weight test. An intrinsic advantage 
is also provided by the dynamic decrease method as it depends solely on the value of past 
solutions adapting well to algorithmic termination and convergence check strategies. 
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Figure 5. Inertia Weight Update Strategies Effect 

3.2 Dealing with Constraints 

Similar to other stochastic optimization methods, the PSO algorithm is formulated as an 
unconstrained optimizer. Different strategies have been proposed to deal with constraints, 
making the PSO a strong global engineering optimizer. One useful approach is to restrict the 
velocity vector of a constrained violated particle to a usable feasible direction as shown in 
Fig. 6. By doing so, the objective function is reduced while the particle is pointed back 
towards the feasible region of the design space (Venter & Sobieszczanski-Sobieski, 2004). A 
new position for the violated constraint particles can be defined using Eq. (2) with the 
velocity vector modified as:  
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( ) ( )g ii i
k kk ki

k+1 1 1 2 2

p - xp - x
v = c r + c r

t t
 (19) 

where the modified velocity vector includes only the particle self information of the best 
point and the information of the current best point in the swarm. The new velocity vector is 
only influenced then by the particle best point found so far and by the current best point in 
the swarm. If both of these best points are feasible, the new velocity vector will point back to 
a feasible region of the design space. Otherwise, the new velocity vector will point to a 
region of the design space that resulted in smaller constraint violations. The result is to have 
the violated particle move back towards the feasible region of the design space, or at least 
closer to its boundary, in the next design iteration. 

Figure 5. Violated Design Points Redirection 

The velocity redirection approach however, does not guarantee that for the optimum 
solution all constraints will be met as it does not deal with the constraint directly. One 
classic way to accommodate constraints directly is by augmenting the objective function 
with penalties proportional to the degree of constraint infeasibility as: 

( )
( )

( ) ( )
1

ˆ

k k

m

k j j k

j

f x if x is feasible

f x k g x otherwise
=

′ =
+kf x  (20) 

where for m constraints kj is a prescribed scaling penalty parameter and ( )j kg x is a 

constraint value multiplier whose values are larger than zero if the constraint is violated: 

( ) ( )( )2ˆ max 0,j k j kg x g x=  (21) 

In a typical optimization procedure, the scaling parameter will be linearly increased at each 
iteration step so constraints are gradually enforced. The main concern with this method is 
that the quality of the solution will directly depend on the value of the specified scaling 



Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 384

parameters. A better alternative will be to accommodate constraints using a parameter-less 
scheme. Taking advantage of the available swarm information Eq. (22) and Eq. (23) show a 
useful adaptive penalty approach, where penalties are defined based on the average of the 
objective function and the level of violation of each constraint during each iteration step: 

( )
( )

( )
2

1

j k

j k m

l k

l

g x
k f x

g x
=

=  (22) 

with

( ) ( )( )
1

1
ˆmax 0,

n

j k j k

k

g x g x
n =

=  (23) 

where ( )kf x  is the average of the objective function values in the current swarm, and 

( )j kg x  is the violation of the lth constraint averaged over the current population. The above 

formulation distributes the penalty coefficients in a way that those constraints which are 
more difficult to be satisfied will have a relatively higher penalty coefficient. Such 
distribution is achieved by making the jth coefficient proportional to the average of the 
violation of the jth constraint by the elements of the current population. An individual in the 
swarm whose jth violation equals the average of the jth violation in the current population for 
all j, will have a penalty equal to the absolute value of the average objective function of the 

population. Similarly, the average of the objective function equals ( ) ( )k kf x f x+ .

While the penalty based method works well in many practical cases, the numerically exact 
constrained optimum feasible solution can only be obtained at the infinite limit of the 
penalty factor. Recently, a new approach which circumvents the need for infinite penalty 
factors has been proposed by Sedlaczek & Eberhard (2005). It directly uses the general 
Lagrange function defined for an ith particle as: 

( ) ( ) ( )ℑ
m

i i i i i
i k k j j k

j=1

x , = f x + g x  (24) 

where λ are Lagrange multipliers. This function can be used as an unconstrained pseudo 
objective function by realizing that the solution of a constrained optimization problem (Eq. 
(1)) with the correct set of multipliers is a stationary point for the function. The stationary is 
not necessarily a minimum of the Lagrange function. To preserve the stationary properties 
of the solution while assuring that it is a minimum, the Lagrange function is augmented 

using a quadratic function extension θ as (Gill et al. 1981): 

( ) ( ) ( ) ( )2
,
i

p jr θ θℑ +
m m

i i i i i i
i k k j j k p, j k

j=1 j=1

x , = f x + x r x  (25) 

with

( ) ( ) ji i
j k j k

p,i

-
x = max g x ,

2r
 (26) 
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where the j p,i- 2r term is arbitrarily chosen from gradient-based optimization problems.  

Note from Eq. (25) how each constraint violation is penalized separately using an rp penalty 
factor. It can be shown that each constrain penalty factor will be of finite value in the 
solution of the augmented Lagrange function (Eq. (25)) hence in the solution of the original 
constrained problem (Eq. (1)). The multipliers and penalty factors values that lead to the 
optimum are unknown and problem dependent. Therefore, instead of the traditional single 
unconstrained optimization process, a sequence of unconstrained minimizations of Eq. (25) 
is required to obtain a solution. In such a sequence, the Lagrange multiplier is updated as: 

( ),
1

2
i

p j j kvv v
r xθ

+
= +i i

j j  (27) 

In a similar way, the penalty factor is updated in a way such that it penalizes infeasible 
movements as: 

( ) ( ) ( )

( )

, 1

, ,
1

,

2

1

2

i i i

p j j v j v j v gv

i

p j p j j v gv
v

p j v

r if g x g x g x

r r if g x

r otherwise

ε

ε

−

+

> ∧ >

= ≤  (28) 

where gε  is a specified constrained violation tolerance. A lower bound limit of 

( ),
1 2p j gr ε≥ i

j is also placed in the penalty factor so its magnitude is effective in creating 

a measurable change in Lagrange multipliers. Based on the above formulation the 
augmented Lagrange PSO algorithm can be then constructed as follows: 

1. Initialize a set of particles positions i
0x  and velocities i

0v  randomly distributed 

throughout the design space bounded by specified limits. Also initialize the Lagrange 

multipliers and penalty factors, e.g. 
0
0=i

j ,
, 0
0

p jr r= , and evaluate the initial particles 

corresponding function values using Eq. (25). 
2. Solve the unconstrained optimization problem described in Eq. (25) using the PSO 

algorithm shown in section 2.2 for kmax iterations. 
3. Update the Lagrange multipliers and penalty factors according to Eq. (27) and Eq. (28). 
4. Repeat steps 2-4 until a stopping criterion is met. 

4. PSO Application to Structural Design

Particle swarms have not been used in the field of structural optimization until very 
recently, where they have show promising results in the areas of structural shape 
optimization (Fourie & Groenwold, 2002; Venter & Sobieszczanski-Sobieski, 2004) as well as 
topology optimization (Fourie & Groenwold, 2001). In this section, we show the application 
of the PSO algorithm to three classic non-convex truss structural optimization examples to 
demonstrate its effectiveness and to illustrate the effect of the different constraint handling 
methods. 
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4.1 Example 1 – The 10-Bar Truss 

Our first example considers a well-known problem corresponding to a 10-bar truss non-
convex optimization shown on Fig. 6 with nodal coordinates and loading as shown in Table 
1 and 2 (Sunar & Belegundu, 1991). In this problem the cross-sectional area for each of the 10 
members in the structure are being optimized towards the minimization of total weight. The 
cross-sectional area varies between 0.1 to 35.0 in2. Constraints are specified in terms of stress 
and displacement of the truss members. The allowable stress for each member is 25,000 psi 

for both tension and compression, and the allowable displacement on the nodes is ±2 in, in 
the x and y directions. The density of the material is 0.1 lb/in3, Young’s modulus is E = 104

ksi and vertical downward loads of 100 kips are applied at nodes 2 and 4. In total, the 
problem has a variable dimensionality of 10 and constraint dimensionality of 32 (10 tension 
constraints, 10 compression constraints, and 12 displacement constraints). 

Figure 6. 10-Bar Space Truss Example 

Node x (in) y (in) 

1 720 360 

2 720 0 

3 360 360 

4 360 0 

5 0 360 

6 0 0 

Table 1. 10-Bar Truss Members Node Coordinates 

Node Fx Fy 

4 0 -100 

6 0 -100 

Table 2. 10-Bar Truss Nodal Loads 

Three different PSO approaches where tested corresponding to different constraint handling 
methodologies. The first approach (PSO1) uses the traditional fixed penalty constraint while 
the second one (PSO2) uses an adaptive penalty constraint. The third approach (PSO3) 
makes use of the augmented Lagrange multiplier formulation to handle the constraints. 
Based on the derived selection heuristics and parameter settings analysis, a dynamic inertia 
weight variation method is used for all approaches with an initial weight of 0.95, and a 
fraction multiplier of kw = 0.975 which updates the  inertia value if the improved solution 
does not change after five iterations. Similarly, the "trust" setting parameters where specified 
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as c1=2.0 and c2=1.0 for the PSO1 and PSO2 approaches to promote the best global/local 
exploratory behaviour. For the PSO3 approach the setting parameters where reduced in 
value to c1=1.0 and c2=0.5 to avoid premature convergence when tracking the changing 
extrema of the augment multiplier objective function. 
Table 3 shows the best and worst results of 20 independent runs for the different PSO 
approaches. Other published results found for the same problem using different 
optimization approaches including gradient based algorithms both unconstrained (Schimit 
& Miura, 1976), and constrained (Gellatly & Berke, 1971; Dobbs & Nelson, 1976; Rizzi, 1976; 
Haug & Arora, 1979; Haftka & Gurdal, 1992; Memari & Fuladgar, 1994), structural 
approximation algorithms (Schimit & Farshi, 1974), convex programming (Adeli & Kamal, 
1991, Schmit & Fleury, 1980), non-linear goal programming (El-Sayed & Jang, 1994), and 
genetic algorithms (Ghasemi et al, 1997; Galante, 1992) are also shown in Tables 3 and 4. 

Truss 
Area

PSO1 
Best

PSO1 
Worst

PSO2 
Best

PSO2 
Worst

PSO3 
Best

PSO3 
Worst

Gellatly
&

Berke, 
1971

Schimit 
&

Miura,
1976

Ghasemi,
1997

Schimit 
&

Farshi, 
1974

Dobbs 
&

Nelson, 
1976

01 33.50 33.50 33.50 33.50 33.50 30.41 31.35 30.57 25.73 33.43 30.50 
02 0.100 0.100 0.100 0.100 0.100 0.380 0.100 0.369 0.109 0.100 0.100 
03 22.76 28.56 22.77 33.50 22.77 25.02 20.03 23.97 24.85 24.26 23.29 
04 14.42 21.93 14.42 13.30 14.42 14.56 15.60 14.73 16.35 14.26 15.43 
05 0.100 0.100 0.100 0.100 0.100 0.110 0.140 0.100 0.106 0.100 0.100 
06 0.100 0.100 0.100 0.100 0.100 0.100 0.240 0.364 0.109 0.100 0.210 
07 7.534 7.443 7.534 6.826 7.534 7.676 8.350 8.547 8.700 8.388 7.649 
08 20.46 19.58 20.47 18.94 20.47 20.83 22.21 21.11 21.41 20.74 20.98 
09 20.40 19.44 20.39 18.81 20.39 21.21 22.06 20.77 22.30 19.69 21.82 
10 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.320 0.122 0.100 0.100 

Weight 5024.1 5405.3 5024.2 5176.2 5024.2 5076.7 5112.0 5107.3 5095.7 5089.0 5080.0 

Table 3. 10-Bar Truss Optimization Results 

Truss 
Area

Rizzi,
1976

Haug & 
Arora, 1979 

Haftka & Gurdal, 1992
Adeli & Kamal, 

1991
El-Sayed & 
Jang, 1994 

Galante, 1992 
Memari & 

Fuladgar, 1994 

01 30.73 30.03 30.52 31.28 32.97 30.44 30.56 
02 0.100 0.100 0.100 0.10 0.100 0.100 0.100 
03 23.934 23.274 23.200 24.65 22.799 21.790 27.946 
04 14.733 15.286 15.220 15.39 14.146 14.260 13.619 
05 0.100 0.100 0.100 0.10 0.100 0.100 0.100 
06 0.100 0.557 0.551 0.10 0.739 0.451 0.100 
07 8.542 7.468 7.457 7.90 6.381 7.628 7.907 
08 20.954 21.198 21.040 21.53 20.912 21.630 19.345 
09 21.836 21.618 21.530 19.07 20.978 21.360 19.273 
10 0.100 0.100 0.100 0.10 0.100 0.100 0.100 

Weight 5061.6 5060.9 5060.8 5052.0 5013.2 4987.0 4981.1 

Table 4. 10-Bar Truss Optimization Results (Continuation) 

We can see that all three PSO implementations provide good results as compared with other 
methods for this problem. However, the optimal solution found by the fixed penalty 
approach has a slight violation of the node 3 and node 6 constraints. This behaviour is 
expected from a fixed penalty as the same infeasibility constraint pressure is applied at each 
iteration; it also indicates that either we should increase the scaling penalty parameter or 
dynamically increase it, so infeasibility is penalized further as the algorithm gets closer to 
the solution. The benefit of a dynamic varying penalty is demonstrated by the adaptive 
penalty PSO which meets all constraints and has only two active constraints for the 
displacements at nodes 3 and 6. The augmented Lagrange multiplier approach also 
converges to the same feasible point as the dynamic penalty result. Furthermore, it does it in 
fewer number of iterations as compared to the other two approaches since convergence is 
checked directly using the Lagrange multiplier and penalty factor values. Note as well how 
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the fixed penalty approach has a larger optimal solution deviation as compared to the 
dynamic penalty and Lagrange multiplier approaches. 

4.2 Example 2 – The 25-Bar Truss 

The second example considers the weight minimization of a 25-bar transmission tower as 
shown on Fig 7 with nodal coordinates shown on Table 5 (Schmit & Fleury, 1980). The 
design variables are the cross-sectional area for the truss members, which are linked in eight 
member groups as shown in Table 6. Loading of the structure is presented on Table 7. 
Constraints are imposed on the minimum cross-sectional area of each truss (0.01 in2),

allowable displacement at each node (±0.35 in), and allowable stresses for the members in 
the interval [-40, 40] ksi. In total, this problem has a variable dimensionality of eight and a 
constraint dimensionality of 84. 

Figure 7. 25-Bar Space Truss Example 

Node x (in) y (in) z (in) 

1 -37.5 0 200.0 

2 37.5 0 200.0 

3 -37.5 37.5 100.0 

4 37.5 37.5 100.0 

5 37.5 -37.5 100.0 

6 -37.5 -37.5 100.0 

7 -100.0 100.0 0.0 

8 100.0 100.0 0.0 

9 100.0 -100.0 0.0 

10 -100.0 -100.0 0.0 

Table 5. 25-Bar Truss Members Node Coordinates 
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Group Truss Members 

A1 1 

A2 2-5 

A3 6-9 

A4 10,11 

A5 12,13 

A6 14-17 

A7 18-21 

A8 22-25 

Table 6. 25-Bar Truss Members Area Grouping 

Node Fx Fy Fz 

1 1000 -10000 -10000 

2 0 -10000 -10000 

3 500 0 0 

6 600 0 0 

Table 7. 25-Bar Truss Nodal Loads 

As before, three different PSO approaches that correspond to different constraint handling 
methods were tested. The best and worst results of 20 independent runs for each tested 
method are presented on Table 8 as well as results from other research efforts obtained from 
local (gradient-based) and global optimizers. Clearly, all PSO approaches yield excellent 
solutions for both its best and worst results where all the constraints are met for all the PSO 
methods. The optimal solutions obtained have the same active constraints as reported in 
other references as follows: the displacements at nodes 3 and 6 in the Y direction for both 
load cases and the compressive stresses in members 19 and 20 for the second load case. As 
before, a larger solution deviation in the fixed penalty results is observed as compared to the 
other two PSO approaches. In addition, results from the augmented Lagrange method are 
obtained in less number of iterations as compared to the penalty-based approaches. 

Area
Group 

PSO1 
Best

PSO1 
Worst

PSO2 
Best

PSO2 
Worst

PSO3 
Best

PSO3 
Worst

Zhou & 
Rosvany, 

1993

Haftka & 
Gurdal,

1992

Erbatur, et 
al., 2000 

Zhu, 
1986

Wu, 1995 

A1 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.010 0.010 0.1 0.1 0.1 
A2 0.8977 0.1000 1.0227 0.9895 0.4565 1.0289 1.987 1.987 1.2 1.9 0.5 
A3 3.4000 3.3533 3.4000 3.4000 3.4000 3.4000 2.994 2.991 3.2 2.6 3.4 
A4 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.010 0.010 0.1 0.1 0.1 
A5 0.1000 0.1000 0.1000 3.4000 1.9369 0.1000 0.010 0.012 1.1 0.1 1.5 
A6 0.9930 0.7033 0.6399 0.6999 0.9647 0.8659 0.684 0.683 0.9 0.8 0.9 
A7 2.2984 2.3233 2.0424 1.9136 0.4423 2.2278 1.677 1.679 0.4 2.1 0.6 
A8 3.4000 3.4000 3.4000 3.4000 3.4000 3.4000 2.662 2.664 3.4 2.6 3.4 

Weight 489.54 573.57 485.33 534.84 483.84 489.424 545.16 545.22 493.80 562.93 486.29 

Table 8. 25-Bar Truss Optimization Results 

4.3 Example 3 – The 72-Bar Truss 

The final example deals with the optimization of a four-story 72-bar space truss as shown on 
Fig. 8. The structure is subject to two loading cases as presented on Table 9. The 
optimization objective is the minimization of structural weight where the design variables 
are specified as the cross-sectional area for the truss members. Truss members are linked in 
16 member groups as shown in Table 10. Constraints are imposed on the maximum 
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allowable displacement of 0.25 in at the nodes 1 to 16 along the x and y directions, and a 
maximum allowable stress in each bar restricted to the range [-25,25] ksi. In total, this 
problem has a variable dimensionality of 16 and a constraint dimensionality of 264. 

Load Case Node Fx Fy Fz 

1 1 5 5 -5 

2 1 0 0 -5 

2 0 0 -5 0 

3 0 0 -5 0 

4 0 0 -5 0 

Table 9. 72-Bar Truss Nodal Loads 

Figure 8. 72-Bar Space Truss Example 

Results from the three PSO approaches as well as other references are shown in Table 11. As 
before, comparisons results include results from traditional optimization (Venkayya, 1971; 
Gellatly & Berke, 1971; Zhou & Rosvany, 1993), approximation concepts (Schimit & Farshi, 
1974), and soft-computing approaches (Erbatur, et al., 2000). Similar to the previous 
examples, all the tested PSO approaches provide better solutions as those reported in the 
literature, with the augmented Lagrange method providing the best solution with the lowest 
number of iterations. The obtained optimal PSO solutions meet all constraints requirements 
and have the following active constraints: the displacements at node 1 in both the X and Y 
directions for load case one, and the compressive stresses in members 1-4 for load case two. 
The above active constraints agree with those reported by the different references. 
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Area Members Group Truss Members 

A1 1, 2, 3, 4 

A2 5, 6, 7, 8, 9, 10, 11, 12 

A3 13, 14, 15, 16 

A4 17, 18 

A5 19, 20, 21, 22 

A6 23, 24, 25, 26, 27, 28, 29, 30

A7 31, 32, 33, 34 

A8 35, 36 

A9 37, 38, 39, 40 

A10 41, 42, 43, 44, 45, 46, 47, 48

A11 49, 50, 51, 52 

A12 53, 54 

A13 55, 56, 57, 58 

A14 59, 60, 61, 62, 63, 64, 65, 66

A15 67, 68, 69, 70 

A16 71, 72 

Table 10. 72-Bar Truss Members Area Grouping 

Area
Group 

PSO1 
Best

PSO1 
Worst

PSO2 
Best

PSO2 
Worst

PSO3 
Best

PSO3 
Worst

Zhou & 
Rosvany, 

1993

Venkayya,
1971

Erbatur, et 
al., 2000 

Schimit 
&

Farshi, 
1974

Gellatly 
&

Berke, 
1971

A01 0.1561 0.1512 0.1615 0.1606 0.1564 0.1568 0.1571 0.161 0.155 0.1585 0.1492 
A02 0.5708 0.5368 0.5092 0.5177 0.5553 0.5500 0.5356 0.557 0.535 0.5936 0.7733 
A03 0.4572 0.4323 0.4967 0.3333 0.4172 0.3756 0.4096 0.377 0.480 0.3414 0.4534 
A04 0.4903 0.5509 0.5619 0.5592 0.5164 0.5449 0.5693 0.506 0.520 0.6076 0.3417 
A05 0.5133 2.5000 0.5142 0.4868 0.5194 0.5140 0.5067 0.611 0.460 0.2643 0.5521 
A06 0.5323 0.5144 0.5464 0.5223 0.5217 0.4948 0.5200 0.532 0.530 0.5480 0.6084 
A07 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.100 0.100 0.120 0.1000 0.1000 
A08 0.1000 0.1000 0.1095 0.1000 0.1000 0.1001 0.100 0.100 0.165 0.1509 0.1000 
A09 1.2942 1.2205 1.3079 1.3216 1.3278 1.2760 1.2801 1.246 1.155 1.1067 1.0235 
A10 0.5426 0.5041 0.5193 0.5065 0.4998 0.4930 0.5148 0.524 0.585 0.5793 0.5421 
A11 0.1000 0.1000 0.1000 0.1000 0.1000 0.1005 0.1000 0.100 0.100 0.1000 0.1000 
A12 0.1000 0.1000 0.1000 0.1000 0.1000 0.1005 0.1000 0.100 0.100 0.1000 0.1000 
A13 1.8293 1.7580 1.7427 2.4977 1.8992 2.2091 1.8973 1.818 1.755 2.0784 1.4636 
A14 0.4675 0.4787 0.5185 0.4833 0.5108 0.5145 0.5158 0.524 0.505 0.5034 0.5207 
A15 0.1003 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.100 0.105 0.1000 0.1000 
A16 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.100 0.155 0.1000 0.1000 

Weight 381.03 417.45 381.91 384.62 379.88 381.17 379.66 381.20 385.76 388.63 395.97 

Table 11. 72-Bar Truss Optimization Results 

7. Summary and Conclusions 

Particle Swarm Optimization is a population-based algorithm, which mimics the social 
behaviour of animals in a flock. It makes use of individual and group memory to update 
each particle position allowing global as well as local search optimization. Analytically the 
PSO behaves similarly to a traditional line-search where the step length and search direction 
are stochastic. Furthermore, it was shown that the PSO search strategy can be represented as 
a discrete-dynamic system which converges to an equilibrium point. From a stability 
analysis of such system, a parameter selection heuristic was developed which provides an 
initial guideline to the selection of the different PSO setting parameters. Experimentally, it 
was found that using the derived heuristics with a slightly larger cognitive pressure value 
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leads to faster and more accurate convergence. Improvements of the basic PSO algorithm 
were discussed. Different inertia update strategies were presented to improve the rate of 
convergence near optimum points. It was found that a dynamic update provide the best rate 
of convergence overall. In addition, different constraint handling methods were shown. 
Three non-convex structural optimization problems were tested using the PSO with a 
dynamic inertia update and different constraint handling approaches. Results from the 
tested examples illustrate the ability of the PSO algorithm (with all the different constraint 
handling strategies) to find optimal results, which are better, or at the same level of other 
structural optimization methods. From the different constraint handling methods, the 
augmented Lagrange multiplier approach provides the fastest and more accurate 
alternative. Nevertheless implementing such method requires additional algorithmic 
changes, and the best combination of setting parameters for such approach still need to be 
determined. The PSO simplicity of implementation, elegant mathematical features, along 
with the lower number of setting parameters makes it an ideal method when dealing with 
global non-convex optimization tasks for both structures and other areas of design.  
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