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Abstract

Vitamin K2 is a collection of isoprenologues that mostly originate from bacterial
synthesis, also called menaquinones (MKs). Multiple bacterial species used as starter
cultures for food fermentation are known to synthesize MK. Therefore, fermented food
is the best source of vitamin K2. In the Western diet, dairy products are one of the best
known and most commonly consumed group of fermented products.

Although intensive research on metabolism and the biological effect of vitamin K2
continues today, data about vitamin K2 production and content in foods remain scarce.
Dietary recommendations are still based on the classic role of vitamin K as an enzyme
cofactor for coagulation proteins and do not consider differences in bioavailability and
bioactivity between the various MKs and the possibly higher requirements for health
effects apart from coagulation, such as bone or cardiovascular health. Here, we provide
a global view of foods rich in vitamin K2 and their interactions together with other
nutrients in selected health effects such as bone and cardiovascular health.

Keywords: Menaquinones, Bacteria, Food, Dairy, Health

1. Introduction

Vitamin K occurs naturally in two biologically active forms. Vitamin K1, also called phyllo-
quinone (PK), is abundant in leafy green vegetables, such as cabbage, spinach, and lettuce [1].
The other form, vitamin K2, is called menaquinone (MK) and is predominantly of microbial
origin [2, 3]. Vitamin K2 is mainly present in fermented food such as cheese and natto
(fermented soybeans), but gut microbiota are also able to synthesize vitamin K2 [4]. One
exception, menaquinone-4 (MK-4), is formed in humans and animals by tissue-specific
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conversion of PK and/or menadione [5]. However, in the literature, all MKs are mostly grouped
under the term vitamin K2 resulting in the assumption that all MKs are similar in origin and
function. Moreover, despite the knowledge that MKs are present in the food supply, little is
known about their individual synthesis, growth conditions, and interactions of the producing
bacteria and the total amounts of the different MKs in fermented foods. Regarding the findings
that MKSs play an important role in health aspects beyond coagulation, study of the interaction
of MKs with other nutrients may lead to a better understanding of the effect of different food
items on health aspects, such as bone health or cardiovascular health.

Such a global view could be essential for guiding the development of dietary intake recom-
mendations for vitamin K.

2. Structure of vitamin K

Both vitamin K forms have 2-methyl-1,4-naphthoquinone, also called menadione or vitamin
K3, as a common ring structure. However, they differ from each other in the length and degree
of saturation of the polyisoprenoid side chain attached to the 3-position.

Phylloquinone (vitamin K1) possesses a phytyl side chain, which consists of four isoprene
units, and one of them is unsaturated. Phylloquinone is found primarily in plants in association
with chlorophyll, whereas menaquinone (vitamin K2) is principally synthesized by bacteria.
Menaquinone contains side chains of varying length, for most the part of a polymer of
repeating unsaturated 5-carbon prenyl units. Depending on the microorganism by which the
chainis synthesized, the chain length generally ranges from 4 to 13 prenyl units. Menaquinones
are classified according to the number of prenyl units. The number of units is given in a suffix
(-n), that is, menaquinone-n and often abbreviated as MK-# [2, 6, 7]. Some bacteria produce
isoprenologues in which one or more of the prenyl units are saturated. The additional
hydrogen atoms are indicated with the prefix dihydro-, tetrahydro-, and so on and are
abbreviated MK-n(H2), MK-n(H4), etc. [8].

Vitamin K is fat soluble. The melting points of menaquinones vary from 35°C to 62°C depend-
ing on the length of the multiprenyl side chain. Menaquinones are stable to heat and air but
are very sensitive to alkali and ultraviolet (UV) irradiation [9].

3. Functions and biosynthesis of menaquinones in bacteria

The distribution of isoprenoid quinones has been studied in 900 microbial strains, 56 mold
strains, and 88 yeast strains. About half of the studied bacteria contain menaquinone, but no
menaquinones have been found in molds and yeast [10]. Menaquinone and demethylmena-
quinones (DMKs) are found in the cytoplasmic membrane of bacteria. MKs and DMKs function
as a reversible redox component of the electron transfer chain [11]. Additionally, reduced MKs
exhibit antioxidant properties and can play a role in protecting cellular membranes from lipid
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oxidation [12]. Menaquinones are also necessary for sporulation and proper regulation of
cytochrome formation in some Gram-positive bacteria such as Lactobacillus subtilis [13]. In
particular, the food industry uses various lactic acid bacteria (LAB) as starter cultures to
produce fermented milk products, meat products, and vegetables. As many LAB lack a heme
biosynthesis pathway, which results in an incomplete electron transport chain, the addition of
menaquinone to the media facilitates aerobic growth, improves yield, and reduces production
costs [14].

Menaquinone synthesis has mostly been described in Escherichia coli, Mycobacterium phlei, and
Bacillus subtilis. In E. coli, chorismate from the shikimate pathway is converted into the
naphthoquinone ring by six enzymes (MenFDHCEB) [11, 15]. The isoprenoid side chain is
synthesized separately and is joined to the naphthoquinone ring to form demethylmenaqui-
none. Prenylation and methylation catalyzed by polyprenyltransferase (MenA) and methyl-
transferase (MenG) are the last steps of the synthesis of menaquinone [16, 17]. An alternative
pathway, called the futalosine pathway, was described in microorganisms that lack men genes.
In this pathway, chorismate is converted to menaquinone with four enzymes encoded by
mgnABCD genes and unknown enzymes [17-19]. The majority of the bacteria containing the
classical menaquinone pathway are obligately or facultatively aerobic, and the majority of
menaquinone in anaerobicbacteria is synthesized via the futalosine pathway [17]. For example,
the metabolic pathway of Lactoccocus lactis, which is used as a cheese starter, can function
through aerobic and anaerobic reactions, and the men genes for the synthesis of menaquinone
were detected in its genome.

Menaquinones have side chains of different sizes in different organisms and sometimes even
within the same organism. Depending on the growing conditions, the basic structure can be
modified by demethylation of the naphthoquinone ring to reform DMK or by saturation of the
isoprenoid side chain [2, 19].

4. Non-dietary sources of menaquinones

Bacterially synthesized menaquinones that contribute to human vitamin K2 requirements may
be produced by the gut microbiota or by bacteria present in food. In humans, the most
important genera of intestinal flora are Bacteroides and Bifidobacteria. However, only Bacteroides
can synthesize menaquinone. The major forms produced by Bacteroides are MK-10 and MK-11.
MK-6 produced by Eubacterium lentum, MK-7 produced by Veillonella, and MK-8 produced by
Enterobacter were also found in isolates from intestinal flora [2, 7, 8, 20]. Most menaquinones
are present in the distal colon, but the most promising site of absorption is the terminal ileum,
where there are menaquinone-producing bacteria and bile salts that are needed for solubili-
zation of menaquinones [7, 21]. Therefore, although intestinal microflora synthesize large
amounts of menaquinones, the bioavailability of bacterial menaquinone is poor, and diet is the
major source of functionally available vitamin K2 [3, 7, 8]. Recent studies also showed that a
short-term decrease in dietary vitamin K intake is not compensated by intestinal menaqui-
nones [22-24].
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5. Dietary sources of menaquinones

Vitamin K2 is mostly synthesized by bacteria; therefore, the highest number of long-chain
menaquinones is found in fermented dairy products, such as cheese and fermented vegetables,
such as natto and sauerkraut [16]. One exception is MK-4, which is formed by a realkylation
step from menadione present in animal feed or as a product of tissue-specific conversion
directly from dietary phylloquinone [5]. The extent of the conversion to MK-4 is estimated to
range from 5% to 25% of the ingested phylloquinone [25].

Searching for information about the concentration of vitamin K2 in food is not very fruitful.
Out of more than 70 national food databases, only 12 provide the vitamin K content of food
items. Only three of these food databases (the United States, the Netherlands, Turkey)
specifically report the vitamin K2 concentration; all others publish only phylloquinone (PK)
or total vitamin K or give no further information about the vitamin forms included in the given
values. The comparison of the provided concentration of MK in these three databases is not
possible because the values are based on different specifications and different processes. The
data given in the US database are for MK-4. However, the Dutch database includes several
types of menaquinones, ranging from MK-4 to MK-10. For the data from the Turkish database,
there is no information concerning the definition of vitamin K2 [16, 26]. In countries where
animals are supplemented with menadione as practiced in the United States [27] and the
Netherlands [28], the MK-4 concentration is normally higher in food of animal origin. The
supplementation practice used in Turkey is unknown. Last, the process and the bacterial strains
used in the production of fermented food determine the concentration and forms of MK in
products [16].

Scanning the literature for publications that report the results of vitamin K measurements in
food provides additional separate values for different menaquinones. However, information
about longer-chain menaquinones (MK-5 to MK-10) is very limited. Table 1 summarizes the
values of vitamin K2 for animal products such as dairy, meat, fish and eggs, and fermented
vegetable products such as bread, sauerkraut, and legumes (natto).

Menaquinone content (1g/100 g; mean = SD or range)

Food MK-4 MK-5 MK-6 MK-7 MK-8 MK-9 MK-10 Source
Dairy

Whole milk 0.7-0.9 0.0-0.1 nd nd nd nd nr [6]
Whole milk 0.8-1.0 nr nr nr nr nr nr [27]
Whole milk 2+0.3 nr nr nd nr nr nr [32]
Whole milk 0.4-1.0 nr nr nr nr 0-2 nr [29]
Milk 1% fat 0.3-0.4 nr nr nr nr nr nr [27]
Milk 2% fat 0.4-0.5 nr nr nr nr nr nr [27]

Whipped cream  5.2-5.6 nd nd nd nd nd nr [6]



Menaquinones, Bacteria, and Foods: Vitamin K2 in the Diet 67
http://dx.doi.org/ 10.5772/63712

Menaquinone content (ug/100 g; mean * SD or range)

Food MK-4 MK-5 MK-6 MK-7 MK-8 MK-9 MK-10 Source

Cream 8+3 nr nr nd nr nr nr [32]

Butter 13.5-15.9 nd nd nd nd nd nr [6]
21+7 nr nr nd nr nr nr [32]

Fermented milk

Whole milk, sour 0.6 +0.02 0.3 +£0.002 0.2+0.03 0.4 +£0.04 20+0.1 47+0.2 nd [31]
Buttermilk 0.2-0.3 0.1-0.2 0-0.2 0.1-0.3 0.5-0.6 1.2-1.6 nr [6]
Mesophilic nr nr 42 5 25.9 100.8 8.5 [34]
Thermophilic nd nd nd nd nd nd nd [34]
Yogurt

Whole 0.4-1.0 nr nr nr nr 0-2.0 nr [29]
Whole 0.5-0.7 0-0.2 nd nd nd nd nr [6]
Whole 1+0.1 nr nr 0.1+0.2 nr nr nr [32]
Plain 0.4+0.03 0.1 £0.006 nd nd nd nd nd [31]
Skimmed nd nd nd nd 0-0.2 nd nr [6]
Cheese

Curd 0.3-0.6 0-0.2 0.1-0.3 0.2-0.5 4.8-54 18.1-19.2 nr [6]
Curd 2-10 nr nr nr nr 40-70 nr [29]
Hard 42-6.6 1.3-1.7 0.6-1.0 1.1-1.5 149-182 453-549 nr [6]
Semi-hard nr nr 1.9 1.1 3.9 17.5 4.7 [34]
Soft 3.3-3.9 02-04 0.5-0.7 09-1.1 10.7-12.2  35.1-42.7 nr [6]
Soft nr nr 1.7 1.2 7.0 27.3 29 [34]
Processed 5+£2 nr nr 0.3+0.1 nr nr nr [32]
Blue cheese nr nr 4.9 12.4 7.7 19.3 29 [34]
Appenzeller 4.3-5.2 nr nr nr nr nr nr [33]
Caerphilly nr nr 1.6+0.1 nd 1.6+0.1 324+08 nd [34]
Cheddar 10.2 nr nr nr nr nr nr [27]
Cheddar nr nr 2.2 2.1 3.2 12.9 5.2 [34]
Cheshire nr nr 1.6+ 0.2 nd 58+0.2 242+04 nd [34]
Comté 5.5-8.4 nr nr nr nr nr nr [33]
Comté nd nd nd nd nd nd nd [34]
Edam 33+02 1.0+0.1 0.6+0.1 1.3+0.1 10.5£08 30.0+26 09+x0.1 [31]
Emmental 8.1-8.6 nr nr nr nr nr nr [33]

Emmental nr nr nd nd nd nd 4.0 [34]
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Menaquinone content (ug/100 g; mean * SD or range)

Food MK-4 MK-5 MK-6 MK-7 MK-8 MK-9 MK-10 Source
Aged 90d 52+0.1 nd trace trace nd nd nd [31]
Aged 180d 6.1+0.5 nd trace nd nd nd nd [31]
Gamalost 1.0+0.0 0.6+0.0 0.3+0.0 0.9+0.1 48+0.7 423+70 21+04 [35]
Jarlsberg 8.4 nr nr nr nr nr nr [33]
Gruyere 8.1-9.6 nr nr nr nr nr nr [33]
Leicester nr nr 2.0+0.1 21+0.1 48+0.2 162+0.3 44+0.2 [34]
Mozzarella 3.14.0 nr nr nr nr nr nr [27]
Mozzarella nd nd nd nd nd nd nd [34]
Norvegia 51+09 nd 0.3+0.1 1.3+0.2 53+05 29.6+3.6 nd [35]
Raclette 5 nr nr nr nr nr nr [33]
Swiss cheese 6.2-8.8 nr nr nr nr nr nr [27]
Meat

Salami 8.2-10.1 nd nd nd nd nd nr [6]
Calf liver 1.1-8.9 nr nr nr nr nr nr [27]
Beef liver 04+04 nr nr nr nr nr nr [27]
Bovine liver 6.8 £1.03 nd 944+0.118 25.6+059 13.8+0.55 9.8+0.7 14+1.7  [31]
Beef liver 0.8 nr 2.5 18.2 4.8 1.5 6.6 [30]
Pork liver 0.3-0.4 nd nd nd nd nd nd [6]
Pork liver 108+144 nd nd 16 +2.7 25+5.2 6+1.8 8+2.9 [31]
Pork liver 0.6 nd 0.04 0.6 0.5 0.3 0.5 [30]
Chicken liver 14.1+20 nr nr nr nr nr nr [27]
Chicken liver 4 nr 0.03 nd 0.09 0.04 0.03 [30]
Beef kidney 21 nr 0.08 0.2 0.01 nd 0.1 [30]
Pork kidney 1.3 nr 0.02 0.07 0.05 0.22 0.24 [30]
Chicken kidney 5 nr nd nd nd nd nd [30]
Beef muscle 34 nr 0.03 0.03 nr nr nr [30]
Pork thigh 62 nr nr nr nr nr nr [32]
Pork steak 1.7-2.4 nd nd 0.4-0.7 0.9-1.2 nd nd [6]
Pork chop 3.1+£0.46 nd nd 0.12+0.035 nd nd nd [31]
Pork muscle 0.9 nr 0.03 0.03 nr nr nr [30]
Chicken breast  6.4-11.3 nd nd nd nd nd nd [6]
Chicken leg 5.8-10.5 nd nd nd nd nd nd [6]

Chicken thigh 27 +15 nr nr nd nr nr nr [32]
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Menaquinone content (ug/100 g; mean * SD or range)

Food MK-4 MK-5 MK-6 MK-7 MK-8 MK-9 MK-10 Source
Chicken meat, leg 60 + 8.2 nd nd nd nd nd nd [31]
and thigh
Chicken muscle 8.9 nr nd nd nr nr nr [30]
Fish
Rainbow trout, 3.1+0.2 0.09+0.019 nd 0.2+0.058 nd nd nd [31]
cultivated
Pike perch 0.2+0.025 0.05+0.0044 0.05+0.0008 0.5+0.13 nd nd nd [31]
Baltic herring 0.21+0.002 nr nd nd nd nd nd [31]
Horse mackerel 0.6 +0.1 nr nr nd nr nr nr [32]
Mackerel 1+0.2 nr nr nd nr nr nr [32]
Mackerel 0.3-0.5 nd nd nd nd nd nr [6]
Salmon 0.2-0.3 nr nr nr nr nr nr [27]
Plaice 0.1-0.3 nd 0.2-0.3 0.0-0.1 1.3-1.8 nr nr [6]
Eel 1.4-2.1 nd 0.0-0.2 0.2-0.6 nd nd nr [6]
Salmon 0.4-0.6 nd nd nd nd nd nr [6]
Eggs
Egg yolk 29.1-33.5 nd 0.6-0.8 nd nd nd nr [6]
Egg albumen 0.8-1.0 nd nd nd nd nd nr [6]
Whole egg 7+3 nr nr nd nr nr nr [32]
Egg white 1+1 nr nr nd nr nr nr [32]
Egg yolk 64 +31 nr nr nd nr nr nr [32]
Whole egg 5.6 nr nr nr nr nr nr [27]
Egg white 0.4 nr nr nr nr nr nr [27]
Egg yolk 155 nr nr nr nr nr nr [27]
Bread
Bread 0 nr nr nr nr 0.9-2 nr [29]
Buckwheat nd nd nd 1.0-1.2 nd nd nr [6]
Plant products
Sauerkraut 0.3-0.5 0.6-1.0 1.4-1.6 0.1-0.3 0.6-0.9 0.9-1.3 nr [6]
Natto nd 7.1-7.8 12.7-14.8 882-1034 78.3-89.8 nd nr [6]
2+3 nr nr 939 + 753 nr nr nr [32]
Hikiwari natto nd nr nr 827 + 194 nr nr nr [32]

(chopped natto)
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Menaquinone content (ug/100 g; mean * SD or range)
Food MK-4 MK-5 MK-6 MK-7 MK-8 MK-9 MK-10 Source

Black bean natto nd nr nr 796 £ 93 nr nr nr [32]

nd, not determined; nr, not reported.

Table 1. Representative ranges of measured menaquinone concentration in food.

Values for MK-4 to MK-10 are available. MK-4 is found in all reported products except
buckwheat, hikiwari natto, and black bean natto [6, 27, 29-35]. Innon-fermented dairy products
and in eggs, hardly any longer-chain menaquinones have been reported [6, 27, 29, 32]. Long-
chain menaquinones are also rare in the muscle meat of beef, pork, and chicken [6, 30-32].
However, in offal, such as the liver and kidney, small-to-moderate concentrations of MK-6 to
MK-10 have been detected [6, 27, 30, 31]. In fish, vitamin K2 concentrations are in general very
low, and menaquinones other than MK-4 have been found in only a few fish species [6, 27, 31,
32]. These small amounts of longer-chain menaquinones are said to originate from the bacteria
in decomposing organic material that serves as food for fish that live at the bottom of the sea
such as eel and plaice [36]. In sour milk and buttermilk and in curd and hard and soft cheese,
MK-8 and MK-9 mainly account for the total concentration of vitamin K followed by MK-6
and MK-7 [6, 27, 29, 31-35]. Fermented plant products are characterized by a high concentra-
tion of MK-7 (up to 1000 ug/100 g) [6, 32].

Almost no data are available about the stability and changes in vitamin K concentrations
during storage of food in general and during ripening of fermented food in particular.

6. Production of different menaquinones by microorganisms in food

Fermentation is traditionally used to increase shelf life, to inhibit pathogens, and to improve
organoleptic properties [37]. Additionally, the microbial production of vitamins provides a
very attractive approach for improving the nutritional composition of fermented foods. A
number of MK-producing species are commonly used in industrial food fermentation
applications (Table 2). The main microorganisms used in fermented dairy products are lactic
acid bacteria, which transform lactose into lactic acid. Lactococcus lactis ssp. cremoris, Lactococcus
lactis ssp. lactis, and Leuconostoc lactis are used as starter cultures in semihard and soft cheeses.
It was reported that these species produce menaquinone and MK-7 to MK-9 in particular for
Lactococcus and MK-7 to MK-10 for Leuconostoc [2, 38]. For example, the starter cultures
CHN211 and CHN22 from Hansen, which contain these species, produce MK-4 to MK-10;
MK-9 is the main menaquinone with 472.4 + 22.6 ug/100 g cells and 390.3 + 10.4 ug/100 g cells,
respectively [35]. Accordingly, the highest amounts of MK were detected in semihard and soft
cheese and in Caerphilly and Cheshire, a crumbly cheese specialty, known for higher num-
bers of Lactococcus species (Table 1). In semihard cheese, menaquinones in amounts up to
29.1 ug/100 g have been detected. The main quantified form of menaquinone in dairy is MK-9
(usually more than 50%), and the second major form is MK-8. Manoury and coauthors also
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found a correlation between MK-9 and MK-8. For most dairy, the MK-9 level was four times
higher than that of MK-8, and the authors suggested that microorganisms that produce MK-9
could also produce MK-8. Astonishingly, the level of MK-9 was not dependent on the fat level
of the dairy products. Moreover, the authors found no link between pH and the MK-9 content.
The highest amounts of MK-10 are usually found in hard cheese, with the exception of one
semihard cheese [34].

Species/subspecies Food use

Lactococcus lactis ssp. Cheese, buttermilk, sour cream, cottage cheese, cream cheese, kefir, yogurt
lactis and Lactococcus lactis ssp.

cremoris

Lactococcus raffinolactis
Leuconostoc lactis
Leuconostoc mesenteroides
Brevibacterium linens
Brochothrix thermosphacta
Hafnia alvei
Staphylococcus xylosus
Staphylococcus equorum
Arthrobacter nicotianae

Bacillus subtilis “natto”

Cheese

Cheese
Vegetables, dairy
Cheese

Meat

Cheese

Dairy, sausage
Dairy, meat
Cheese

Natto (fermented soybean)

Propionibacterium shermanii Cheese

Propionibacterium freudenreichii Cheese

Adapted from Walther et al. [16].

Table 2. Menaquinone-producing bacteria in fermented food.

In Swiss Emmental cheese, Propionibacterium strains are added to the milk to improve the
formation of holes inside the cheese body. During propionic acid fermentation, lactic acid is
transformed into propionic acid, acetic acid, and carbon dioxide. Various studies showed the
ability of Propionibacterium to produce menaquinone MK-9(4H) in anaerobic conditions [39,
40]. The highest amount of MK-9(4H) has been detected in Swiss Emmental (up to 31.4 ug/
100 g MK-9(4H)) and Norwegian Jarlsberg (65.2 ug/100 g MK-9(4H)); both cheeses have a high
propionic acid concentration. Smaller amounts are also found in Appenzeller (up to 2 ug/
100 g), Comté (up to 6.0 ug/100 g), and Raclette (4.7 ug/100 g) [33].

In contrast, dairy products fermented with thermophilic lactic acid bacteria, such as Comté
cheese, mozzarella, or yogurt products, contain only small amounts of menaquinone or none
(Table 1). These thermophilic species include Streptococcus thermophilus, Lactobacillus delbrueck-
ii, and Bifidobacterium, and they are known to be non-vitamin K producers [2, 34].

71
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In soft cheese, the average total menaquinones range 40.1 ug/100 g to 61 pg/100 g depending
on the source, analytical method, and type of cheese (Table 1). Manoury and coauthors
reported a soft cheese and a blue cheese with very high concentrations (up to 4.110 pug/100 g
and 70 ug/100 g, respectively), but the researchers could not explain why these two cheeses
are so rich in menaquinones [34].

One cheese with mold was also analyzed for menaquinone content. Gamalost, a Norwegian
mold (Mucor mucedo) ripened autochthonous cheese, contains more menaquinone than
Norvegia, a semihard Norwegian cheese, but the mold did not contribute to the production of
vitamin K in Gamalost. The low pH in Gamalost and a higher fermentation rate may explain
the differences in menaquinone content [35].

Some work has been conducted to improve the content of different menaquinones in dairy
products. New research demonstrated that strains of Lactobacillus fermentum LC 272 isolated
from raw milk could be a starter culture for fermented milk with a high level of vitamin K2
(MK-4) production [41]. This strain can produce 185 pg/L in Rogosa medium and 64 pg/L in
reconstituted skim milk. Morishita and coworkers published a study in 1999 that showed the
possibility of producing MK-8 and MK-9 with Lactocouccus lactis ssp. cremoris YIT2011 and
MK-9 and MK-10 with Lactococcus lactis YIT 3001 (29-123 ug of menaquinone/L of the fer-
mented medium) [38]. Additionally, several patents for Lactococcus capable of producing a
significantly increased amount of vitamin K2 have been deposed.

In contrast to fermented animal products, fermented vegetable products contain mainly MK-7
(Table 1). Natto, a traditional Japanese food produced with Bacillus subtilis natto, contains the
highest amount of menaquinone. The highest measured value is almost 1000 ug/100 g. B.
subtilis natto is the key microorganism for industrial production of MK-7, and much work has
been done to improve the production. Optimization of the fermentation medium, mutations
of the strains, and biofilm formation have been described as means for improving the yield of
MK-7 [42—46]. The use of organic solvents to extract vitamins is one of the major issues of the
bulk production of MK-7. Berenjian and coworkers demonstrated that the addition of vegeta-
ble oil during a dynamic fermentation process could be a good process for producing an oil
rich in MK-7. In that study, the oil contained 724 mg/L of MK-7, and they suggested using the
oil in supplementary and dietary food products [47].

7. Dietary recommendations for menaquinone

Dietary recommendations for vitamin K are still based on knowledge of phylloquinone and
its classic role as an enzyme cofactor for coagulation proteins. The recommendations do not
consider the differences in bioavailability and bioactivity between the different forms of
vitamin K or the possibly higher requirements for health effects apart from coagulation, such
as bone or cardiovascular health [16].

Depending on country, sex, and age, the recommendations for vitamin K range from 50 to
120 pg per day for adults 19 years and older. These recommendations are generally presented
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as adequate intake or estimated values, and no tolerable upper intake level has been established
for vitamin K [16, 25, 48]. Research for valuable biomarkers to measure the status of vitamin
K in the population is ongoing. A recent study from Maastricht University compared the
biomarkers for coagulation with those of bone and vascular health in 896 healthy volunteers.
Whereas all coagulation proteins were completely carboxylated by vitamin K, and a high
concentration of undercarboxylated Gla proteins (osteocalcin and matrix Gla protein) was
found in the majority of the blood samples, indicating that most of the volunteers in this study
had an inadequate supply of vitamin K [23]. As long as robust physiological endpoints are
missing to differentiate the contribution of MKs to human health from that of PK, it is unlikely
that specific dietary recommendations for MKs will be widely adopted in the near future. In
the meantime, a preferred recommendation could be to consume a wide variety of foods which
are good sources of PKs and MKs, respectively, such as green leafy vegetables and fermented
dairy products [16, 49].

8. Dietary intake of menaquinones

As shown in Table 1, the most important sources of menaquinones are cheese, curd, offal, and
fermented soybeans (natto). Based on regional differences in dietary patterns, the form and
amount of specific menaquinones consumed may vary widely between populations. For
example, in Japan, as a result of natto consumption, MK-7 is the most frequently consumed
form of menaquinones. The contribution of MK-7 to total vitamin K intake is 25% among young
women living in eastern Japan. Nearly all of the MK-7 intake originates from pulses, including
fermented soybean natto [32]. The mean daily intake of MK-7 in this study was 57.4 pug with
a range from 0 to 340 pg.

In countries with a traditional high intake of dairy products, such as the Netherlands, Ger-
many, and the United Kingdom (UK), MK-7 to MK-10 contribute mostly to the menaqui-
none supply. Beulens and coauthors compiled the results from several European studies
that estimated menaquinone intake using Food Frequency Questionnaires (FFQs). The self-
reported mean daily intake of menaquinones in adults ranged from 20.7 ug for women in
the Rotterdam Study to 43 ug in men in the UK National Dietary and Nutrition Survey. In
all of these studies, cheese was the most important food source of menaquinones [49]. How-
ever, these data should be interpreted carefully because they were collected by FFQs that
are designed to estimate the relative dietary intake of large populations but not to estimate
absolute dietary intake. A seasonal survey in postmenopausal women in Tehran, Iran, used
a monthly food record for 1 year. The researchers found a significantly higher intake of vita-
min K in the spring, summer, and autumn compared to the winter. Unfortunately, these au-
thors did not further specify vitamin K and did not provide any information about
consumption of different food items containing vitamin K [50]. A study in older individuals
to calculate the desired duration of a diet recording to estimate the individual vitamin K
intake concluded that 13 24-hour recalls are ideal to record intraindividual variance. As this
would not be realistic in most studies, the authors proposed a minimum of six nonconsecu-
tive days of diet recording [51]. Another possible approach for estimating nutrient status is
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to use biomarkers. Biomarkers for menaquinones are undercarboxylated vitamin K-depend-
ent proteins in the circulatory system. However, in addition to vitamin K availability, these
biomarkers depend on the total amount of protein. To be sure that protein status does not
confound vitamin K status, the measurements must be corrected for the total amount of the
protein under study [52].

These limitations, together with the scarce and widely varying data on concentrations of
different menaquinones in food items, show how fragmentary our knowledge of the supply
of vitamin K2 in the general population remains.

9. Pharmacokinetics of menaquinones

Although the forms of vitamin K are classified as fat-soluble nutrients, the lipophilicity of
the different forms changes with side-chain length. Whereas menadione is water soluble,
phylloquinone and MK-4 are mildly lipophilic. Long-chain menaquinones are strongly lipo-
philic and soluble only in apolar organic solvents [36]. This lipophilicity also influences the
absorption of vitamin K, which varies greatly depending on the food matrix. As long-chain
menaquinones are found mainly in the fat fraction of dairy products, the absorption of these
menaquinones is almost 100% in contrast to PK, where the poor uptake of only 5-10% from
cooked vegetables can be improved only slightly by concomitant fat intake [6]. As a conse-
quence, even the dietary intake of phylloquinone is much higher, menaquinones are equally
important for vitamin K status, because of their better intestinal absorption. Independently
of their form and origin, all K vitamins are transported to the liver, incorporated in triglycer-
ide-rich lipoproteins. Unlike phylloquinone, which mostly remains in the liver to be used
for clotting factor synthesis, menaquinones are released to the bloodstream incorporated in
low-density lipoproteins and transported to the target tissue such as bone and arteries for
Gla-protein carboxylation. Absorbability is further supported by a longer half-life, up to
several days for long-chain menaquinones compared to phylloquinone, which normally dis-
appears from the bloodstream after 8 hours. This longer postprandial presence in the blood-
stream leads to a more constant circulating level of vitamin K2 and, as a consequence,
longer availability of these long-chain menaquinones for uptake by extrahepatic tissues [36,
53]. Although there is some evidence that menaquinones with medium-chain length like
MK-7 are better absorbed than short- (MK-4) or long-chain menaquinones (MK-8 and MK-9)
[6], human data on the bioavailability, absorption, and kinetics of K2 vitamins from food are
limited to MK-7 and MK-9 and have not been systematically tested for all menaquinones
thus far [36, 49].

As researchers have found that MKs play an important role in health aspects beyond coagu-
lation, the cooperation with other nutrients in vitamin K-rich food such as fermented dairy
products may lead to a better understanding of the effect of different food items on health
aspects, for example, bone health or cardiovascular health.
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10. Bone health, menaquinones, and fermented dairy products

One of the most important research fields in the past and present is the study of the factors
that influence the formation and conservation of strong bones. Osteopenia, including osteo-
porosis, is one of the most prevalent diseases in elderly individuals and is a large social,
medical, and economic burden throughout the world. One out of three women and one out of
five men older than 50 years are at risk of experiencing an osteoporotic fracture [54]. Low bone
mineral mass is the main factor that causes osteoporotic fractures. Bone mass in later life is the
result of the peak bone mass achieved during growth and the rate of age-related bone loss.
Consequently, a high peak bone mass at maturity and a low bone loss during aging are the
most promising factors in the prevention of osteoporosis and fractures. In addition to factors
that influence bone health such as gender, age, body size, genetics, and ethnicity that are not
changeable, other factors, especially lifestyle factors such as physical activity, smoking, alcohol
consumption, and dietary patterns, can be modified [55]. Different dietary factors are known
to positively influence bone health. They range from minerals (e.g., calcium, magnesium,
phosphorus, potassium, and various trace elements) and vitamins (A, D, E, K, C, and certain
B vitamins) to macronutrients such as proteins and fatty acids and finally to bioactive food
components (e.g., peptides) that in recent years have been proposed to be beneficial for bone
health [55]. All these elements are involved in bone metabolism. Currently, researchers are
trying to identify and understand the mechanisms and interactions of these factors in relation
to bone health [56].

Most studies that have investigated the relationship between dairy and bone health have
shown a beneficial effect of dairy consumption, even if the reason for this link is still unclear
[56, 57]. After many years of focusing on calcium as the beneficial element for bone health in
dairy, recent evidence suggests that other macro- and micronutrients, as well as food compo-
nents such as bioactive peptides, milk fat globule membrane, prebiotics, and probiotics present
in milk and dairy products, play an important role in this health outcome [56]. Many of these
nutrients support the bioavailability (phosphorus, vitamin D, magnesium, zinc, potassium),
absorption (casein phosphopeptides, phosphorus, lactose, protein) and homeostasis (magne-
sium, potassium, vitamin D) of calcium and contribute to bone-building properties (phospho-
rus, magnesium, potassium, zinc, vitamin D, vitamin B12, and vitamin K) [56-58].

Most of these components are not or are positively affected by fermentation. That means their
concentration remains the same in the fermented product compared with milk or even
increases either by processing (i.e., fat-soluble vitamins in cheese) or by the activity of micro-
organisms (i.e., bioactive peptides, vitamin B12, or vitamin K2).

The role of vitamin K2 in bone health is strongly bound to osteocalcin (OC), a key regulator of
calcium usage. This small Ca**-binding protein is involved in the mineralization of bones and
teeth, and its potential to bind calcium is dependent on carboxylation with vitamin K2.

Only the fully carboxylated OC is able to strongly bind calcium and to consolidate calcification
of the hydroxyapatite crystal lattice that requires a sufficient supply with vitamin K2 and other
nutrients, such as retinoic acid and vitamin D, all involved in the regulation of osteocalcin
production [59].
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Fermented dairy products are vital for bone health because of their unique combination of
various nutrients and microorganisms that support and maintain positive bone metabolism
[57, 60]. Additionally, dairy matrix and nutrient composition may affect the delivery of
menaquinones and improve vitamin K status [61].

11. Cardiovascular health, menaquinones, and fermented dairy products

Coronary artery calcification (CAC) is a predictor of cardiovascular disease (CVD) and
mortality. Based on vitamin K’s role in activating matrix Gla protein (MGP), a calcification
inhibitor, vitamin K is proposed to play a preventive role in CAC and CVD [59, 62]. As recently
reviewed, randomized controlled trials that examined the influence of vitamin K on the risk
of cardiovascular disease are scarce [63]. The results of observational studies have shown an
association between higher dietary menaquinone consumption and less calcification [64],
decreased risk of coronary heart disease (CHD), CHD mortality, and all-cause mortality [65-
67]. The results of a Dutch prospective cohort study suggested that of all MKs the long-chain
menaquinones (MK-7 to MK-9) have the most beneficial effects on cardiovascular disease [67].
Although these results are promising, they must be interpreted with caution, because validated
biomarkers for single MK intake are missing [16].

Complex milk fatty acid chemistry and several minerals, such as calcium, magnesium,
phosphorus, and potassium provided in relevant concentrations, have been proposed to be
involved in the complex mechanism of dairy products and their support to reduce CVD risk
[68]. Among the high number of different fatty acids in dairy products, trans-palmitoleic acid,
stearic acid, lauricacid, myristic acid, and oleic acid have been associated with beneficial effects
on blood lipids and serum lipoprotein levels [56]. These assumptions are supported by the
inverse association observed between CHD risk and the consumption of milk, cheese, and meat
as the richest sources of MKs in the Western diet [6, 67].

12. Conclusion

Our knowledge of the consumption of menaquinones should be improved with weighed and
extended food records [51] in combination with (multiple) biomarkers in the blood for vitamin
K status [52] and the content of the various menaquinones in food items such as cheese, which
contribute most to the supply with this vitamin.

As different lactic acid bacteria strains used in cheese production influence the expression of
various MKs, analysis of a wide variety of different cheeses may be necessary for a represen-
tative overview of the vitamin K2 content in this food group. Although results from well-
designed clinical trials investigating the association between menaquinones and bone health,
as well as cardiovascular health, are rare, dairy products seem to be predestined to play a major
role in the Western diet because of their nutrient density and matrix properties that improve
the bioavailability of vitamin K2.
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