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Abstract

Background:  Brain  functional  magnetic  resonance  imaging  (fMRI)  is  sensitive  to
changes in blood oxygenation level dependent (BOLD) brain magnetic states. The fMRI
scanner produces a complex-valued image, but the calculation of the original BOLD
magnetic  source  is  not  a  mathematically  tractable  problem.  We  conduct  numeric
simulations to understand the BOLD fMRI model.

Methods:  A brain cortex volume of interest  (VOI) is  configured with vasculatures
(vessels or beads). Brain activity results in a local vascular blood magnetic susceptibil‐
ity change in VOI (denoted by χ(r,t)), manifesting as a dynamic magnetic source for
BOLD  fMRI.  The  MRI  scanner  produces  a  timeseries  of  complex-valued  images
reflecting  the  dynamic  source  χ(r,t).  A  voxel  BOLD  fMRI  signal  is  simulated  by
calculating the intravoxel spin precession dephasing signal, a 3D BOLD fMRI by a
multivoxel image of voxel signals for a 3D χ source distribution, and a 4D BOLD fMRI
by a timeseries of 3D multivoxel images. The simulation data are subject to pattern
analysis and statistical parametric mapping.

Results: Both MR magnitude and phase signals (images) are different from a prede‐
fined χ source due to data transformations inherent in the MRI scanning process. The
3D BOLD fMRI simulation shows the spatial distortions between the χ source and the
MR image. The 4D BOLD fMRI simulation shows that the reconstructed source map is
different from the original image and also that the task-correlation-based functional
mapping method is susceptible to noise.

Conclusion: BOLD fMRI simulation offers a means to understand the single-voxel MR
magnitude and phase signals, 3D multivoxel images, and 4D functional movies for a
predefined BOLD χ source with respect to various parameter settings. It also allows us
to separate the intravascular/extravascular signals and numerically characterize spin
diffusion effect. The 3D BOLD fMRI simulation shows the source-image mismatch,
which motivates the benefits of χ source reconstruction by solving an inverse MRI
problem. The 4D BOLD fMRI simulation shows the noise dependence of the task-
correlated functional map extraction.

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.
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1. Introduction

Magnetic resonance imaging (MRI) is a versatile non-invasive imaging technology that has
been widely accepted for brain imaging (probing a magnetic state of brain interior). When
applied to brain functional imaging, MRI produces a timeseries of images that are construed
as an image representation of a brain functional activity. It is believed that any brain activity
incurs a cerebral blood oxygenation level dependent (BOLD) magnetic state change that can
be detected by MRI [1–4]. Brain functional imaging based on MRI and the endogenous BOLD
contrast is termed BOLD fMRI.

In principle, the MRI output is a complex-valued image consisting of a pair of magnitude and
phase [5]. Nevertheless, only the MR magnitude image has been exploited for brain imaging
(structural or functional). Recent research shows that neither the MR magnitude nor the phase
could faithfully represent the brain magnetic state. This is due to a cascade of MRI transfor‐
mations (including linear dipole-convolved magnetization and nonlinear complex modulo/
argument operations [6]). Consequently, conventional BOLD fMRI that is based on MR
magnitude imaging may deviate from the underlying brain magnetic source change due to
nonlinear data transformations associated with MR magnitude image formation. Since there
is a lack of analytic formulation for describing the imaging aspects of BOLD fMRI, we conduct
numeric simulations to understand the BOLD fMRI model.

In the past decades, there have been reports on single-voxel BOLD signal simulations [7–9]
and multivoxel 3D BOLD imaging simulations [6, 10, 11]. In this chapter, we first provide a
tutorial on the numeric simulations of single-voxel signals and multivoxel images and move
forward to address implementing 4D BOLD fMRI simulations.

2. Models and methods

An overview of a brain BOLD fMRI model is diagramed in Figure 1, which consists of a cascade
of three modules (stages). Specifically, the “Source Magnetism” module provides the pheno‐
typical χ expression of a brain functional biophysiological state, which serves as the source of
the “MRI technology” module that produces a complex-valued MR image. Upon data
acquisition of a 4D fMRI, a postprocessing stage of “Statistic image analysis” is performed to
extract the brain functional map (fmap). A complete BOLD fMRI simulation implements the
three cascaded stages in Figure 1 by numerical representations and computations.

Numerical Simulation - From Brain Imaging to Turbulent Flows4



Figure 1. A BOLD fMRI model consists of three stages. The stage of “Source Magnetism” provides a dynamic magnetic
susceptibility source for the stage of “MRI Technology”. The MRI detection produces a 4D complex-valued fMRI data‐
set, which are used for functional imaging and mapping by “Statistical Image Analysis”.

2.1. Definition of 3D vasculature and magnetic susceptibility source (χ)

The initial step of BOLD fMRI simulation is to configure a χ-expressed BOLD activity, thereby
providing a BOLD χ source for fMRI. We define a brain cortex volume of interest (VOI) with
a tissue background and fill it with a cortex vasculature, thus simulating a brain cortex region.
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Let χ0(r) denote a static 3D χ distribution of parenchymal tissue in VOI and Δχ(r,t) the vascular
blood χ change associated with a BOLD activity, with r = (x,y,z) denoting the spatial coordinates
in VOI, then the dynamic 4D χ source is given by
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0 static

do

( , ) ( ) ( , ) noise
with  
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where Hct denotes the blood hemocrit (Hct = 0.4 for normal blood), χdo the magnetic suscept‐
ibility difference between deoxygenated and oxygenated blood tissues (χdo = 0.27 × 4π ppm
(in SI unit)), Y(t) the blood oxygenation level (Y ∈ [0,1]), NAB(r) the local neuroactive blob
distribution, and V(r,t) the vasculature geometry in VOI. The explicit t variable indicates a
possible change during a BOLD activity, such as cerebral blood volume change in V(r,t) and
oxygenation level change in Y(t). For the sake of simulating fMRI signals, a pure BOLD activity
is expressed by a dynamic blood magnetic susceptibility change, Δχ(r,t), which serves as the
magnetic source for BOLD MRI simulation. In practice, the BOLD activity provides an additive
term, Δχ(r,t) (a perturbation term), on a background distribution χ0(r) in Eq. (1).

A local functional activity is defined by a 3D spatial distribution of NAB(r) (a neuroactive blob
centered at r in VOI). For the sake of numerical representation, we assume a NAB by a
Gaussian-shaped blob (with soft boundary) or a ball-shaped blob (with hard boundary). A
NAB defines a local activity distribution in VOI, which presents with an ON state (active state)
and vanishes with an OFF state (resting state) by a temporal modulation of a designed task
paradigm. We may define an excitatory activity by a positive distribution (NAB(r) > 0) or an
inhibitory activity by a negative distribution (NAB(r) < 0), in relation to the static background
distribution. For the numerical simulation of a BOLD activity, we define a BOLD χ response
by a spatiotemporal modulation model in Eq. (1). A brain active state gives rise to Δχ(r,t) ≠ 0
in NAB and at a task “ON” epoch, and a brain resting state is numerically characterized by
Δχ(r,t) = 0 over the VOI in Eq. (1).

It is mentioned that the BOLD χ expression in a brain activity is simply simulated by a spatial
modulation model in Eq. (1), where a neuronal activity is defined by a local blob that shapes
a local blood Δχ map by a spatial multiplication. We also simplify the BOLD χ source simu‐
lation by ignoring the hemodynamic response function (hrf), which otherwise could be
accounted for by convoluting Δχ(r,t) with a kernel of hrf (usually adopting a canonical hrf that
is characteristic of a high upshoot followed by a small undershoot).

A BOLD χ change happens inside the vascular blood stream. We need to configure the
vasculature geometry V(r,t) by filling the VOI with cluttered vessels with a blood volume
fraction (bfrac), as expressed by

Numerical Simulation - From Brain Imaging to Turbulent Flows6
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where the t variable is reserved to incorporate the change in cerebral blood volume as a result
of vasodilation/vasoconstriction in a BOLD activity. A static vasculature is included as a binary
volume V(r) that remains stationary during a BOLD activity. The random vascular geometry
is generated under a control of bfrac = [0.02, 0.04] for cortex vasculature simulation [1, 8, 11–13].

Figure 2. Illustrations of VOI vasculature and BOLD Δχ source. The VOI is filled with (a1) random vessels (cylindrical
segments) and (b1) spheric beads. The NAB-modulated Δχ distributions are shown in (a2) and (b2), respectively, with
a y0-slice. It is noted Δχ may assume positive and negative values in local NAB regions.

BOLD fMRI Simulation
http://dx.doi.org/10.5772/63313

7



In order to maintain a control of constant bfrac for cortex vasculature over different regions or
across multiresolution subregions, we may fill a VOI with random beads instead of cluttered
vessels. In Figure 2 (a1,b1) are illustrated two brain local vasculature geometries with cluttered
cylinders and random beads, under local stimuli by an excitatory blob (in red) and an inhibitory
blob (in green). The NAB-modulated BOLD χ response distributions (in an active ON state)
are shown in Figure 2 (a2, b2) with a y0-slice in which the inactive regions (far from NAB) have
little or no BOLD responses (Δχ ≈ 0).

In order to numerically depict the vasculature geometry, we need to define the VOI with a
large finely gridded 3D matrix with a tiny grid element (gridel) at a scale of micronmeter [14].
For example, a matrix of 2048 × 2048 × 2048 gridels, where a gridel = 2 × 2 × 2 μm3, is used to
represent a small VOI of 4.1 × 4.1 × 4.1 mm3. The large matrix resulting from VOI gridel
sampling offers a quasi-continuous representation of a continuous distribution over VOI. A
gridel represents a spin packet (or isochromat) that contains numerous identical proton spins,
serving as a mesoscopic representation (at micronmeter scale) between microscopic structure
(at atomic and molecular angstrom scale) and macroscopic structure (at millimeter scale of
MRI voxels) [15, 16].

2.2. Calculation of χ-induced fieldmap

Upon determining the brain χ source configuration, we calculate the χ-induced magnetic field
map (fieldmap for short) by a 3D spatial convolution with a dipole kernel. This is to simulate
the brain tissue magnetization process in a main field B0 that produces an inhomogeneous
fieldmap. Let b(x,y,z) represent the z-component of χ-induced 3D vector field; it is given by
[10, 11]

0 dipole

2 2 2 2 3/ 2

dipole 2 2 2 5/ 2

( , , ) ( , , ) ( , , ) 

1 3 ( )with  ( , , )   
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where * denotes spatial convolution, and hdipole a 3D dipole field [17]. In a Fourier domain, the
3D dipole convolution can be efficiently implemented by multiplicative spatial filtering, as
expressed by [18]
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where (kx,ky,kz) denotes the coordinates in the Fourier domain. The fieldmaps induced by the
Δχ distribution in a main field B0 are illustrated in Figure 3 (displayed with a y0-slice), which
shows a conspicuous dipole effect in a manifestation of bipolar-valued quadruple lobes around
vessels (with an orientation dependence [19]).

Numerical Simulation - From Brain Imaging to Turbulent Flows8



Figure 3. The fieldmaps calculated from the Δχ distributions in Figure 2(a2, b2). It is noted that the Δχ-induced field‐
map takes on a continuous inhomogenous bipolar-valued distribution over VOI, bearing a conspicuous dipole effect
around large vessels (beads).

Figure 4. 3D FFT implementation by 2D FFT and 1D FFT. The 3D FFT of a large 3D matrix (e.g., 2048 × 2048 × 2048) is
achieved by first performing 2D FFT on each z-slice (xy-plane) and then 1D FFT along z columns. A large 3D matrix is
decomposed into a number of small z-chunks to reduce the data file management (fwrite and fread).

In computation implementation, the 3D FFT for fieldmap calculation for a finely-gridded 3D
χ distribution matrix (e.g., 2048 × 2048 × 2048 gridels) may encounter an “out-of-memory”
problem. We propose to solve this problem by decomposing 3D FFT into 2D FFT and 1D FFT.
Specifically, we first conduct 2D FFT on each z-slice (or xy-plane) and save the data as data
files, and then conduct 1D FFT along each of the z-axis columns of a 3D volume that is stacked
from z-slices (processed by 2D FFT and saved in files). In order to reduce the data file man‐
agement (fwrite and fread) of the 3D FFT decomposition, we decompose the 3D matrix into a
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handful of z-chunks (z-slabs) that each consists of multiple z-slices. The number of z-chunks
is dependent upon the available computer RAM (random access memory). As illustrated in
Figure 4, we only need to manage (fwrite and fread) a number of 32 z-chucks (each consists of
64 z-slices in a matrix of 2048 × 2048 × 64), instead of 2048 individual z-slices.

2.3. Multivoxel partition of VOI

An MRI output is a discrete multivoxel image with the voxel size at a macroscopic millimeter
scale, which implies that the MRI scanning process partitions a brain VOI into a small array
of macroscopic voxels. We simulate a multivoxel MR image by rebinning mesoscopic gridels
(at micronmeter scale) into macroscopic voxels (at millimeter scale). For example, we can
reduce a large matrix of 2048 × 2048 × 2048 gridels to a small image matrix of 64 × 64 × 64 voxels
with a voxel of 32 × 32 × 32 gridels. The multivoxel partition of VOI is in fact a spatial sampling
by voxels, called voxelization. We denote the gridel-sampled representation of a continuous
distribution over VOI by a spatial variable “(r)”, and the voxel-sampled discrete representation
by an index variable “[r]”. Let Ω denote a voxel space, and |Ω| the voxel size (in terms of a
number of gridels in Ω). The VOI voxelization is represented by

( , , ) ( , , )

1[ , , ] ( , , )
| | x y z x y z

V x y z V x y z
¢ ¢ ¢ ÎW

¢ ¢ ¢=
W å (5)

The VOI voxelization (voxel sampling) is necessary for MRI to produce a multivoxel image,
due to the band limit of coil transmission and reception, which is designed as a parameter of
voxel size in MRI protocol. The voxel size also represents a parameter of spatial resolution. In
the MRI output, a high-resolution (corresponding to small voxel size) produces a large image
matrix, and vice versa.

2.4. Calculation of intravoxel dephasing signals (Monte Carlo method)

An MRI voxel signal (or a NMR signal) is formed by an intravoxel spin precession dephasing
in a χ-induced fieldmap. A quadrature detection produces a complex-valued voxel signal,
denoted by C[x,y,z] that is formulated by [5]

( ', ', ')

( ', '. ') ( , , )
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1[ , , ; ]
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with  {' ', ' ', ' | | ', ' ', }

g
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W

= W

å
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E

C x y z X e
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where γ denotes the gyromagnetic ratio, and the auxiliary variable ‘X’ is reserved to explicitly
include the dependence of NMR signal upon a diverse set of factors. We are always concerned
with the factors of echo time (TE), field strength (B0), spatial resolution (voxel size |Ω|), and
vessel geometry in particular.
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A voxel contains a number of gridels that each represents a spin packet. The voxel signal
calculation in Eq. (6) counts all the spin packets in the voxel space. For a voxel that contains a
large number of gridels, we may select a smaller number of gridels to calculate the voxel signal
and reduce the computation burden. The intravoxel dephasing signal calculation made by
counting the spin packets is a Monte Carlo simulation, which is expressed by

| |
( , , )

1

1[ , , ; ]  for ( , , ) ( , , )n n n E

N
i b x y z T

n n n
n

C x y z X e x y z x y z
N

g
< W

=

= ÎWå (7)

For example, a voxel of 32 × 32 × 32 gridels consists of 32,768 spin packets, from which we may
randomly select 3000 for the intravoxel average computation in Eq. (7) at a small computation
cost of 10% (≈3000/32,768). It is noted that C[x,y,z;X] denotes a complex voxel signal at [x,y,z]
in VOI, and we also use C[x,y,z;X] to represent a multivoxel complex-valued image in the
context that [x,y,z] addresses all the voxels in VOI.

From a complex signal (image), we can calculate its magnitude and phase components by

[ , , ; ] 1 [ , , ; ]        (magnitude loss)  
[ , , ; ] [ , , ; ]           (phase accrual)
A x y z X C x y z X
P x y z X C x y z X

ì = -ï
í

= Ðïî
(8)

It is also noted that we use the magnitude loss and phase accrual to represent the pair of
complex signal components and that the magnitude and phase calculations are different
nonlinear operations.

2.5. Intravascular (IV) and extravascular (EV) signal separation

In an MRI experiment, it is difficult to separate intravascular (IV) signal from extravascular
(EV) signal in an NMR signal. In numerical simulation, we can calculate the IV and EV signals
separately based on the binary partition of voxel space according to the vessel geometry. Let
ΩIV and ΩEV denote the IV and EV subspaces in a voxel space, which are partitioned by the
vessel geometry by

1    ( , , )
( , , )

0      otherwise     

1      ( , , )
( , , ) 1 ( , , )

0            otherwise   

with     and  | | | | | |
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EV IV
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x y z x y z (9)

Then, we calculate the IV signal by only counting the gridels that are within vessel space (ΩIV),
and the EV signal by the gridels in ΩEV. That is, the IV and EV signals are given by
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In Figure 5 are illustrated the IV/EV partition of a voxel space for IV/EV signal simulations. It
is mentioned that the ΩIV only occupies a small fraction of Ω and the BOLD χ change is confined
in ΩIV.

Although a BOLD Δχ change is confined in ΩIV in a NAB, the vascular blood magnetization
process in B0 establishes a long-range magnetic field distribution, not only in ΩIV but also in
ΩEV, with a distant decay (∝1/r3) and a spatial modulation by NAB (see Figures 2 and 3).
Obviously, a BOLD activity causes an IV signal and an EV signal simultaneously, which are
generated from different field values over the IV and EV spaces, respectively. In Figure 5(a) is
illustrated the IV/EV signal formations from spin particles in the IV/EV partition spaces.

A voxel NMR signal is formed from its IV and EV signals by a convex combination according
to the IV/EV occupancies, as represented by

[ , , ; ] [ , , ; ] (1 ) [ , , ; ]
| |with    
| |

IV EV

IV

C x y z X bfrac C x y z X bfrac C x y z X

bfrac

= × + - ×

W
=

W
(11)

Consequently, the IV signal contribution is greatly suppressed by a small weight of bfrac (<<1),
as will be demonstrated later.

Figure 5. Illustration of extravascular (EV) and intravascular (IV) space partition in a voxel for intravoxel spin dephas‐
ing signal simulations (a) in absence of spin diffusions (static spins) and (b) in the presence of spin diffusions. A voxel
space is partitioned by its intravoxel binary vasculature into IV (vessel=1) and EV (vessel=0) subspaces.
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2.6. Diffusion effect

An NMR signal is formed via the carrier of hydrogen protons in tissue water. Since the water
molecules undergo random motions, the water protons are non-stationary. We describe the
proton random motion in 3D space by a trajectory r(t), which is represented by [9, 20]

5 2
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where δt denotes the time interval of the random motion of water molecules (δt = 2 ms in
simulation), D the diffusion coefficient (different for diffusions in IV and EV), and Gauss a
Gaussian distribution of the random motions (with a standard deviation of σd). It is noted that
water proton diffusion in IV space is twice faster than in EV space. In Figure 5(b) are illustrated
the diffusion IV and EV signal simulations.

2.7. Volumetric BOLD fMRI simulation

Based on individual voxel signal calculation, we implement 3D volumetric BOLD fMRI
simulation by calculating the voxel signals at a multivoxel image array. Given a 3D χ source,
the 3D BOLD fMRI simulations produce a 3D complex-valued multivoxel image C[x,y,z; X];
here, we are concerned with the spatial pattern comparison between the χ source and the
magnitude image. Since the phase image bears a conspicuous dipole effect that dooms the
morphological mismatch with the χ source, we do not need to compare the phase image with
the χ source. However, the phase image is directly related to the χ-induced fieldmap, and the
phase image has been used for the fieldmap reconstruction in an inverse MRI solver [11, 21,
22]. In particular, in a small phase angle regime, the phase conforms the fieldmap with a
difference of constant scale. In large phase angle scenarios, the unwrapped phase image
resembles the fieldmap very well (albeit with somewhat nonlinear distortions). Therefore, we
are also concerned with pattern comparison between MR phase image and the fieldmap. We
suggest the spatial pattern comparisons by spatial correlations, which are defined by
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It is noted that the spatial pattern correlations are applied to the multivoxel matrices (in
notation of [r]) of the χ source, the fieldmap, and the images, which are all discretized at a
spatial resolution of the same voxel size.

2.8. 4D BOLD fMRI simulation

It is straightforward to implement 4D BOLD fMRI simulation based on the repetition of
volumetric BOLD fMRI simulations for each snapshot capture over a BOLD activity. First, we
need to define a task-evoked 4D BOLD χ change, as illustrated in Figure 6. Specifically, we
configure a 3D vasculature-laden VOI and provide a 3D χ distribution for a brain VOI state.
A local χ change is simulated with a spatiotemporal modulation by a NAB and a task paradigm
(in Eq. (1)). For the weak BOLD response detection, the task paradigm is usually designed as
a boxcar waveform for repetition measurement of BOLD signals. We may define a positive
NAB for an excitatory BOLD response and a negative NAB for an inhibitory response. The
static background χ0 may be assigned to a water pool (χ0 = χwater) or be empty (χ0 = 0) with an
additive Gaussian noise.

Figure 6. Illustration of 4D BOLD χ response simulations. A VOI is filled local Δχ change with positive and negative
Δχ responses superimposed on a static background in the presence of noise. A BOLD event is represented by a times‐
eries of the 3D Δχ snapshot distributions in Eq. (1) through a spatiotemporal modulation by NAB(r) and task(t).

The 4D BOLD fMRI simulation involves a predefined 4D source χ[r,t] and two output 4D
images (A[r,t] for magnitude and P[r,t] for phase, as defined in Eq. (8)). Conventional BOLD
fMRI exploits the 4D magnitude dataset A[r,t] for functional analysis. For a task-evoked BOLD
fMRI simulation, the functional activity map can be extracted from a 4D dataspace, Λ[r,t] =
{χ[r,t], A[r,t], P[r,t]} by a temporal correlation (tcorr) map that is defined by

( ) L
L = L º

L

L c c

tcorr

true recon

x y z t task tx y z tcorr x y z t task t
std x y z t std task t

   ={ , ,
t

cov( [ , , , ], [ ])[ , , ] [ , , , ], [ ]
( [ , , , ]) ( [ ])

with 'A' 'P' ' ', ' '}
(14)
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where stdt denotes the standard deviation of the data with respect to the t variable, χtrue the
predefined χ source, and χrecon the reconstructed χ source (by solving the inverse problem of
MRI data). It is noted that the correlation coefficient is invariant to signal strength. Therefore,
a strong response signal may have the same correlation value as a weak response does as long
as the strong and weak responses take on the same timecourse profiles. Consequently, the scale
invariance of correlation leads to correlation saturation (tcorr = 1 at regions with different
response strengths). Nevertheless, the correlation saturation can be ruined by the presence of
noise. Herein, by noise we mean any pattern difference between the response signal timecourse
and task timecourse. In reality, the BOLD χ responses are subject to various noises (biological
noise, physiological noise, detection noise) that spoil the task correlations at weak response
regions. Only strong responses are immune to noise spoilage. It is the noise in the voxel
response timecourse (extracted from a 4D dataset at a specific voxel) that shapes the tcorr map
according to the response signal strength.

3. Simulation results

3.1. Single voxel signal simulations

3.1.1. EV/IV signal separation

By calculating the EV and IV signal portions separately and their convex linear combination
in Eq. (11), we present the EV/IV signal behaviors with respect to a span of echo time (TE=[0,

Figure 7. Intravascular (IV) and extravascular (EV) voxel signal simulations. The IV signal evolves drastically for a
long TE and its contribution to the full voxel signal is relatively small.
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60] ms) and for a range of field strength (B0=[1.5, 3, 4, 7, 9] Tesla). It is seen in Figure 7 that the
IV signal changes quickly with a long echo time. However, the drastic IV signal changes are
greatly suppressed in the voxel signals by the dominant EV signals. In particular, the IV signal
may be developed into phase wrapping phenomenon for a long echo time (see Figure 7(b2)).
With the dominance of EV signals in a large voxel, a voxel signal remains as a linear phase
accrual with echo time (see Figure 7(b3)).

3.1.2. Multiresolution voxel signal behavior

As a voxel size decreases, the voxel space contains less (or none) vessels, and there is less voxel
average effect. In Figure 8, the four-level voxel subdivision and multiresolution voxel signal
behaviors are demonstrated. At level =1, the parent voxel contains a clutter of vessels where
the complex voxel signal appears as a short line-segment trajectory (with respect to TE). As the
voxel is decomposed into an 8 × 8 × 8 array at level = 4, the subvoxel only contains a single
vessel, and the voxel signal becomes turbulent due to the high field values for rapid Larmor
precession [14, 23].

Figure 8. Multiresolution complex-valued voxel signals due to voxel subdivision. As the voxel size is dyadically re‐
duced, the smaller voxels contain less vessels, and the voxel signal may become turbulent at vessel boundary (Adapted
from [23]).

3.1.3. Diffusion effects on magnitude and phase signals

The numerical simulations on the diffusion effect on MR magnitude and phase are presented
in Figure 9 for a span of TE = [0, 60] ms with different field strengths (in terms of ΔχB0 = [0.1,
3] ppmT). The results show that the diffusion has more effect on low field magnitude than on
high field magnitude [20]. Nevertheless, the diffusion has little effect on MR phase signals.
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Figure 9. Effects of diffusion and field strength on voxel signal magnitude and phase. It is seen that the diffusion has
more effects on magnitude signal than on phase signal and that the diffusion effect decreases as the field strengths
increases (Adapted from [20]).

3.2. Volumetric BOLD fMRI simulations

3.2.1. Cortex VOI configuration and voxelization

We define a cortex VOI in a large matrix and fill it with random beads (radius = 3 μm, bfrac =
0.03), and simulate local BOLD response by a Gaussian-shaped NAB, which modulates the
local χ distribution by a spatial multiplication. The VOI is partitioned into a coarse matrix by
grouping the gridels into voxels. As a result of voxelization, we represent a distribution over

Figure 10. Illustration of VOI configuration and voxelization. A VOI is represented by a large matrix for subvoxel
structure representation. The VOI voxelization produces a small multivoxel matrix, depending on the voxel size.
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VOI by a multivoxel image matrix. The voxelization with a large voxel size produces a small
image matrix, and vice versa. Figure 10 shows a VOI that is represented by a large matrix in
gridel sampling (a) with a zoomed region for substructure visualization (b). The VOI voxeli‐
zation by a voxel of 32 × 32 × 32 gridels produces a matrix of 64 × 64 × 64 voxels (c) and produces
a matrix of 32 × 32 × 32 voxels (d) by a voxel of 64 × 64 × 64 gridels. It is seen that a larger voxel
size is comprised of more spatial smoothing.

3.2.2. Multivoxel image calculation

Given a 3D χ distribution in Figure 11(a), we calculated the χ-induced fieldmap by Eq. (2) and
presented the results (b). In the absence of diffusion, we calculated the complex-valued T2*
images (c, d). In the presence of diffusion (Eq. (12)), we recalculated the complex-valued T2*
images (e, f). The diffusion simulation on multivoxel fMRI shows that the diffusion effect is
insignificant on image formation.

Figure 11. Illustration of volumetric BOLD fMRI simulation, displayed with a z-slice (with B0//z-axis). (a) 3D Δχ source
(in a matrix of 64 × 64 × 64 voxels resulting from a VOI of 2048 × 2048 × 2048 gridels); (b) the Δχ-induced fieldmap; (c,
d) the magnitude and phase images with static spins (at TE= 30 ms); and (e, f) the magnitude and phase images with
diffusion spins.
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3.2.3. Morphological distortions associated with 3D BOLD fMRI

We performed volumetric BOLD fMRI simulations for a span of echo times (TE= [0, 30] ms)
with different parameter settings with respect to voxel size, field strength, and with and
without diffusion. With the datasets of numerical BOLD fMRI simulations, we compared the
magnitude images with the predefined χ source and the phase images with the fieldmaps. The
results are presented in Figure 12. Note that the pattern correlations are plotted in a small
display window ([0.9, 1]) out of the full range of corr ∈ [–1, 1] for scrutiny.

Figure 12. Spatial correlation measurements (a) between χ source and magnitude image and (b) between χ-induced
fieldmap and phase image, for static intravoxel dephasing and diffusive intravoxel dephasing. Note the small display
windows for corr values in the range of [–1,1] (Adapted from [11]).

3.3. 4D BOLD fMRI simulations

The 4D BOLD fMRI simulations are presented in Figures 13 through 15. Specifically, in Figure
13 are shown (a) the VOI configuration with two local neuroactive blobs (NAB), (b) the NAB-
modulated BOLD χ distribution at an ON state (or active state), and (c) the NAB-absent χ
distribution at an OFF state (or resting state), displayed with a y0-slcie. We designed a task
paradigm by a pattern of 5 ON states and 5 OFF states, simulating the brain active state
measurement by 5 repetitions and the brain resting state measurement by another 5 repetitions.
(In practice, a multiple repetition of the “ON/OFF” pattern is used to design the task paradigm).
The bead-represented vasculature structure in a voxel in VOI is shown in zoom (d) with a 3D
display. It is noted that the VOI is represented in a matrix of 2048 × 2048 × 2048 gridels (a), the
voxelization on VOI is represented by a multivoxel matrix of 64 × 64 × 64 voxels (b) and (c)
with a voxel = 32 × 32 × 32 gridels (d), and that the cortex vasculature in a VOI is simulated by
a uniform random distribution (background) that is independent of the BOLD NAB and task
paradigm. The 4D χ(r,t) representation for a local BOLD activity is related to the NAB and the
task through a spatiotemporal model in Eq. (1).
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Figure 13. Numerical representation of a local BOLD activity in terms of 4D χ(r,t). (a) A Gaussian-shaped NAB and a
ball-shaped NAB in VOI; (b) an ON state χ[r,tON]; (c) an OFF state χ[r,tOFF]; and (d) the bead-laden structure in a voxel.

Upon the numerical representation of 4D χ(r,t), we performed 4D BOLD fMRI simulations by
repeating the 3D BOLD fMRI simulation for each snapshot time point (there are 10 timepoints
for the task pattern of 5 ONs and 5 OFFs), with the settings (TE= 30 ms, B0 = 3 T, VOI matrix =

Figure 14. Numerical simulations of 4D BOLD fMRI data acquisition. (a1, a2) BOLD magnitude images captured at an
ON and OFF state and (a3) the magnitude signal timecourses at two voxels (marked by x and o (a1, a2), extracted from
the 4D magnitude dataset A[r,t]). (b1, b2, b3) for the BOLD phase images in P[r,t] and the voxel phase timecourses.
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64 × 64 × 64 voxels, 1 voxel = 32 × 32 × 32 gridels, 1 gridel = 2 × 2 × 2 μm3). Figure 14 shows (a1,
a2) the magnitude images, (b1, b2) the phase images captured at an ON and OFF state, and (a3,
b3) the timecourses of magnitude signal changes, and phase signal changes at two voxels: one
voxel inside an active blob (marked by “x” in (a1)) and another outside the active at blob
(marked by “o”). It is noted the ripples in the signal timecourses in (a3, b3) are attributed to
the additive Gaussian random noise in the data acquisition simulations.

By arranging the timeseries of images according to the task timecourse, we can play a movie
for a BOLD activity. In reality, the BOLD response is too weak and noisy to be perceived
between an ON and OFF state. For the sake of BOLD response pattern representation, we need
to extract the BOLD activity blobs from the timeseries of images by statistical parameter
mapping method, which consists of an essential task correlation map as defined in Eq. (14).

Figure 15. Numerical simulations of fmap extractions from 4D BOLD fMRI datasets in the presence of additive Gaussi‐
an noises at different noise level = {0.001,0.01,0.05,0.1}. (a) Magnitude fmap and (b) phase fmap.

Upon the completion of 4D BOLD magnitude and phase image datasets (A[r,t], P[r,t]), we
calculated the task- correlated fmap using Eq. (14). In the results, we obtained 3D Atcorr for
BOLD magnitude fmap from the 4D magnitude image dataspace, and a 3D Ptcorr for BOLD
phase fmap from the 4D phase image dataspace. By repeating the 4D BOLD fMRI simulations
with different noise levels, we show that Atcorr or Ptcorr is sensitive to the additive Gaussian
noise. In Figure 15 are showed the Atcorr and Ptcorr (displayed with a y0-slice out of the 64 × 64 ×
64 matrix volume) for the Gaussian noise at different noise levels = {0.001, 0.01, 0.05, 0.1}. It is
seen that either the magnitude or phase fmap suffers from correlation saturation in little noise
(noise level < 0.01) or tends to be buried in severe noises (noise level > 0.05) for our spatiotem‐
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poral modulation model in Eq. (1). In particular, our simulation shows the correlation
saturation in extreme cases of little noise or noiseless settings; this phenomenon may be
explained by the scale invariance of correlation coefficient. On the other extreme case, a severe
noise may destroy the task-correlated activity blob; this explains the pursuit on high-SNR
image acquisition.

Our 4D BOLD fMRI simulations show that the predefined BOLD NAB in Figure 13(a) could
be largely reproduced by a task-correlation magnitude fmap (Atcorr in Figure 15(a)) as extracted
from a 4D BOLD fMRI magnitude dataset, thus justifying the BOLD fMRI experiment for brain
functional mapping. In comparison, the phase fmap (in Ptcorr) is spatially dissimilar to the
predefined BOLD NAB due to the conspicuous dipole effect in the phase images [6, 11].
Nevertheless, our 4D BOLD fMRI simulations also show that the imaging noise has a strong
effect on the fmap extracted from the magnitude or phase image dataset due to the simplified
spatiotemporal modulation model for numerical BOLD χ expressions.

4. Discussion

The data acquisition of BOLD fMRI is not analytically tractable due to the involvement of
diversified parameters. The BOLD fMRI simulations provide a means to observe the effect of
MRI transformations on the MR data acquisition; spatial distortions between the underlying
magnetic source and MR images; and reproducibility of functional activity extraction from a
4D BOLD fMRI dataset.

Since MRI is designed to measure a magnetic field distribution, the BOLD fMRI only measures
the χ-expressed BOLD response during a functional activity, a phenotypic numeric expression
of a biophysiological brain functional activity in terms of tissue magnetism. It is believed that
a functional activity causes IV blood magnetism change in terms of oxygenated and deoxy‐
genated blood magnetic susceptibility change. Therefore, our simulation begins with a
configuration of magnetic source by a vasculature-laden VOI with a 3D χ source distribution.
Through a spatiotemporal modulation by a predefined local neuroactive blob (numerically
NAB(r)) and a task paradigm (numerically task(t)), we define a dynamic χ source to represent
a χ-expressed BOLD activity (in Eq. (1)). It is pointed out in Eq. (1) that the BOLD χ response
may incorporate the factors of cerebral metabolic rate of oxygen consumption (CMRO2),
cerebral blood volume (CBV), and cerebral blood flow (CBF) through the parameters of Y(t)
and V(r,t), thereby enabling the numeric simulations of MRI-detected BOLD activity. In reality,
the biophysiological aspects for neurovascular coupling are far more complicated than the
spatiotemporal modulation model in Eq. (1), which deserves a long-term exploration.

Upon a predefined χ source map, we implement 3D BOLD fMRI numerical simulation based
on MRI principles. In the results, we are concerned with pattern comparison between the
source distribution and the output images (magnitude and phase). Our simulations show that
neither the magnitude image nor the phase image is a faithful representation of the χ source
distribution. In the context of volumetric medical imaging, the MRI output image is not a
tomographic reproduction (quantitative spatial mapping) of the χ source. Since the source-
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image mismatch is due to a cascade of MRI transformations that cause distortions during data
acquisition, this inspires us to reconstruct the χ source by solving an inverse MRI problem [21,
22].

In NMR principle, a voxel signal is formed from numerous hydrogen proton precessions in a
magnetic field. The signal formation involves a huge space scale span from a microscopic
atomic scale to macroscopic millimeter scale. For numerical simulations, we implement the
mesoscopic micrometer scale through gridel sampling [14, 15]. A gridel is a tiny grid element
(at micronmeter scale) smaller than vessel size with which we may digitally depict a vessel
geometry. On the other hand, a gridel consists of numerous protons at microscopic atomic
scale. The collective proton spins in a gridel are denoted by a spin packet [14, 15]. We define
a cortex VOI in a large finely-gridded matrix and partition the VOI into a coarse multivoxel
matrix, with each voxel containing an adequate number of gridels for subvoxel structure
representation. The VOI partition and gridel rebinning for multivoxel image formation is a
topic of multiresolution BOLD signal analysis [15, 23].

In the past decades, the BOLD fMRI mechanism was numerically simulated with signal voxel
signals, [7–9], offering an understanding of BOLD fMRI signal formation with respect to a
diverse set of parameter settings. However, the single-voxel signal simulation cannot reveal
the spatial context for source-image mapping study. Therefore, we were motivated to use
multivoxel image simulations for revealing the spatial mismatches between the source and the
image [9–11]. Based on 3D BOLD fMRI simulations, it is a straightforward process to imple‐
ment 4D BOLD fMRI simulations. Our 4D BOLD fMRI simulations for a task-evoked brain
functional activity, based on a simple spatiotemporal modulation model in Eq. (1), show that
the fmap extraction from a 4D BOLD fMRI dataset is sensitive to the additive Gaussian noise.
The noise dependence of the task-correlation-based fmap extraction is attributed to the scale
invariance of the correlation coefficient.

One factor for the source-image mismatch is the dipole effect that is introduced during the
tissue magnetization in a main field B0, which is unavoidable for MRI data acquisition. The
dipole effect is introduced to the χ-induced fieldmap, which is propagated to the MR magni‐
tude and phase images (signals) via different data transformations. The dipole effect on the
χ-induced fieldmap manifests bipolar-valued quadruple lobes around vessels. Upon MRI data
acquisition, the magnitude image is a nonnegative nonlinear spatial mapping of the fieldmap
and the phase image is an arctan nonlinear spatial mapping. It is interesting to show in our
numeric simulations that the nonnegative magnitude image resembles the predefined χ source
distribution, except for the negative inversions at negative χ regions (not reported herein), and
we have found that the (unwrapped) bipolar-valued phase image conforms very well with the
bipolar-valued fieldmap [6, 11]. The phase image bears a conspicuous dipole effect that makes
a striking difference between the phase image and the predefined χ source.

BOLD fMRI simulation is a time-consuming computation job. In a computer cluster (a Kernel
Linux system with 16 CPUs and 252 GB memory), the single-voxel signal simulation requires
about 1 hour, and 3D multivoxel simulation requires more than 10 hours, and 4D BOLD fMRI
simulation requires a few days, depending on the sizes of gridel, voxel, and VOI. The compu‐
tation burden may be greatly reduced by a Bloch technique [24], which implements intravoxel
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dephasing signal calculation by a linear approximation. The fast Bloch simulation method is
good for MR phase image simulation, but not good for MR magnitude simulation due to an
accentuated edge effect. Moreover, the IV and EV signal separation and the diffusion simula‐
tions are not implementable by the Bloch method.

5. Conclusion

We conclude our numerical BOLD fMRI simulations by the following findings (albeit quali‐
tative):

1. Both the MR magnitude and the phase images are spatially different from the predefined
magnetic susceptibility distribution. This image-source distortion is due to the inevitable
data transformations associated with MRI data.

2. By numerical simulation, we can separate the intravascular (IV) signal from the extrava‐
scular (EV) signal in a voxel signal. The IV signal is much stronger than the EV signal as
a result of a BOLD χ change. However, the drastic IV signal evolution is usually greatly
suppressed in a voxel signal by a small proportion of blood volume fraction (bfrac ≈ [0.02,
0.04]).

3. As voxel size decreases, the voxel signals evolve more drastically and turbulently inside
and around the large vessels.

4. The proton diffusion effect due to nonstationary water molecules in brain tissues incurs
more MR magnitude signal decays in a low field than in a high field. In comparison, the
proton diffusion has little effect on MR phase signals.

5. The numerical simulation on 4D BOLD fMRI for task-evoked functional mapping shows
that the functional activity extraction by a task correlation technique is sensitive to data
noise.

Overall, the numerical simulations on BOLD fMRI allow us to look into the insights of a single-
voxel signal, a multivoxel image, and a video of brain functional BOLD activity with respect
to various parameter settings. The finding in source-image mismatch inspires us to seek for
the underlying magnetic source of BOLD fMRI for more accurate brain functional mapping.
The finding in the noise sensitiveness of task-correlated fmap raises a caveat to the correlation-
based functional mapping.

Abbreviations:

1D: one dimensional; 2D: two dimensional; 3D: three dimensional (spatial); 4D: four dimen‐
sional (spatiotemporal); BOLD: blood oxygenation level dependent; MR: magnetic resonance;
MRI: magnetic resonance imaging; fMRI: functional MRI; FFT: fast Fourier transform; NAB:
neuroactive blob; VOI: volume of interest; IV: intravascular; EV: extravascular; gridel: grid
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element; bfrac: blood volume fraction; fmap: functional map; corr: correlation (coefficient);
tcorr: temporal correlation or task correlation.
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