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1. Introduction  

Manufacturing today is primarily cooked down to all-out efforts into profitability. Factories 
are moved to low-salary countries in order to ensure that profits are maintained and 
stockholders kept happy. Decisions like these are met with debates about morale, ethics and 
responsibilities that companies have to society, since losing an entire manufacturing plant 
can be devastating to a community. An alternative to industrial relocalization is trying to 
maintain profitability through development of effective production schedules, better 
utilization of resources and overall better planning in existing manufacturing plants. The 
significance of effective planning methods has, in other words, increased and will likely 
continue to do so. 
The focus of this chapter is to solve the MT10 job-shop scheduling problem using 4 different 
variants of the Ant Colony Optimization (ACO) algorithm and to try to rank them. A hybrid 
model, that uses a postprocessing algorithm to improve the resulting schedule, is also tried 
for all four ACO versions. The term visibility is explained in the context of job-shop 
scheduling, and incorporated into the test runs. 
When we are talking about job-shop scheduling problems (JSP), we mean a set of machines 
M, a set of jobs J and a set of operations O. For each operation there is a job to which it 
belongs, a machine on which it it has to be processed, a predetermined processing time on 
that machine as well as a predetermined processing order on the machines. The problem is 
to minimize the makespan while ensuring that no more than one job can be processed at the 
same time on the same machine, and seeing to that when a job starts, it must be completed 
(and can’t be interrupted).  
There have been numerous publications of successful algorithms applied to job-shop 
problems. Among exact mathematical methods are Mixed integer linear programming and 
Branch & Bound, among approximation methods there are List Scheduler Algorithms (see 
Panwalker & Iskander, 1977 for a survey), that assign one operation at a time from a list that 
is sorted by some priority rule, Shifting Bottleneck by Adams et al. (1988), Simulated 
Annealing by van Laarhoven et al. (1988), Tabu search was first used in job shop scheduling 
by Taillard (1989) and a Genetic algorithm approach by Nakano and Yamada (1991). 
A newcomer in these approaches to the JSP, ant colony optimization has become an 
increasingly popular candidate when it comes to algorithms that mimic behaviour of 
processes that exist in nature. The first ACO algorithm was introduced by Marco Dorigo in 

Source: Swarm Intelligence: Focus on Ant and Particle Swarm Optimization, Book edited by: Felix T. S. Chan and Manoj
Kumar Tiwari, ISBN 978-3-902613-09-7, pp. 532, December 2007, Itech Education and Publishing, Vienna, Austria
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his doctoral thesis (1992) and was called an Ant System (AS). Since then AS has matured 
into an algorithm that does very well when it comes to problem types that are formulated as 
a traveling salesman problem (TSP) as well as the quadratic assignment problem (QAP). As 
a result of research into ACO algorithms, some very successful variants have emerged. 
We have the Elitist AS (EAS) proposed by Dorigo et al. (1996), in which the pheromone 
updating rules are biased towards the best solution found so far, the idea being to exploit 
the solution components within that solution. 
Ant Colony System (ACS) by Dorigo and Gambardella (1997) has several modifications to 
the original AS. It uses a modified rule when an ant chooses the next travel node, it uses a 
best-so-far pheromone update rule but applies pheromone evaporation only to the trail that 
belong to solution components that are in the best-so-far solution. It also uses a local 
pheromone update rule to decrease the pheromone values on visited solution components, 
in order to encourage exploration. 
Rank-based AS (RAS) by Bullnheimer et al. (1999), is a variant where the elite ant as well as 
a selection of ants with good solutions during that iteration get to update the pheromone 
trails.
MAX-MIN AS (MMAS) by Stützle and Hoos (2000), is an approach that updates the 
pheromone trails, according to some convergence measure, with either the iteration-best ant 
or the best-so-far ant. The algorithm uses a lower bound for the pheromones (>0) as well as 
restricting the maximum amount of pheromone a trail can have. The lower bound 
encourage ant exploratory behaviour and the upper bound is prohibiting premature 
convergence due to the elite solution dominating the other solutions. 
Hypercube Framework (HCF) by Blum and Dorigo (2004) is more of a framework for 
implementing ACO algorithms. Among the benefits are automatic scaling of pheromone 
values to the interval [0,1]. 
In a paper by Colorni et al. (1993) AS was applied into job-shop scheduling and proved to be 
a noteworthy candidate when faced with the task of chosing a suitable algorithm for 
scheduling problems. The conclusions in the aforementioned paper were that AS is one of 
the most easily adaptable population-based heuristics so far proposed and that its 
computational paradigm is indeed effective under very different conditions. 
As an example of ACO robustness, Jayaraman et al. (2000) used an ACO algorithm in 
solving a combinatorial optimization problem of multiproduct batch scheduling as well as 
the continuous function optimization problem for the design of multiproduct plant with 
single product campaigns and horizon constraints. Further real-world applications with 
regard to ACO algorithms would be using ACO to solve an established set of vehicle 
routing problems as done by Bell and McMullen (2004) and a dynamic regional nurse-
scheduling problem in Austria by Gutjahr and Rauner (2005). The former paper concluded 
the results were competetive and in the latter paper ACO was compared to a greedy 
assignment algorithm and achieved highly significant improvements. 
Kuo-Ching Ying et al. (2004) applied the ant colony system to permutation flow-shop 
sequencing and effectively solved the n/m/P/Cmax problem, and commented that this 
suggests that the ant colony system metaheuristic is well worth exploring in the context of 
solving different scheduling problems. 
An example of ACO and flowshops in recent use would be a paper by Gajpal and Rajendran 
(2006), where they used a new ACO algorithm (NACO) to minimize the completion-
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variance of jobs, showing that work with ACO algorithms is an ongoing process to modify 
and improve the original AS and apply it to a variety of scheduling problems. 
For two of the top performing ACO algorithms, ACS and MMAS, convergence to the 
optimal solution has been proved (Dorigo and Stützle, 2004 as well as Stützle and Dorigo, 
2002). It is worth to remember that convergence results do not allow prediction of how 
quickly an optimal solution can be found. 

2. Problem description 

The Job-Shop Scheduling Problem (JSP) can be characterized as n jobs to be processed on m
machines. In general it is a set of concurrent and conflicting goals to be satisfied using a 
finite set of resources where resources are called machines and basic tasks are called jobs. 
Each job is a request for scheduling a set of operations according to a process plan which 
specifies precedence restrictions. We have 

}{ mMMM ,...,1=  a given set of machines 

}{ nJJJ ,...,1=  a given set of jobs 

}{ nOOO ,...,1=  a set of operations 

For each operation Ouij ∈  there is a job Ji to which it belongs, a machine Mj on which it has 

to be run and a processing time pij of the operation uij, where pij is a nonnegative integer. 
Every job is a chain of operations and every operation has to be processed on a given 
machine for a given time. The task is to find the starting times of all operations such that the 
completion time of the very last operation is minimal. The chain order of each job has to be 
maintained and each machine can only process one job at the same time. No job can be 
preempted; once an operation starts it must be completed. The solution s to an instance of 
the n x m JSP specifies a processing order for all of the jobs on each machine and implicitly 
defines an earliest starttime and earliest completion time for each operation. The maximum 
of the completion times is called makespan and most research address the problem of 
makespan minimization. 
Given an instance of JSP we can associate with it a disjunctive graph G = (V, A, E), where V
is the node set, A is the conjunctive arc set and E is the disjunctive arc set. The nodes V
correspond to all of the operations and two dummy nodes, a source and a sink. The 
conjunctive arcs A represent the precedence relationships between the operations of a single 
job and the disjunctive arcs E represent all pairs of operations to be performed on the same 
machine. All arcs emanating from a node have the processing time of the operation 
performed at that node as their length. The source has conjunctive arcs with length zero 
emanating to all the first operations of the job and the sink has conjunctive arcs coming from 
all the last operations. A feasible schedule corresponds to a selection of one arc from each 
disjunctive arc pair such that the resulting directed graph is acyclic, i.e. no loops can be 
found. The problem of minimizing the makespan reduces to finding a set of disjunctive arcs 
which minimize the length of the critical path in the directed graph. An in-depth description 
of disjunctive graphs with regard to job-shop problems can be found in for instance the 
article about AS and JSP by Colorni et al. (1993). 
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The MT10 problem is a 10 x 10 instance formulated by Muth and Thompson in 1963. It 
consists of 10 jobs processed on 10 machines, and every job has 10 tasks to perform. The 
processing times vary greatly with shortest duration being only 2 time units and longest 99 
time units. It has the reputation of being one of the most difficult combinatorial problems 
ever considered, and was not solved exactly until as late as 1989 by Carlier and Pinson using 
a branch and bound algorithm. It is a typical job-shop problem. 

3. ACO

ACO belongs to the class metaheuristics. The term metaheuristic is derived from two greek 
words, heuristic which means “to find” and the prefix meta, which means “beyond, in the 
sense of an upper level”. It has come to mean a high-level strategy for guiding heuristics in a 
search for feasible solutions as well as a framework that can be specialized to solve 
optimization problems. ACO is also a succesful example of swarm intelligence, whose 
purpose is to design intelligent multi-agent systems by taking inspirations from the 
collective behaviour of social insects.  
ACO is modeled after the foraging behaviour of certain ant species. In the 1940s the French 
entomologist Pierre-Paul Grassé observed that some species of termites react to what he 
called “significant stimuli” (Grassé, 1946). He used the term “stigmergy” to describe the 
communication of ants, and he described this communication as workers being stimulated 
by the performance they have achieved. Ants alter their environment by means of 
pheromone trails. A pheromone is any chemical or set of chemicals produced by a living 
organism that transmits a message to other members of the same species. It is volatile and 
evaporates quickly, and ants secrete this chemical by walking and follow, in turn, other 
pheromone trails left by other ants. There are alarm pheromones, food trail pheromones and 
others that affect behavior or physiology. Strong food trail pheromone concentrations are 
perceived and stimulate ants to move into that direction. Ants are able to transport food 
through this mechanism by finding and maintaining the shortest path between the food 
source and the nest. Occasionally there will be the stray ant taking another route, and this 
event can be seen as exploration, the ants are constantly trying to find a more effective path. 
This mechanism was demonstrated by Denebourg et al. (1990), who in an experiment called 
“the double bridge” connected a nest of Argentine ants with a food source. Figure 1 (a) 
shows the experimental setup and figure 1 (b) another experimental setup by Goss et al. 
(1989). If the setup is that of figure 1 (a), initially, each ant randomly chooses one of the two 
bridges. Due to random fluctuations, after some time one of the two bridges presents a 
higher concentration of pheromone and attracts more ants. After a while almost the whole 
colony converges toward the use of the same bridge. With the setup illustrated in figure 1 
(b) another mechanism besides random fluctuations was demonstrated: the ants randomly 
choosing the shorter path travel between the nest and the food source faster and, given time, 
this means that pheromone will accumulate faster on this path, converging the population 
towards using this shorter path. 
The mechanism can be utilized in order to find the shortest path in, for instance, minimizing 
makespan for scheduling problems. The underlying problems are formulated as a TSP, that 
is, a connected, undirected graph G = (V, E) with weights on the edges between the nodes. 
The nodes V denote the cities, and the edge weight is the distance between two cities. The 
goal is to find a tour in G that connects all cities once so that the overall length is minimal.  
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Figure 1. Experimental setup for the double bridge experiments: (a) branches have equal 
length; (b) branches have different lengths 

Having artifical ants search the solution space simulate real ants searching their 
environment. The artifical ants can be equipped with some oddities that real life ants don’t 
have, for instance a local heuristic function to guide their search through a set of feasible 
solutions only, or an adaptive memory corresponding to the pheromone trail so that they 
can remember visited nodes. Also we require the ants to be symmetrical in the sense that 
they move from the nest to the food and back using the same path. The ACO algorithm also 
keeps tracks of visited nodes, meaning the ants have a memory which helps them select the 
next node from a list of possible choices. 

3.1 Ant System (AS) 

Each edge eij has a pheromone value ij associated with it, and this pheromone value can be 
read and modified by the ants. The algorithm starts with the user sprinkling some 
pheromone on random edges. All ants are initially in their home nest, and move to a node in 
their feasible list. When located at a node i an ant k uses the pheromone trails ij to compute 
the probability of choosing node j as the next node: 
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Nik is the feasible neighbourhood of ant k when in node i, that is, the list of cities that ant k
has not yet visited. The parameter ij = C / dij, where dij is the distance between nodes i and j,
and C is a positive constant, is a measure of heuristic information, in other words ij is our 
visibility. Parameters  and  determine the relative influence of the pheromone trail and the 
heuristic information. If  = 0 then the closest cities are more likely to be selected. If  = 0 
then only pheromone amplification is at work, which generally leads to the rapid emergence 

60°Nest NestFood Food

(a) (b)

)



Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 360

of a stagnation situation, all ants eventually follow the same path and construct the same 
tour. Dorigo found in his studies (Dorigo et al. 1996) that typically  > .
Once all ants have completed their tour the pheromone trails get updated. The pheromone 
values are modified in order to bias ants in the future iterations to construct solutions 
similar to the best ones previously constructed. First the pheromone on all arcs is lowered 
by a constant, and then pheromone is added on the arcs that the ants have passed in their 
tour. Evaporation is implemented by: 

( ) ijij p ττ −← 1   (2) 

where 0 < p  1 is the evaporation rate. This enables the algorithm to “forget” previous bad 
decisions and avoids unlimited accumulation on the edges. The deposition of pheromone on 
the edges is done by means of global trail update 
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where ijk is the amount of pheromone ant k deposits on the arcs it has visited, which 
usually amounts to the value Q / Ck, where Ck is the length of the tour and Q is a positive 
constant. This means that arcs used by many ants, and therefore part of short tours, receive 
more pheromone and are therefore more likely to be chosen by ants in future iterations of 
the algorithm. When using an elitist ant system, the solution presented by the best-solution-
so-far adds extra pheromone on its arcs. Equation (3) becomes 
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where e is a parameter that defines the weight given to the best-so-far tour and 

bsbs

ij C/1=∆τ  if eij belongs to the ants tour, 0 otherwise (5) 

where Cbs is the length of the best-so-far tour. 
When initializing the system, all ants can be placed in the starting node or sprinkled 
randomly over all nodes. Dorigo studied the differences and came to the conclusion that it 
had little effect, though placing them randomly gave sometimes slightly better performance. 
Also, the differences between three AS algorithms, ant-cycle, ant-density and ant-quantity
were studied in the same paper. In the latter two models each ant lay its trail at each step, 
without waiting for the end of the tour, whereas in the ant-cycle pheromone updates occur at 
the end of the tour. In the ant-density model a quantity Q of trail is left on edge (i,j) every 
time an ant goes from i to j, whereas in the ant-quantity model the amount of pheromone left 
was Q/dij. The ant-cycle model performed best and was chosen, and is the one depicted in the 
equations above. 
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3.2 Rank-based Ant System (RAS) 

This version is an extension to the original AS. After all m ants have generated a tour, the 
ants are sorted by tour length and the contribution of an ant to the pheromone trail update 
is weighted according to the rank µ of the ant. An elitist strategy is used as well. 
Only the  best ants are considered and =  - 1, where  is the number of elitist ants in the 
system. This means that equation (4) is modified accordingly 

( ) Ljip ijijijij ∈∀∆+∆+−←
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where
µ  ranking index 

µτ ij∆  increase of trail level on edge (i,j) caused by the µ-th best ant 

µL  tour length of the µ-th best ant 

*

ijτ∆  increase of trail level on edge (i,j) caused by the elitist ants 

σ  number of elitist ants 
*L  tour length of the best solution found 

In the paper (Bullnheimer et al. 1999) RAS is put to the test against AS, EAS as well as 
simulated annealing and a genetic algorithm. The conclusion was that RAS could for all 
problem instances compete with the classical metaheuristics regarding speed and quality, 
and that the ranking improved the performance of the ant system algorithm in every 
respect.

3.3 Ant Colony System (ACS) 

ACS proposed by Dorigo and Gambardella (1997) introduced a new state transition rule to 
provide a direct way to balance between exploration of new edges and exploitation of a 
priori and accumulated knowledge about the problem.  
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if the µ–th best ant travels on edge (i,j)

otherwise

if edge (i,j) is part of the best solution found

otherwise

if q < qo    (exploitation) 

otherwise (biased exploration) 
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where q is a random number uniformly distributed in [0,1] , qo is a parameter ( 0  qo  1) and 
J is a random node selected according to the probability distribution given in equation 1. 
This means that every time an ant in city i has to choose a city j to move to, it samples a 
random number q. If q qo then the best edge according to equation 3 is chosen, otherwise 
and edge is chose according to equation 1. 
While ants are constructing a solution a local pheromone updating rule is applied 

( ) Ljik

ijijij ∈∀∆⋅+⋅−← ,,)1( τστστ  (8) 

and  is a parameter 0 <  < 1 and ijk is 1/(nLnn), where n is the number of nodes in the 
problem and Lnn is the tour length produced by the nearest neighbour heuristic (see 
Rosenkrantz et al. 1977). 
The global pheromone updating rule is applied only to edges that belong to the best ant tour 
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and Lgb is the length of the globally best tour.  
Noticeable in ACS is that the local updating rule is applied in parallel, every time an ant 
selects a new node to travel to, but the global updating rule after all ants have completed 
their tour. 

3.4 Max-min Ant System (MMAS) 

This version by Stützle and Hoos (2000) differs from the original AS in three ways. Only the 
iteration best ant is allowed to apply pheronome, the strength of the pheromone trails have 
lower and upper bounds, and at start, all trails are initialized to their upper bound value to 
encourage early exploration. Equation 4 is modified 

( ) Ljip
m

k

best

ijijij ∈∀∆+−←
=

,,)1(
1

τττ  (10) 

where ijbest is the amount of pheromone the iteration best ant deposits on the arcs it has 
visited. 
The pheromone trail upper ( max )and lower ( min ) bounds for an edge can be calculated, a 
detailed description can be found in the paper by Stützle and Hoos.  
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if x > max

if x < min

otherwise

if (i,j) is part of the global best tour

otherwise
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At all times should the algorithm see to that the pheromone strength is between the given 
bounds on any edge. 
Studies were conducted in the paper to ascertain if the algorithm should use the iteration 
best ant or the global best (elite) ant as basis for the pheromone updates, and the results 
were that the iteration best ant performed better. Also the effects of using min or max as a 
starting value for the initial pheromone amount on the trails were studied, resulting in max

being the better approach. 
An additional mechanism called pheromone trail smoothing was introduced in the paper for 
increased performance. Basically when the MMAS has converged, or is very close to 
convergence, the mechanism increases the pheromone trails proportionally to their 
difference to the maximum pheromone trail limit. As a conclusion it is stated that MMAS 
outperformed all other AS variants to date. 

4. The hybrid-ACO algorithm 

The algorithm consists of two parts. We have the ACO part, where ants crawl over the 
searchspace trying to construct a feasible tour. When all ants have constructed their tour, the 
timestamps have also been calculated for the individual operations in the schedule defined 
by a tour, which allows us to calculate the makespan. The postprocessing part springs to life 
when there is a complete schedule to operate on. The (global) pheromone update of the 
ACO occurs only after the postprocessing has finished, this is due to the postprocessing 
affecting the makespan of the schedule formed by the tour of the ant. After the pheromone 
update ACO continues with the next iteration.

4.1 The postprocessing algorithm 

After all ants have constructed their tour, a postprocessing algorithm is applied. This 
algorithm is effectively a local search procedure, based upon the approach of Nowicki and 
Smutnicki (1996). 
The local search begins by identifying the critical path in the constructed schedule. The critical 
path can be decomposed into a number of blocks where a block is a maximal sequence of 
adjacent operations that require the same machine. Block length can vary from just one 
operation to all operations that are scheduled on one machine. Given a block, swapping 
operations take place. We start from the last block in the critical path which has a size larger 
than 1 and  its last operation in the block. The block size must be larger than 1 since otherwise 
no swap can be made. The identified operation is swapped with its predecessor in the same 
block, and the necessary changes are made into the tour of the ant as well as the timestamps of 
the scheduled operations. If the swap improves the makespan, it is accepted, otherwise the 
swap is undone and the next pair in the block is up for swapping. If a block contains no more 
swaps we move to the preceeding block. Note that an accepted swap means that the critical 
path may change and a new critical path must be identified. If no swap of operations in the 
critical path improve the makespan, the local search ends. 
This means that the tour of an ant may change in the postprocessing part of the algorithm. 
The tour of the ants after the very first completed postprocessing run may differ radically 
from the one presented by the first iteration of the ACO, but succeeding postprocessing runs 
after the first round of calculations are much easier on the ants and are not interrupting the 
pheromone trails too much. 
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Figure 1 shows a critical path and possible swaps for an example schedule. 

Figure 1. A sample 4-machine schedule with the critical path marked in grey and possible 
swap pairs with arrows. The path is made of 4 blocks with the largest block consisting of 
four scheduled operations. 

5. What is visibility? 

An additional problem when working with ant systems is that of visibility. There are 
similarities between priority rules used in heuristic approaches and the visibility of a single 
ant, both are trying to evaluate and make a choice of where to go next from a specific node. 
Usually visibility is referred to as the neighbourhood of the ant, i.e. the nodes that are close 
to the node the ant is currently staying on. It is a measure of what nodes the ant can see 
around it when standing on a specified node. In equation 1, the parameter ij is our measure 
of visibility and in TSP-problems the meaning is clear and all values of ij can be computed a 
priori, since the node distances are known. No matter which node the ant stands on, the 
distance to all other nodes can be fetched from a pre-calculated distance table. When it 
comes to schedules it is not entirely straightforward what visibility is and what effect it has 
on computations with regard to ACO. The distance in time units from a node in the tour to 
the next is not known until you have calculated the timestamps for the entire tour so far. 
Another thing with ACO and the MT-10 problem is that the tabu list (already visited nodes) 
alone is not enough. Since the tasks in every job have to be done in correct order, that is, task 
A3 has to be done before A4 etc., a candidate list is needed. The candidate list has all the 
legal node choices an ant can make from the node it is currently standing on. This means 
that only the selection probabilities for the nodes in the candidate list need to be calculated, 
which speeds up the algorithm. In this case visibility for an ant is restricted to only the 
nodes in the candidate list. Figure 2 illustrates this phenomena. 
In order to understand more about visibility and its effects, some various approaches to 
ACO-visibility in schedules are undertaken and studied. Table 1 shortly outlines some 
different types of visibility. 

Type of visibility Explanation 

Distance  Distance-based, the starting time of an operation  (counted from t0)
SPT  Shortest processing time first 
LPT  Longest processing time first 
TLM  Length of unscheduled tasks left on machine 
TLJ  Length of unscheduled tasks left in job 
TLJ+TLM(30-70) Length of unscheduled tasks left in job and on machine, weight 30%-70% 
TLJ+TLM(50-50) Length of unscheduled tasks left in job and on machine, weight 50%-50% 
TLJ+TLM(70-30) Length of unscheduled tasks left in job and on machine, weight 70%-30% 

Table 1. Various types of visibility for ACO 
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Figure 2. Visibility in scheduling. Since the ant has visited the nodes B1 and B2, the 
candidate list contains the next in the series, B3. Same for A2 and D2 since both A1 and D1 
are in the tour. The rest of the candidates are jobs that have not started yet, the first in their 
series of tasks. Every time a node is added to the tour, it is placed into the schedule and the 
timestamps for starting and finishing that task on the specific machine are calculated. When 
choosing the next node to travel to, visibility can be calculated for all the nodes in the 
candidate list. The good choices get better visibility rating, according to selected visibility 
method, and thus a better chance of being selected 

When the ant is selecting the next node to travel to, distance-based visibility is the earliest 
possible start time on the corresponding machine for the possible selections in its allowed 
list. The task that can start earlier than other candidates gets a higher probability of being 
chosen than a task that can start later and this can be achieved with a simple formula Q/tstart

Tabu list Candidate list

These nodes can never 
be visited again 

Tour of ant m so far:

B1 B2 D1 A1

??

B1, B2, D1, A1 A2, B3, C1, D2, E1, F1, 
G1, H1, I1, J1 

The nodes in the 
candidate list are the 
only ones the ant can 
see

Ant is now on node A1, 
pondering its next move. 

Schedule calculated from the tour

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

In the MT-10 problem it is 
defined that B1 (which 
means job 2, task1) runs 
on machine 1. 
B2 runs on machine 3, D1 
on machine 2 and A1 on 
machine 1, i.e. specific 
machines can do specific 
tasks. 

to Time

Machines

Availability time for 
machine 1
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that replaces the definition of ij in equation 1. SPT ranks the candidates according to length 
of their processing time, shorter processing time means a higher probability of being chosen, 
whereas LPT is the opposite; longer processing times means higher probability. TLM 
calculates the total processing time for all unscheduled tasks on the current machine. The 
longer the total processing time is, the higher the probability of being chosen. TLJ is similar, 
it calculates the total processing times for all the unscheduled tasks left in the current job. 
The longer the total processing time, the higher the probability. TLJ + TLM is a combination 
of TLJ and TLM, where each visibility is weighted differently. To get an outline of the 
impact of the weighting factors, 30-70, 50-50 and 70-30 proportional weights are used 
(percentage values). 

6. Computational experience and results 

The experiment setup was to take each ACO method and do 5 runs for each of the different 
types of visibility. Each run was 2,500 rounds of calculations, then the algorithm was halted. 
Two sets of runs were made, one without postprocessing, the other with. Average values 
and mean deviations were calculated. All units in table 3 and 4 are time units. Common 
parameter settings for ACO can be seen in table 2. 

Parameter value  meaning  

m  40  number of ants 
Q  80  pheromone deposited by an ant 
  1  bias towards pheromone amplification 
  2  bias towards closest nodes (visibility) 

p  0.007  evaporation rate 

Table 2. ACO parameter settings 

These parameters were kept the same for all comparative runs, i.e. for all visibility types 
during the runs with and without postprocessing. 
The column that dictates percentage deviation from optimum solution is calculated for the 
best found makespan of the runs. 
AS and RAS perform about the same, with RAS having the slight edge, smaller standard 
deviation and better mean values. ACS outperforms both AS and RAS, and MMAS 
outperforms them all. This is in line with the findings in quoted papers.  
The impact of the different visibilities vary for the different ACO methods, and it is quite an 
interesting read. As can be seen, best solution in table 3 was found by the TLJ visibility with 
ACS as the ACO method. The results for ACS with different visibilities are a bit jumpy, since 
ACS also holds the worst solution found. MMAS does good overall with all visibilities. 
The best found solution after 2,500 rounds of calculations is really not a very good one, it is 
still 13.1% from optimum, however, the algorithm has not stagnated and it continues to 
explore the search space and comes up with new solutions. The meaning of these runs is not 
to solve to optimality, rather to study the visibility effects and get a feel for the performance 
of the different ACO methods. 
Tweaking the parameter settings for each individual type of visibility may improve the 
results, but this way all the visibility types are on the same page for easy comparison. Same 
goes for the ACO methods. 
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ACO Type of visibility  worst best mean  % from optimum  

AS Distance   2174  1373  1954.0  294.4  32.3% 

SPT   2273 1582  2134.8 276.4  41.2% 

LPT    2314  1491   2121.8  316.8  37.6% 

TLM    2406 1482  2117.4  324.7  37.2% 

TLJ    2218 1502  2020.8  266.3  38.1% 

TLJ+TLM(30-70)  2322 1457  2072.2  311.6  36.2% 

TLJ+TLM(50-50)  2357  1464  2114.4  333.0  36.5% 

TLJ+TLM(70-30)  2127  1459  1975.8  259.1  36.3% 

RAS Distance   2102 1488 1946. 6 230.4 37.5% 

SPT   2121  1508  1981.6  237.6  38.3% 

LPT    2384  1519  2151.0  318.4  38.7% 

TLM    2119  1486  1852.6  205.6  37.4% 

TLJ    2230  1466  2032.8  284.8  36.6% 

TLJ+TLM(30-70)  2145  1364  1929.6  290.4  31.8% 

TLJ+TLM(50-50)  2265  1520  2090.8  286.8  38.8% 

TLJ+TLM(70-30)  2008  1494  1871.0  190.3  37.8% 

ACS Distance   1251  1137  1184.6  42.0  18.2% 

SPT   2072  1867  2001.0  71.2  50.2% 

LPT    2213  1638  2072.6  218.8  43.2% 

TLM    1473  1381  1431.4  32.1  32.6% 

TLJ    1108  1070  1093.8  13.1  13.1% 

TLJ+TLM(30-70)  1459  1234  1373.0  81.1  24.6% 

TLJ+TLM(50-50)  1404  1279  1335.0  50.6  27.3% 

TLJ+TLM(70-30)  1273  1168  1231.6  37.9  20.4% 

MMAS Distance   1272  1183  1243.6  31.8  21.4% 

SPT   1363  1241  1332.4  46.2  25.1% 

LPT    1303  1237  1276.8  25.83  24.8% 

TLM    1301  1209  1273.0  33.0  23.1% 

TLJ    1286  1267  1279.8   7.0  26.6% 

TLJ+TLM(30-70)  1286  1211  1260.4  30.6  23.2% 

TLJ+TLM(50-50)  1286  1235  1260.2  19.2  24.7% 

 TLJ+TLM(70-30)  1295  1245  1269.0  18.1  25.3%   

Table 3. Results from computational runs without postprocessing 
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ACO Type of visibility  worst best mean  % from optimum  

AS Distance   1341  1083  1231.6  84.4   14.1% 

SPT   1609  1055  1445.6  198.9 11.8% 

LPT    1608  1079  1464.4  195.2  13.8% 

TLM    1667  1048  1475.8  219.9  11.3% 

TLJ    1620  1061  1458.8  207.9  12.3% 

TLJ+TLM(30-70)  1599  1057  1437.8  195.1  12.0%   

TLJ+TLM(50-50)  1578  1059  1422.6  185.4  12.2%  

TLJ+TLM(70-30)  1580  1071  1420.6  183.3  13.2% 

RAS Distance   1292  1087  1207.6  71.8  14.4%  

SPT   1463  1069  1346.8  142.8  13.0% 

LPT    1538  1101  1351.2  148.3  15.5% 

TLM    1465  1088  1330.21  129.4  14.5% 

TLJ    1358  1068  1245.6  97.4  12.9% 

TLJ+TLM(30-70)  1457  1093  1339.0  127.3  14.9%   

TLJ+TLM(50-50)  1456  1067  1281.4  125.9  12.8% 

TLJ+TLM(70-30)  1502  1101  1378.6  145.9  15.5% 

ACS Distance   1053  1032  1045.0  7.4  9.9%  

SPT   1340  1123  1254.0  72.5  17.2% 

LPT    1178  1103  1157.2  27.5  15.7% 

TLM    1137  1038  1073.0  35.5  10.4% 

TLJ    988  981 982.8  2.7  5.2% 

TLJ+TLM(30-70)  1105  1008  1052.8  31.5  7.7%   

TLJ+TLM(50-50)  1060  999   1033.4  20.1  6.9%  

TLJ+TLM(70-30)  995  977   983.0  6.6  4.8% 

MMAS Distance   1013  1001  1003.8  4.6   7.1% 

SPT   1006  977  989.6  9.8   4.8% 

LPT    1019  991  1004.2  10.2  6.2% 

TLM    1014  988   1002.2  10.6  5.9% 

TLJ    1013  993   1001.2  6.7  6.3% 

TLJ+TLM(30-70)  994  982   987.4  5.1  5.3%   

TLJ+TLM(50-50)  1006  989  998.6  6.8  6.0%  

  TLJ+TLM(70-30)  1003  979   990.4  8.8  5.0%   

Table 4. Results from computational runs with postprocessing 



Job-shop scheduling and visibility studies with a hybrid ACO algorithm 369

Figure 3. A plot of the pheromonematrix when no postprocessing present. Very clear 
pheromonetrails are visible 

Figure 4. A plot of the pheromonematrix when using postprocessing. Clear pheromonetrails 
visible but distributed over more edges than in figure 4 
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As for the postprocessing version of the ACO methods, RAS beats AS in the sense that RAS 
has less deviation, which means it consistently gives good solutions, though AS did manage 
to find some better solutions. ACS is still a bit jumpy, it finds very good solutions for some 
visibility runs, but also performs poorly with for instance SPT and LPT. The various 
weighted combinations of TLJ + TLM seem to do better, overall, than other visibilities. 
TLJ+TLM(70-30) visibility in MMAS seems to work best, after 2,500 rounds of calculations 
the best found solution is 5.0% from optimum, though TLJ visibility and ACS are very close 
with a 5.2% solution. MMAS has less deviation, and thus is more likely to continue to 
produce good solutions every time it runs. 
It is clear that the postprocessing closes the performance gap between the different ACO 
methods, but the same internal ranking still holds true with postprocessing as without. The 
postprocessing also improves the performance dramatically for all versions of ACO 
algorithms tested. 
The algorithms were stopped after 2,500 rounds of calculations, so the question arises, how 
good a solution can be found if allowed to run without interruptions for a longer time? An 
additional run with the best visibility and ACO method from table 3 landed after 30,000 
rounds of calculations at a best found makespan of 1012 time units. which is 8.1% from 
optimum. An additional run with the best visibility and ACO method from table 4 landed 
after 30,000 rounds of calculations at a best found makespan of 948 time units, which is 1.9 
% from optimum. 

Figure 5. A finished schedule for the MT10 problem, made with the hybrid ACO (MMAS), 
with a makespan of 968 time units (3.9% from optimum) 

Another question that can be asked is does the postprocessing disturb the forming of 
pheromone trails in the system in any way? Figure 3 is the pheromonematrix of the MMAS 
with no postprocessing, taken after 2,500 rounds, and figure 4 is a similar one with 
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postprocessing. The dark dots depict a high concentration of pheromone whereas the 
presence of a lighter dot means no or very little pheromone is present. As one can imagine, 
the presence of a postprocessing routine that modifies ant tours messes with the ant 
pheromone trails, and you can clearly see if you compare figure 3 and figure 4 with each 
other that figure 4 shows more pheromone distribution in the system. There are still dark 
dots in figure 4 signifying established pheromone trails so we are not dealing with random 
search. In light of these figures you could eventually tweak the evaporation setting higher 
when using postprocessing, or bias the parameters more towards an emphasis on visibility. 
You could argue that the larger distribution of pheromone over the trails as seen in  figure 4 
encourages ant exploration more and actually helps in finding better solutions. 
A finished schedule produced by a hybrid ACO can be seen in figure 5. 

7. Conclusion 

When paired with the local search the ACO produces noteworthy results very fast (typically 
5% from optimum within 200 rounds of calculations). The Max-Min Ant System 
outperformed all other ACO versions, and it did so for all types of visibility tested, showing 
that it is indeed a leading candidate for choosing your ant system. 
There are various version of ACO available and this chapter served its purpose to both do 
an attempt at ranking them, showing the impact of various visibility methods as well as 
proving that pure ACO methods produce good results, but even better when combined with 
the postprocessing algorithm shown. Naturally, not every combination of ACO and a local 
search is guaranteed to work better than a pure ACO, but a hybrid version can improve the 
performance dramatically. 
If you are looking for a good, quick solution rather than an all-out effort to find the best 
solution, ACO perfomance is a noteworthy competitor to existing job-shop scheduling 
approaches. ACO is an easy algorithm to implement, with roughly the same amount of code 
and difficulty as that of a genetic algorithm. 
ACO is a good example of how harnessing, mimicking and utilizing processes occurring in 
nature for tough scientific problems can be a successful enterprise. 
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