
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

20

Job-shop scheduling and visibility studies with
a hybrid ACO algorithm

Heinonen, J. and Pettersson, F.
Åbo Akademi University

Finland

1. Introduction

Manufacturing today is primarily cooked down to all-out efforts into profitability. Factories
are moved to low-salary countries in order to ensure that profits are maintained and
stockholders kept happy. Decisions like these are met with debates about morale, ethics and
responsibilities that companies have to society, since losing an entire manufacturing plant
can be devastating to a community. An alternative to industrial relocalization is trying to
maintain profitability through development of effective production schedules, better
utilization of resources and overall better planning in existing manufacturing plants. The
significance of effective planning methods has, in other words, increased and will likely
continue to do so.
The focus of this chapter is to solve the MT10 job-shop scheduling problem using 4 different
variants of the Ant Colony Optimization (ACO) algorithm and to try to rank them. A hybrid
model, that uses a postprocessing algorithm to improve the resulting schedule, is also tried
for all four ACO versions. The term visibility is explained in the context of job-shop
scheduling, and incorporated into the test runs.
When we are talking about job-shop scheduling problems (JSP), we mean a set of machines
M, a set of jobs J and a set of operations O. For each operation there is a job to which it
belongs, a machine on which it it has to be processed, a predetermined processing time on
that machine as well as a predetermined processing order on the machines. The problem is
to minimize the makespan while ensuring that no more than one job can be processed at the
same time on the same machine, and seeing to that when a job starts, it must be completed
(and can’t be interrupted).
There have been numerous publications of successful algorithms applied to job-shop
problems. Among exact mathematical methods are Mixed integer linear programming and
Branch & Bound, among approximation methods there are List Scheduler Algorithms (see
Panwalker & Iskander, 1977 for a survey), that assign one operation at a time from a list that
is sorted by some priority rule, Shifting Bottleneck by Adams et al. (1988), Simulated
Annealing by van Laarhoven et al. (1988), Tabu search was first used in job shop scheduling
by Taillard (1989) and a Genetic algorithm approach by Nakano and Yamada (1991).
A newcomer in these approaches to the JSP, ant colony optimization has become an
increasingly popular candidate when it comes to algorithms that mimic behaviour of
processes that exist in nature. The first ACO algorithm was introduced by Marco Dorigo in

Source: Swarm Intelligence: Focus on Ant and Particle Swarm Optimization, Book edited by: Felix T. S. Chan and Manoj
Kumar Tiwari, ISBN 978-3-902613-09-7, pp. 532, December 2007, Itech Education and Publishing, Vienna, Austria

O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.i-

te
ch

on
lin

e.
co

m

Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 356

his doctoral thesis (1992) and was called an Ant System (AS). Since then AS has matured
into an algorithm that does very well when it comes to problem types that are formulated as
a traveling salesman problem (TSP) as well as the quadratic assignment problem (QAP). As
a result of research into ACO algorithms, some very successful variants have emerged.
We have the Elitist AS (EAS) proposed by Dorigo et al. (1996), in which the pheromone
updating rules are biased towards the best solution found so far, the idea being to exploit
the solution components within that solution.
Ant Colony System (ACS) by Dorigo and Gambardella (1997) has several modifications to
the original AS. It uses a modified rule when an ant chooses the next travel node, it uses a
best-so-far pheromone update rule but applies pheromone evaporation only to the trail that
belong to solution components that are in the best-so-far solution. It also uses a local
pheromone update rule to decrease the pheromone values on visited solution components,
in order to encourage exploration.
Rank-based AS (RAS) by Bullnheimer et al. (1999), is a variant where the elite ant as well as
a selection of ants with good solutions during that iteration get to update the pheromone
trails.
MAX-MIN AS (MMAS) by Stützle and Hoos (2000), is an approach that updates the
pheromone trails, according to some convergence measure, with either the iteration-best ant
or the best-so-far ant. The algorithm uses a lower bound for the pheromones (>0) as well as
restricting the maximum amount of pheromone a trail can have. The lower bound
encourage ant exploratory behaviour and the upper bound is prohibiting premature
convergence due to the elite solution dominating the other solutions.
Hypercube Framework (HCF) by Blum and Dorigo (2004) is more of a framework for
implementing ACO algorithms. Among the benefits are automatic scaling of pheromone
values to the interval [0,1].
In a paper by Colorni et al. (1993) AS was applied into job-shop scheduling and proved to be
a noteworthy candidate when faced with the task of chosing a suitable algorithm for
scheduling problems. The conclusions in the aforementioned paper were that AS is one of
the most easily adaptable population-based heuristics so far proposed and that its
computational paradigm is indeed effective under very different conditions.
As an example of ACO robustness, Jayaraman et al. (2000) used an ACO algorithm in
solving a combinatorial optimization problem of multiproduct batch scheduling as well as
the continuous function optimization problem for the design of multiproduct plant with
single product campaigns and horizon constraints. Further real-world applications with
regard to ACO algorithms would be using ACO to solve an established set of vehicle
routing problems as done by Bell and McMullen (2004) and a dynamic regional nurse-
scheduling problem in Austria by Gutjahr and Rauner (2005). The former paper concluded
the results were competetive and in the latter paper ACO was compared to a greedy
assignment algorithm and achieved highly significant improvements.
Kuo-Ching Ying et al. (2004) applied the ant colony system to permutation flow-shop
sequencing and effectively solved the n/m/P/Cmax problem, and commented that this
suggests that the ant colony system metaheuristic is well worth exploring in the context of
solving different scheduling problems.
An example of ACO and flowshops in recent use would be a paper by Gajpal and Rajendran
(2006), where they used a new ACO algorithm (NACO) to minimize the completion-

Job-shop scheduling and visibility studies with a hybrid ACO algorithm 357

variance of jobs, showing that work with ACO algorithms is an ongoing process to modify
and improve the original AS and apply it to a variety of scheduling problems.
For two of the top performing ACO algorithms, ACS and MMAS, convergence to the
optimal solution has been proved (Dorigo and Stützle, 2004 as well as Stützle and Dorigo,
2002). It is worth to remember that convergence results do not allow prediction of how
quickly an optimal solution can be found.

2. Problem description

The Job-Shop Scheduling Problem (JSP) can be characterized as n jobs to be processed on m
machines. In general it is a set of concurrent and conflicting goals to be satisfied using a
finite set of resources where resources are called machines and basic tasks are called jobs.
Each job is a request for scheduling a set of operations according to a process plan which
specifies precedence restrictions. We have

}{ mMMM ,...,1= a given set of machines

}{ nJJJ ,...,1= a given set of jobs

}{ nOOO ,...,1= a set of operations

For each operation Ouij ∈ there is a job Ji to which it belongs, a machine Mj on which it has

to be run and a processing time pij of the operation uij, where pij is a nonnegative integer.
Every job is a chain of operations and every operation has to be processed on a given
machine for a given time. The task is to find the starting times of all operations such that the
completion time of the very last operation is minimal. The chain order of each job has to be
maintained and each machine can only process one job at the same time. No job can be
preempted; once an operation starts it must be completed. The solution s to an instance of
the n x m JSP specifies a processing order for all of the jobs on each machine and implicitly
defines an earliest starttime and earliest completion time for each operation. The maximum
of the completion times is called makespan and most research address the problem of
makespan minimization.
Given an instance of JSP we can associate with it a disjunctive graph G = (V, A, E), where V
is the node set, A is the conjunctive arc set and E is the disjunctive arc set. The nodes V
correspond to all of the operations and two dummy nodes, a source and a sink. The
conjunctive arcs A represent the precedence relationships between the operations of a single
job and the disjunctive arcs E represent all pairs of operations to be performed on the same
machine. All arcs emanating from a node have the processing time of the operation
performed at that node as their length. The source has conjunctive arcs with length zero
emanating to all the first operations of the job and the sink has conjunctive arcs coming from
all the last operations. A feasible schedule corresponds to a selection of one arc from each
disjunctive arc pair such that the resulting directed graph is acyclic, i.e. no loops can be
found. The problem of minimizing the makespan reduces to finding a set of disjunctive arcs
which minimize the length of the critical path in the directed graph. An in-depth description
of disjunctive graphs with regard to job-shop problems can be found in for instance the
article about AS and JSP by Colorni et al. (1993).

Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 358

The MT10 problem is a 10 x 10 instance formulated by Muth and Thompson in 1963. It
consists of 10 jobs processed on 10 machines, and every job has 10 tasks to perform. The
processing times vary greatly with shortest duration being only 2 time units and longest 99
time units. It has the reputation of being one of the most difficult combinatorial problems
ever considered, and was not solved exactly until as late as 1989 by Carlier and Pinson using
a branch and bound algorithm. It is a typical job-shop problem.

3. ACO

ACO belongs to the class metaheuristics. The term metaheuristic is derived from two greek
words, heuristic which means “to find” and the prefix meta, which means “beyond, in the
sense of an upper level”. It has come to mean a high-level strategy for guiding heuristics in a
search for feasible solutions as well as a framework that can be specialized to solve
optimization problems. ACO is also a succesful example of swarm intelligence, whose
purpose is to design intelligent multi-agent systems by taking inspirations from the
collective behaviour of social insects.
ACO is modeled after the foraging behaviour of certain ant species. In the 1940s the French
entomologist Pierre-Paul Grassé observed that some species of termites react to what he
called “significant stimuli” (Grassé, 1946). He used the term “stigmergy” to describe the
communication of ants, and he described this communication as workers being stimulated
by the performance they have achieved. Ants alter their environment by means of
pheromone trails. A pheromone is any chemical or set of chemicals produced by a living
organism that transmits a message to other members of the same species. It is volatile and
evaporates quickly, and ants secrete this chemical by walking and follow, in turn, other
pheromone trails left by other ants. There are alarm pheromones, food trail pheromones and
others that affect behavior or physiology. Strong food trail pheromone concentrations are
perceived and stimulate ants to move into that direction. Ants are able to transport food
through this mechanism by finding and maintaining the shortest path between the food
source and the nest. Occasionally there will be the stray ant taking another route, and this
event can be seen as exploration, the ants are constantly trying to find a more effective path.
This mechanism was demonstrated by Denebourg et al. (1990), who in an experiment called
“the double bridge” connected a nest of Argentine ants with a food source. Figure 1 (a)
shows the experimental setup and figure 1 (b) another experimental setup by Goss et al.
(1989). If the setup is that of figure 1 (a), initially, each ant randomly chooses one of the two
bridges. Due to random fluctuations, after some time one of the two bridges presents a
higher concentration of pheromone and attracts more ants. After a while almost the whole
colony converges toward the use of the same bridge. With the setup illustrated in figure 1
(b) another mechanism besides random fluctuations was demonstrated: the ants randomly
choosing the shorter path travel between the nest and the food source faster and, given time,
this means that pheromone will accumulate faster on this path, converging the population
towards using this shorter path.
The mechanism can be utilized in order to find the shortest path in, for instance, minimizing
makespan for scheduling problems. The underlying problems are formulated as a TSP, that
is, a connected, undirected graph G = (V, E) with weights on the edges between the nodes.
The nodes V denote the cities, and the edge weight is the distance between two cities. The
goal is to find a tour in G that connects all cities once so that the overall length is minimal.

Job-shop scheduling and visibility studies with a hybrid ACO algorithm 359

Figure 1. Experimental setup for the double bridge experiments: (a) branches have equal
length; (b) branches have different lengths

Having artifical ants search the solution space simulate real ants searching their
environment. The artifical ants can be equipped with some oddities that real life ants don’t
have, for instance a local heuristic function to guide their search through a set of feasible
solutions only, or an adaptive memory corresponding to the pheromone trail so that they
can remember visited nodes. Also we require the ants to be symmetrical in the sense that
they move from the nest to the food and back using the same path. The ACO algorithm also
keeps tracks of visited nodes, meaning the ants have a memory which helps them select the
next node from a list of possible choices.

3.1 Ant System (AS)

Each edge eij has a pheromone value ij associated with it, and this pheromone value can be
read and modified by the ants. The algorithm starts with the user sprinkling some
pheromone on random edges. All ants are initially in their home nest, and move to a node in
their feasible list. When located at a node i an ant k uses the pheromone trails ij to compute
the probability of choosing node j as the next node:

∉

∈
=

∈

k

i

k

i

Nl ilil

ijij

k

ij

Nj

Nj
p k

i

,0

,
βα

βα

ητ

ητ

 (1)

Nik is the feasible neighbourhood of ant k when in node i, that is, the list of cities that ant k
has not yet visited. The parameter ij = C / dij, where dij is the distance between nodes i and j,
and C is a positive constant, is a measure of heuristic information, in other words ij is our
visibility. Parameters and determine the relative influence of the pheromone trail and the
heuristic information. If = 0 then the closest cities are more likely to be selected. If = 0
then only pheromone amplification is at work, which generally leads to the rapid emergence

60°Nest NestFood Food

(a) (b)

)

Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 360

of a stagnation situation, all ants eventually follow the same path and construct the same
tour. Dorigo found in his studies (Dorigo et al. 1996) that typically > .
Once all ants have completed their tour the pheromone trails get updated. The pheromone
values are modified in order to bias ants in the future iterations to construct solutions
similar to the best ones previously constructed. First the pheromone on all arcs is lowered
by a constant, and then pheromone is added on the arcs that the ants have passed in their
tour. Evaporation is implemented by:

() ijij p ττ −← 1 (2)

where 0 < p 1 is the evaporation rate. This enables the algorithm to “forget” previous bad
decisions and avoids unlimited accumulation on the edges. The deposition of pheromone on
the edges is done by means of global trail update

() Ljip
m

k

k

ijijij ∈∀∆+−←
=

,,)1(
1

τττ (3)

where ijk is the amount of pheromone ant k deposits on the arcs it has visited, which
usually amounts to the value Q / Ck, where Ck is the length of the tour and Q is a positive
constant. This means that arcs used by many ants, and therefore part of short tours, receive
more pheromone and are therefore more likely to be chosen by ants in future iterations of
the algorithm. When using an elitist ant system, the solution presented by the best-solution-
so-far adds extra pheromone on its arcs. Equation (3) becomes

() Ljiep
m

k

bs

ij

k

ijijij ∈∀∆+∆+−←
=

,,)1(
1

ττττ (4)

where e is a parameter that defines the weight given to the best-so-far tour and

bsbs

ij C/1=∆τ if eij belongs to the ants tour, 0 otherwise (5)

where Cbs is the length of the best-so-far tour.
When initializing the system, all ants can be placed in the starting node or sprinkled
randomly over all nodes. Dorigo studied the differences and came to the conclusion that it
had little effect, though placing them randomly gave sometimes slightly better performance.
Also, the differences between three AS algorithms, ant-cycle, ant-density and ant-quantity
were studied in the same paper. In the latter two models each ant lay its trail at each step,
without waiting for the end of the tour, whereas in the ant-cycle pheromone updates occur at
the end of the tour. In the ant-density model a quantity Q of trail is left on edge (i,j) every
time an ant goes from i to j, whereas in the ant-quantity model the amount of pheromone left
was Q/dij. The ant-cycle model performed best and was chosen, and is the one depicted in the
equations above.

Job-shop scheduling and visibility studies with a hybrid ACO algorithm 361

3.2 Rank-based Ant System (RAS)

This version is an extension to the original AS. After all m ants have generated a tour, the
ants are sorted by tour length and the contribution of an ant to the pheromone trail update
is weighted according to the rank µ of the ant. An elitist strategy is used as well.
Only the best ants are considered and = - 1, where is the number of elitist ants in the
system. This means that equation (4) is modified accordingly

() Ljip ijijijij ∈∀∆+∆+−←
−

=

,,)1(
1

1

*
σ

µ

µ ττττ (6)

where
()−

=∆

0

µ
µ

µσ
τ L

Q

ij

and =∆

0

**
L

Q

ij

σ
τ

where
µ ranking index

µτ ij∆ increase of trail level on edge (i,j) caused by the µ-th best ant

µL tour length of the µ-th best ant

*

ijτ∆ increase of trail level on edge (i,j) caused by the elitist ants

σ number of elitist ants
*L tour length of the best solution found

In the paper (Bullnheimer et al. 1999) RAS is put to the test against AS, EAS as well as
simulated annealing and a genetic algorithm. The conclusion was that RAS could for all
problem instances compete with the classical metaheuristics regarding speed and quality,
and that the ranking improved the performance of the ant system algorithm in every
respect.

3.3 Ant Colony System (ACS)

ACS proposed by Dorigo and Gambardella (1997) introduced a new state transition rule to
provide a direct way to balance between exploration of new edges and exploitation of a
priori and accumulated knowledge about the problem.

{ }

J

maxarg
j

ijij
i
k
Nj

βητ ⋅
= ∈ (7)

if the µ–th best ant travels on edge (i,j)

otherwise

if edge (i,j) is part of the best solution found

otherwise

if q < qo (exploitation)

otherwise (biased exploration)

Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 362

where q is a random number uniformly distributed in [0,1] , qo is a parameter (0 qo 1) and
J is a random node selected according to the probability distribution given in equation 1.
This means that every time an ant in city i has to choose a city j to move to, it samples a
random number q. If q qo then the best edge according to equation 3 is chosen, otherwise
and edge is chose according to equation 1.
While ants are constructing a solution a local pheromone updating rule is applied

() Ljik

ijijij ∈∀∆⋅+⋅−← ,,)1(τστστ (8)

and is a parameter 0 < < 1 and ijk is 1/(nLnn), where n is the number of nodes in the
problem and Lnn is the tour length produced by the nearest neighbour heuristic (see
Rosenkrantz et al. 1977).
The global pheromone updating rule is applied only to edges that belong to the best ant tour

() Ljip
m

k

k

ijijij ∈∀∆+−←
=

,,)1(
1

τττ (9)

where =∆

0

1

gb
k

ij
Lτ

and Lgb is the length of the globally best tour.
Noticeable in ACS is that the local updating rule is applied in parallel, every time an ant
selects a new node to travel to, but the global updating rule after all ants have completed
their tour.

3.4 Max-min Ant System (MMAS)

This version by Stützle and Hoos (2000) differs from the original AS in three ways. Only the
iteration best ant is allowed to apply pheronome, the strength of the pheromone trails have
lower and upper bounds, and at start, all trails are initialized to their upper bound value to
encourage early exploration. Equation 4 is modified

() Ljip
m

k

best

ijijij ∈∀∆+−←
=

,,)1(
1

τττ (10)

where ijbest is the amount of pheromone the iteration best ant deposits on the arcs it has
visited.
The pheromone trail upper (max)and lower (min) bounds for an edge can be calculated, a
detailed description can be found in the paper by Stützle and Hoos.

[] =

x

x min

max
max

τ

τ
τ

τ min
 (11)

if x > max

if x < min

otherwise

if (i,j) is part of the global best tour

otherwise

Job-shop scheduling and visibility studies with a hybrid ACO algorithm 363

At all times should the algorithm see to that the pheromone strength is between the given
bounds on any edge.
Studies were conducted in the paper to ascertain if the algorithm should use the iteration
best ant or the global best (elite) ant as basis for the pheromone updates, and the results
were that the iteration best ant performed better. Also the effects of using min or max as a
starting value for the initial pheromone amount on the trails were studied, resulting in max

being the better approach.
An additional mechanism called pheromone trail smoothing was introduced in the paper for
increased performance. Basically when the MMAS has converged, or is very close to
convergence, the mechanism increases the pheromone trails proportionally to their
difference to the maximum pheromone trail limit. As a conclusion it is stated that MMAS
outperformed all other AS variants to date.

4. The hybrid-ACO algorithm

The algorithm consists of two parts. We have the ACO part, where ants crawl over the
searchspace trying to construct a feasible tour. When all ants have constructed their tour, the
timestamps have also been calculated for the individual operations in the schedule defined
by a tour, which allows us to calculate the makespan. The postprocessing part springs to life
when there is a complete schedule to operate on. The (global) pheromone update of the
ACO occurs only after the postprocessing has finished, this is due to the postprocessing
affecting the makespan of the schedule formed by the tour of the ant. After the pheromone
update ACO continues with the next iteration.

4.1 The postprocessing algorithm

After all ants have constructed their tour, a postprocessing algorithm is applied. This
algorithm is effectively a local search procedure, based upon the approach of Nowicki and
Smutnicki (1996).
The local search begins by identifying the critical path in the constructed schedule. The critical
path can be decomposed into a number of blocks where a block is a maximal sequence of
adjacent operations that require the same machine. Block length can vary from just one
operation to all operations that are scheduled on one machine. Given a block, swapping
operations take place. We start from the last block in the critical path which has a size larger
than 1 and its last operation in the block. The block size must be larger than 1 since otherwise
no swap can be made. The identified operation is swapped with its predecessor in the same
block, and the necessary changes are made into the tour of the ant as well as the timestamps of
the scheduled operations. If the swap improves the makespan, it is accepted, otherwise the
swap is undone and the next pair in the block is up for swapping. If a block contains no more
swaps we move to the preceeding block. Note that an accepted swap means that the critical
path may change and a new critical path must be identified. If no swap of operations in the
critical path improve the makespan, the local search ends.
This means that the tour of an ant may change in the postprocessing part of the algorithm.
The tour of the ants after the very first completed postprocessing run may differ radically
from the one presented by the first iteration of the ACO, but succeeding postprocessing runs
after the first round of calculations are much easier on the ants and are not interrupting the
pheromone trails too much.

Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 364

Figure 1 shows a critical path and possible swaps for an example schedule.

Figure 1. A sample 4-machine schedule with the critical path marked in grey and possible
swap pairs with arrows. The path is made of 4 blocks with the largest block consisting of
four scheduled operations.

5. What is visibility?

An additional problem when working with ant systems is that of visibility. There are
similarities between priority rules used in heuristic approaches and the visibility of a single
ant, both are trying to evaluate and make a choice of where to go next from a specific node.
Usually visibility is referred to as the neighbourhood of the ant, i.e. the nodes that are close
to the node the ant is currently staying on. It is a measure of what nodes the ant can see
around it when standing on a specified node. In equation 1, the parameter ij is our measure
of visibility and in TSP-problems the meaning is clear and all values of ij can be computed a
priori, since the node distances are known. No matter which node the ant stands on, the
distance to all other nodes can be fetched from a pre-calculated distance table. When it
comes to schedules it is not entirely straightforward what visibility is and what effect it has
on computations with regard to ACO. The distance in time units from a node in the tour to
the next is not known until you have calculated the timestamps for the entire tour so far.
Another thing with ACO and the MT-10 problem is that the tabu list (already visited nodes)
alone is not enough. Since the tasks in every job have to be done in correct order, that is, task
A3 has to be done before A4 etc., a candidate list is needed. The candidate list has all the
legal node choices an ant can make from the node it is currently standing on. This means
that only the selection probabilities for the nodes in the candidate list need to be calculated,
which speeds up the algorithm. In this case visibility for an ant is restricted to only the
nodes in the candidate list. Figure 2 illustrates this phenomena.
In order to understand more about visibility and its effects, some various approaches to
ACO-visibility in schedules are undertaken and studied. Table 1 shortly outlines some
different types of visibility.

Type of visibility Explanation

Distance Distance-based, the starting time of an operation (counted from t0)
SPT Shortest processing time first
LPT Longest processing time first
TLM Length of unscheduled tasks left on machine
TLJ Length of unscheduled tasks left in job
TLJ+TLM(30-70) Length of unscheduled tasks left in job and on machine, weight 30%-70%
TLJ+TLM(50-50) Length of unscheduled tasks left in job and on machine, weight 50%-50%
TLJ+TLM(70-30) Length of unscheduled tasks left in job and on machine, weight 70%-30%

Table 1. Various types of visibility for ACO

Job-shop scheduling and visibility studies with a hybrid ACO algorithm 365

Figure 2. Visibility in scheduling. Since the ant has visited the nodes B1 and B2, the
candidate list contains the next in the series, B3. Same for A2 and D2 since both A1 and D1
are in the tour. The rest of the candidates are jobs that have not started yet, the first in their
series of tasks. Every time a node is added to the tour, it is placed into the schedule and the
timestamps for starting and finishing that task on the specific machine are calculated. When
choosing the next node to travel to, visibility can be calculated for all the nodes in the
candidate list. The good choices get better visibility rating, according to selected visibility
method, and thus a better chance of being selected

When the ant is selecting the next node to travel to, distance-based visibility is the earliest
possible start time on the corresponding machine for the possible selections in its allowed
list. The task that can start earlier than other candidates gets a higher probability of being
chosen than a task that can start later and this can be achieved with a simple formula Q/tstart

Tabu list Candidate list

These nodes can never
be visited again

Tour of ant m so far:

B1 B2 D1 A1

??

B1, B2, D1, A1 A2, B3, C1, D2, E1, F1,
G1, H1, I1, J1

The nodes in the
candidate list are the
only ones the ant can
see

Ant is now on node A1,
pondering its next move.

Schedule calculated from the tour

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

In the MT-10 problem it is
defined that B1 (which
means job 2, task1) runs
on machine 1.
B2 runs on machine 3, D1
on machine 2 and A1 on
machine 1, i.e. specific
machines can do specific
tasks.

to Time

Machines

Availability time for
machine 1

Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 366

that replaces the definition of ij in equation 1. SPT ranks the candidates according to length
of their processing time, shorter processing time means a higher probability of being chosen,
whereas LPT is the opposite; longer processing times means higher probability. TLM
calculates the total processing time for all unscheduled tasks on the current machine. The
longer the total processing time is, the higher the probability of being chosen. TLJ is similar,
it calculates the total processing times for all the unscheduled tasks left in the current job.
The longer the total processing time, the higher the probability. TLJ + TLM is a combination
of TLJ and TLM, where each visibility is weighted differently. To get an outline of the
impact of the weighting factors, 30-70, 50-50 and 70-30 proportional weights are used
(percentage values).

6. Computational experience and results

The experiment setup was to take each ACO method and do 5 runs for each of the different
types of visibility. Each run was 2,500 rounds of calculations, then the algorithm was halted.
Two sets of runs were made, one without postprocessing, the other with. Average values
and mean deviations were calculated. All units in table 3 and 4 are time units. Common
parameter settings for ACO can be seen in table 2.

Parameter value meaning

m 40 number of ants
Q 80 pheromone deposited by an ant
 1 bias towards pheromone amplification
 2 bias towards closest nodes (visibility)

p 0.007 evaporation rate

Table 2. ACO parameter settings

These parameters were kept the same for all comparative runs, i.e. for all visibility types
during the runs with and without postprocessing.
The column that dictates percentage deviation from optimum solution is calculated for the
best found makespan of the runs.
AS and RAS perform about the same, with RAS having the slight edge, smaller standard
deviation and better mean values. ACS outperforms both AS and RAS, and MMAS
outperforms them all. This is in line with the findings in quoted papers.
The impact of the different visibilities vary for the different ACO methods, and it is quite an
interesting read. As can be seen, best solution in table 3 was found by the TLJ visibility with
ACS as the ACO method. The results for ACS with different visibilities are a bit jumpy, since
ACS also holds the worst solution found. MMAS does good overall with all visibilities.
The best found solution after 2,500 rounds of calculations is really not a very good one, it is
still 13.1% from optimum, however, the algorithm has not stagnated and it continues to
explore the search space and comes up with new solutions. The meaning of these runs is not
to solve to optimality, rather to study the visibility effects and get a feel for the performance
of the different ACO methods.
Tweaking the parameter settings for each individual type of visibility may improve the
results, but this way all the visibility types are on the same page for easy comparison. Same
goes for the ACO methods.

Job-shop scheduling and visibility studies with a hybrid ACO algorithm 367

ACO Type of visibility worst best mean % from optimum

AS Distance 2174 1373 1954.0 294.4 32.3%

SPT 2273 1582 2134.8 276.4 41.2%

LPT 2314 1491 2121.8 316.8 37.6%

TLM 2406 1482 2117.4 324.7 37.2%

TLJ 2218 1502 2020.8 266.3 38.1%

TLJ+TLM(30-70) 2322 1457 2072.2 311.6 36.2%

TLJ+TLM(50-50) 2357 1464 2114.4 333.0 36.5%

TLJ+TLM(70-30) 2127 1459 1975.8 259.1 36.3%

RAS Distance 2102 1488 1946. 6 230.4 37.5%

SPT 2121 1508 1981.6 237.6 38.3%

LPT 2384 1519 2151.0 318.4 38.7%

TLM 2119 1486 1852.6 205.6 37.4%

TLJ 2230 1466 2032.8 284.8 36.6%

TLJ+TLM(30-70) 2145 1364 1929.6 290.4 31.8%

TLJ+TLM(50-50) 2265 1520 2090.8 286.8 38.8%

TLJ+TLM(70-30) 2008 1494 1871.0 190.3 37.8%

ACS Distance 1251 1137 1184.6 42.0 18.2%

SPT 2072 1867 2001.0 71.2 50.2%

LPT 2213 1638 2072.6 218.8 43.2%

TLM 1473 1381 1431.4 32.1 32.6%

TLJ 1108 1070 1093.8 13.1 13.1%

TLJ+TLM(30-70) 1459 1234 1373.0 81.1 24.6%

TLJ+TLM(50-50) 1404 1279 1335.0 50.6 27.3%

TLJ+TLM(70-30) 1273 1168 1231.6 37.9 20.4%

MMAS Distance 1272 1183 1243.6 31.8 21.4%

SPT 1363 1241 1332.4 46.2 25.1%

LPT 1303 1237 1276.8 25.83 24.8%

TLM 1301 1209 1273.0 33.0 23.1%

TLJ 1286 1267 1279.8 7.0 26.6%

TLJ+TLM(30-70) 1286 1211 1260.4 30.6 23.2%

TLJ+TLM(50-50) 1286 1235 1260.2 19.2 24.7%

 TLJ+TLM(70-30) 1295 1245 1269.0 18.1 25.3%

Table 3. Results from computational runs without postprocessing

Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 368

ACO Type of visibility worst best mean % from optimum

AS Distance 1341 1083 1231.6 84.4 14.1%

SPT 1609 1055 1445.6 198.9 11.8%

LPT 1608 1079 1464.4 195.2 13.8%

TLM 1667 1048 1475.8 219.9 11.3%

TLJ 1620 1061 1458.8 207.9 12.3%

TLJ+TLM(30-70) 1599 1057 1437.8 195.1 12.0%

TLJ+TLM(50-50) 1578 1059 1422.6 185.4 12.2%

TLJ+TLM(70-30) 1580 1071 1420.6 183.3 13.2%

RAS Distance 1292 1087 1207.6 71.8 14.4%

SPT 1463 1069 1346.8 142.8 13.0%

LPT 1538 1101 1351.2 148.3 15.5%

TLM 1465 1088 1330.21 129.4 14.5%

TLJ 1358 1068 1245.6 97.4 12.9%

TLJ+TLM(30-70) 1457 1093 1339.0 127.3 14.9%

TLJ+TLM(50-50) 1456 1067 1281.4 125.9 12.8%

TLJ+TLM(70-30) 1502 1101 1378.6 145.9 15.5%

ACS Distance 1053 1032 1045.0 7.4 9.9%

SPT 1340 1123 1254.0 72.5 17.2%

LPT 1178 1103 1157.2 27.5 15.7%

TLM 1137 1038 1073.0 35.5 10.4%

TLJ 988 981 982.8 2.7 5.2%

TLJ+TLM(30-70) 1105 1008 1052.8 31.5 7.7%

TLJ+TLM(50-50) 1060 999 1033.4 20.1 6.9%

TLJ+TLM(70-30) 995 977 983.0 6.6 4.8%

MMAS Distance 1013 1001 1003.8 4.6 7.1%

SPT 1006 977 989.6 9.8 4.8%

LPT 1019 991 1004.2 10.2 6.2%

TLM 1014 988 1002.2 10.6 5.9%

TLJ 1013 993 1001.2 6.7 6.3%

TLJ+TLM(30-70) 994 982 987.4 5.1 5.3%

TLJ+TLM(50-50) 1006 989 998.6 6.8 6.0%

 TLJ+TLM(70-30) 1003 979 990.4 8.8 5.0%

Table 4. Results from computational runs with postprocessing

Job-shop scheduling and visibility studies with a hybrid ACO algorithm 369

Figure 3. A plot of the pheromonematrix when no postprocessing present. Very clear
pheromonetrails are visible

Figure 4. A plot of the pheromonematrix when using postprocessing. Clear pheromonetrails
visible but distributed over more edges than in figure 4

Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 370

As for the postprocessing version of the ACO methods, RAS beats AS in the sense that RAS
has less deviation, which means it consistently gives good solutions, though AS did manage
to find some better solutions. ACS is still a bit jumpy, it finds very good solutions for some
visibility runs, but also performs poorly with for instance SPT and LPT. The various
weighted combinations of TLJ + TLM seem to do better, overall, than other visibilities.
TLJ+TLM(70-30) visibility in MMAS seems to work best, after 2,500 rounds of calculations
the best found solution is 5.0% from optimum, though TLJ visibility and ACS are very close
with a 5.2% solution. MMAS has less deviation, and thus is more likely to continue to
produce good solutions every time it runs.
It is clear that the postprocessing closes the performance gap between the different ACO
methods, but the same internal ranking still holds true with postprocessing as without. The
postprocessing also improves the performance dramatically for all versions of ACO
algorithms tested.
The algorithms were stopped after 2,500 rounds of calculations, so the question arises, how
good a solution can be found if allowed to run without interruptions for a longer time? An
additional run with the best visibility and ACO method from table 3 landed after 30,000
rounds of calculations at a best found makespan of 1012 time units. which is 8.1% from
optimum. An additional run with the best visibility and ACO method from table 4 landed
after 30,000 rounds of calculations at a best found makespan of 948 time units, which is 1.9
% from optimum.

Figure 5. A finished schedule for the MT10 problem, made with the hybrid ACO (MMAS),
with a makespan of 968 time units (3.9% from optimum)

Another question that can be asked is does the postprocessing disturb the forming of
pheromone trails in the system in any way? Figure 3 is the pheromonematrix of the MMAS
with no postprocessing, taken after 2,500 rounds, and figure 4 is a similar one with

Job-shop scheduling and visibility studies with a hybrid ACO algorithm 371

postprocessing. The dark dots depict a high concentration of pheromone whereas the
presence of a lighter dot means no or very little pheromone is present. As one can imagine,
the presence of a postprocessing routine that modifies ant tours messes with the ant
pheromone trails, and you can clearly see if you compare figure 3 and figure 4 with each
other that figure 4 shows more pheromone distribution in the system. There are still dark
dots in figure 4 signifying established pheromone trails so we are not dealing with random
search. In light of these figures you could eventually tweak the evaporation setting higher
when using postprocessing, or bias the parameters more towards an emphasis on visibility.
You could argue that the larger distribution of pheromone over the trails as seen in figure 4
encourages ant exploration more and actually helps in finding better solutions.
A finished schedule produced by a hybrid ACO can be seen in figure 5.

7. Conclusion

When paired with the local search the ACO produces noteworthy results very fast (typically
5% from optimum within 200 rounds of calculations). The Max-Min Ant System
outperformed all other ACO versions, and it did so for all types of visibility tested, showing
that it is indeed a leading candidate for choosing your ant system.
There are various version of ACO available and this chapter served its purpose to both do
an attempt at ranking them, showing the impact of various visibility methods as well as
proving that pure ACO methods produce good results, but even better when combined with
the postprocessing algorithm shown. Naturally, not every combination of ACO and a local
search is guaranteed to work better than a pure ACO, but a hybrid version can improve the
performance dramatically.
If you are looking for a good, quick solution rather than an all-out effort to find the best
solution, ACO perfomance is a noteworthy competitor to existing job-shop scheduling
approaches. ACO is an easy algorithm to implement, with roughly the same amount of code
and difficulty as that of a genetic algorithm.
ACO is a good example of how harnessing, mimicking and utilizing processes occurring in
nature for tough scientific problems can be a successful enterprise.

8. References

Adams J., Balas E., Zawack D. (1988). The shifting bottleneck procedure for job shop
scheduling, Management Science, 34, pp. 391-401.

Bell J.E., McMullen P.R. (2004) Ant colony optimization techniques for the vehicle routing
problem, Advanced Engineering Informatics, 18, pp. 41-48.

Blum C., Dorigo M. (2004). The hyper-cube framework for ant colony optimization, IEEE
Trans Syst Man Cybernet Part B, 34(2), pp. 1161-1172.

Bullnheimer B., Hartl R., Strauss C. (1999). A new rank-based version of the Ant System: A
computational study, Central European J Operations Res Econom, 7(1), pp. 25-38.

Colorni A., Dorigo M., Maniezzo V. and Trubian M. (1993). Ant System for Job-shop
scheduling, Belgian Journal of Operations Research, Statistics and Computer Science, 34:
pp. 39--54.

Denebourg, J.-L., Aron, S., Goss, S., Pasteels, J.-M. (1990) The self-organizing exploratory
pattern of the Argentine ant, Journal of insect behaviour, vol. 3, p. 150.

Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 372

Dorigo M. (1992). Optimization, Learning and Natural Algorithms. PhD thesis, Dipartemento
di Elettronica, Politecnico di Milano.

Dorigo M., Gambardella L.M. (1997). Ant Colony System: A cooperative learning approach
to the traveling salesman problem, IEEE Trans Evolutionary Comput,1(1), pp. 53-66.

Dorigo M., Maniezzo V., Colorni A. (1996). Ant system: Optimization by a colony of
cooperating agents, IEEE Trans Syst Man Cybernet Part B, 26(1), pp. 29-41.

Dorigo, M. and Stützle, T. (2004). Ant colony optimization, MIT press, Cambridge, MA.
Gajpal Y., Rajendran C. (2006). An ant-colony optimization algorithm for minimizing the

completion-time variance of jobs in flowshops, International Journal of Production
Economics, 101, pp. 259-272.

Grassé, P.-P. (1946). Les Insects Dans Leur Univers, Paris, France, Ed. Du Palais de la
découverte.

Gutjahr W.J., Rauner M.S. (2005). An ACO algorithm for a dynamic regional nurse-
scheduling problem in Austria, Computers & Operations Research (in print).

Jayaraman V.K., Kulkarni B.D., Karale S., Shelokar P. (2000). Ant colony framework for
optimal design and scheduling of batch plants, Computers and Chemical Engineering,
24, pp. 190-192.

Kuo-Ching Ying, Ching-Jong Liao (2004). An ant colony system for permutation flow-shop
sequencing, Computers & Operations Research, 31, pp. 791-801.

Panwalker S.S., Iskander W. (1977). A survey of Scheduling Rules, Oper.Res., 25, 1, pp. 45-61.
Rosenkrantz, D. J., Stearns, R. E., Lewis, P. M. (1977). An analysis of several heuristics for the

traveling salesman problem, SIAM Journal on Computing, vol. 6, pp. 563-581.
Nakano R., Yamada T. (1991). Conventional Genetic Algorithm for Job Shop Problems, Proc.

of the 4th Int. Conference on Genetic Algorithms, San Diego, Californa, pp. 474-479.
Nowicki E., Smutnicki C. (1996). A fast taboo search algorithm for the job-shop problem.

Management Science, 42 (6), pp. 797-813.
Stützle T., Hoos H.H. (1996). Improving the Ant System: a detailed report on the MAX-MIN

Ant system, Technical Report AIDA-96-12, FG Intellektik, TH Darmstadt.
Stützle T., Hoos H.H. (2000). MAX-MIN Ant system, Future Generat Comput Syst, 16(8), pp.

889-914.
Stützle, T. and Dorigo, M. (2002). A short convergence proof for a class of ACO algorithms,

IEEE Transactions on evolutionary computation, vol.6, no. 4, pp. 358-365.
Taillard E. (1989). Parallel Tabu Search Technique for the Jobshop Scheduling Problem,

Internal Report ORWP 89/11, Departemente de Mathematiques, Ecole Polytechnique
Federale de Lausanne, Lausanne.

Van Laarhoven P. J. M., Aarts E.H.L., Lenstra J.K. (1992). Job shop scheduling by simulated
annealing, Operations Research, 40, pp. 113-125.

Swarm Intelligence, Focus on Ant and Particle Swarm Optimization

Edited by FelixT.S.Chan and Manoj KumarTiwari

ISBN 978-3-902613-09-7

Hard cover, 532 pages

Publisher I-Tech Education and Publishing

Published online 01, December, 2007

Published in print edition December, 2007

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

In the era globalisation the emerging technologies are governing engineering industries to a multifaceted state.

The escalating complexity has demanded researchers to find the possible ways of easing the solution of the

problems. This has motivated the researchers to grasp ideas from the nature and implant it in the engineering

sciences. This way of thinking led to emergence of many biologically inspired algorithms that have proven to

be efficient in handling the computationally complex problems with competence such as Genetic Algorithm

(GA), Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), etc. Motivated by the capability of

the biologically inspired algorithms the present book on "Swarm Intelligence: Focus on Ant and Particle Swarm

Optimization" aims to present recent developments and applications concerning optimization with swarm

intelligence techniques. The papers selected for this book comprise a cross-section of topics that reflect a

variety of perspectives and disciplinary backgrounds. In addition to the introduction of new concepts of swarm

intelligence, this book also presented some selected representative case studies covering power plant

maintenance scheduling; geotechnical engineering; design and machining tolerances; layout problems;

manufacturing process plan; job-shop scheduling; structural design; environmental dispatching problems;

wireless communication; water distribution systems; multi-plant supply chain; fault diagnosis of airplane

engines; and process scheduling. I believe these 27 chapters presented in this book adequately reflect these

topics.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Heinonen, J. and Pettersson, F. (2007). Job-shop Scheduling and Visibility Studies with a Hybrid ACO

Algorithm, Swarm Intelligence, Focus on Ant and Particle Swarm Optimization, FelixT.S.Chan and Manoj

KumarTiwari (Ed.), ISBN: 978-3-902613-09-7, InTech, Available from:

http://www.intechopen.com/books/swarm_intelligence_focus_on_ant_and_particle_swarm_optimization/job-

shop_scheduling_and_visibility_studies_with_a_hybrid_aco_algorithm

© 2007 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the

Creative Commons Attribution-NonCommercial-ShareAlike-3.0 License, which permits use,

distribution and reproduction for non-commercial purposes, provided the original is properly cited

and derivative works building on this content are distributed under the same license.

