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Abstract

Big data requires a flexible system for data management and curation which has to be
intuitive, and it should also be able to execute non-linear analysis pipelines suitable to
handle with the nature of big data. This is certainly true for medical images where the
amount of  data grows exponentially  every year  and the nature of  images rapidly
changes with technological advances and rapid genomic advances. In this chapter, we
describe a system that provides flexible management for medical images plus a wide
array of associated metadata, including clinical data, genomic data, and clinical trial
information. The system consists of open-source Content Management System (CMS)
that has a highly configurable workflow; has a single interface that can store, manage,
enable curation, and retrieve imaging-based studies; and can handle the requirement
for data auditing and project management. Furthermore, the system can be extended to
interact with all the modern big data analysis technologies.

Keywords: big data, data analysis, content management system, curation, 3D imag‐
ing, workflows, REST API

1. Introduction

Big data is the term applied for data sets that are large and complex, rendering traditional
analysis methods inadequate. ‘Large’ can be defined in many ways, including both the number
of discrete or atomic elements, but also, the actual size in terms of bytes can also be impor‐
tant [1]. A single image can be viewed as being one datum, but in other cases may be viewed
to have multiple data elements (i.e. each pixel). An image can be as small as 10s of bytes, but
typically is megabytes, but can be several orders of magnitude larger. Furthermore, most
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research requires many images, and usually further processing on each image must be done,
yielding an enormous amount of data to be managed. For example, generating filtered versions
of one 15 MB image can lead to several  GB depending on the filters that  been applied.
Additionally, when the information is combined with metadata like genomic information or
pathology imaging, the data increase exponentially in size [2–4].

Current popular non-medical imaging applications are as simple as determining if a certain
animal is present in a picture. In some cases, medical imaging applications can be as simple:
is there a cancer present in this mammogram? In most cases, though, the task is more complex:
is the texture of the liver indicating hepatic steatosis, or is the abnormality seen on this brain
MRI due to a high grade glioma, multiple sclerosis, a metastasis, or any of a number of other
causes. In some respects, the problem is similar, but other aspects are different. The stakes are
also much higher.

Medical image assessment nearly always requires other information about the patient-
demographic data as well as information about family members that might help with geneti‐
cally related diseases, or individual history of prior trauma or other disease. There are well-
developed ontologies for describing these various entities though these are rarely used in
routine clinical practice. Thus, as with other medical data mining efforts, collecting, trans‐
forming, and linking the medical record information to the images is a substantial and non-
trivial effort [5].

Finally, once one has the images and appropriate medical history collected, the actual proc‐
essing of the image data must begin. In many cases, multiple image types can be collected for
a part of the body, and ‘registering’ these with each other is essential, such that a given x, y, z
location in one image is the same tissue as in another image. Since most body tissues deform,
this transformation is non-trivial. And tracking the tissues through time is even more chal‐
lenging, particularly if the patient has had surgery or experienced other things that substan‐
tially changed their shape. Once the images are registered, one can then begin to apply more
sophisticated algorithms to identify the tissues and organs within the image, and once the
organs are known, one can then begin to try to determine the diagnosis.

One of the challenging tasks when dealing with big data when there are multiple associations,
like medical images and metadata originating from a variety of sources, is management and
curation [6]. Without proper organization, it is very challenging to extract meaningful results
[7]. Big data analytics based on well-organized and linked data sets plays a significant role in
aiding the exploration and discovery process as well as improving the delivery of care [8–10].

In this chapter, we describe a system we have constructed based on years of experience
attempting to perform the above analysis. We believe that this system has unique properties
that will serve as a basis for moving medical imaging solidly into the ‘big data’ world, including
flexible means to represent complex data, a highly scalable storage structure for data, graphical
workflows to allow users to efficiently operate on large data sets, and integration with GPU-
based grid computers that are critical to computing on large image sets [11].
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2. Unique requirements of medical image big data

2.1. Image data formats: DICOM, NIfTI, others

Most people are familiar with photographic standards for image files—JPEG, TIFF, PNG, and
the like. These are designed to serve the needs of general photography, including support for
RGB colour scheme, compression that saves space at the cost of perfect fidelity, and a simple
header describing some of the characteristics of the photograph and camera.

Medical images share some similarity with photographic images—indeed in some cases, such
as endoscopy, ophthalmology, or skin photographs use standard photographic methods.
Pathology images are similar, but typically have much larger number of pixels—often billions
of pixels for an image of an entire slide. Radiologic images are unique in that most are grey
scale only and with a larger number of grey scales (16 bits or 65,536 grey levels) than photo‐
graphic images. The result was that standards for photographic images did not support the
needs of the early digital imaging modalities (which were mostly in radiology). The American
College of Radiology (ACR) and the National Electrical Manufacturers Association (NEMA)
recognized the increasing need for standards for exchanging digital images and developed the
ACR-NEMA standard for medical images, which was released in 1985. The third version of
ACR-NEMA dropped previously described hardware connection methods and focused on an
information model, and exchange method that was generalized to non-radiology images and
was designed to be used over standard networks. This third version was therefore renamed
from ‘ACR-NEMA’ to ‘DICOM’ (Digital Communications in Medicine) [12]. The DICOM
standard continues to evolve to support new imaging modalities and capabilities, and also
new technical capabilities (e.g. RESTful interfaces). For many years, DICOM defined each
image as its own ‘object’ and thus its own file. While was fine for radiographics images, it was
more problematic for multi-slice image techniques like CT and MR that naturally produce
images that are effectively three dimensional (3D). DICOM does support 3D image formats
and also image annotation methods, but adoption of these has been slow, leading to use of
other file formats for imaging research [13].

An early popular file format for medical image research was the Analyze© file format which
had one small (384 bytes) header file, and a separate file which consisted of only image pixel
data. The header proved too limiting for some uses, specifically its representation of image
orientation, and was extended, resulting in the Neuroimaging Informatics Technology
Initiative (NIfTI) file format (see http://brainder.org/2012/09/23/the-nifti-file-format/). There
are other formats including Nearly Raw Raster Data (NRRD) (see http://teem.sourceforge.net/
nrrd/index.html) that are also used in medical image research.

In most cases, each file format is able to represent the relevant information fairly well. There
are many tools to convert between the various formats. The main advantage of these alternative
formats is that a complete three or more dimensional data set is stored in a single file, compared
to the popular 2D DICOM option which can requires many 10s to 1000s of files. Which file is
selected is largely driven by the applications one expects to use, and the file formats they
support.
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2.2. Connecting images with image-specific metadata and other data

One of the major concerns when managing big data originating from medical practice is the
data privacy. Data privacy is a critical issue for all people, but in most jurisdictions, there are
specific requirements for how medical and health information must be kept private. One of
the early comprehensive regulations on medical data privacy was the Health Insurance
Portability and Accountability Act (HIPAA) [14]. It specified what data were considered
private and could not be exposed without patient consent, and penalties for when such data
breeches occurred. In the case of textual medical data, even a casual reader can quickly
determine if protected Health Information (PHI) is within a document.

Medical images are more difficult to assess because DICOM images contain tags as part of the
header that are populated with PHI during the normal course of an imaging examination.
Releasing such medical images with that information in tact without patient consent would
represent a breech of HIPAA. Removing these tags, and inserting some other identifier such
as for research is straightforward to do in most cases. However, in some cases, vendors may
also place PHI in non-standard locations of the header or may include it as part of the pixel
information in the image. In some cases, this is done for compatibility with older software. In
other cases, hospitals have been known to put PHI in fields that were designated for other
purposes, to address their unique workflow needs. It is these exceptional cases that make de-
identification more challenging. Fortunately, putting PHI into non-standard locations is
declining as awareness of these problems is becoming better known.

Medical images may also contain PHI that is ‘burned into’ pixels—that is, the displayed image
shows the PHI. While easily recognized by humans, it is more difficult for computers to
recognize such PHI. One may use Optical Character Recognition algorithms, but they may
have false negatives and positives due to the actual image contents looking like a character, or
obscuring a character. Fortunately, the practice of burning in PHI is also declining.

When study of big data is conducted for clinical purposes, it may be appropriate to perform
the research directly on medical records with the true medical record identifiers. This avoids
the need for de-identification, which can be slow and expensive for some types of data. The
medical record number usually makes it easy to tie various pieces of information for a subject
together. However, having PHI directly accessible by computer systems beyond the Electronic
Health Record (EHR) [15,16] represents increased risk of HIPAA or equivalent violation and
therefore is discouraged.

Working on de-identified data substantially reduces the risk of releasing PHI during the course
of big data research. This means that the de-identification step must be tailored for the type of
data and that the de-identification also be coordinated so that the same study identifier is used.
While not complex in concept, implementation can be more difficult if there is a strong need
for rapid data access. The challenge is that when a new patient arrives in an emergency room,
their true identity may not be known for some time, but medical tests and notes will be
generated with a ‘temporary ID’. How and when that temporary ID is changed to the final ID
can be very different, and in some cases, a single temporary ID cannot be used in all systems.
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Misidentified patients (e.g. same name) and correction of their data are similar problems. And
cases where there is more than one subject (e.g. the foetus in a mother) also represent challenges
that are manageable but must be considered up front. Obstetrical ultrasound images are nearly
always of the foetus, but usually are collected under the identifier of the mother. In the case
of twins, it can be challenging to know which foetus is seen on a given image, and such a
notation is usually done by annotating the image (burning into pixels) rather than in a defined
tag that is reliably computed.

2.3. Computational environment

Currently, there is no standard or expected computational environment used for image and
metadata analysis. Researchers utilize a variety of operating systems, programming languag‐
es, and libraries (and versions of libraries). Furthermore, the tools can be deployed as command
line executable, GUIs or more recently as web-based applications. There is a plethora of
computational tools available but setting them up and maintaining them poses challenges.
Setting up the appropriate environment is challenging since the user has to anticipate all the
specific libraries and parameters that will be used during later computational steps. This is
made more challenging because not all tools are available on any single platform. There is also
an expectation of sharing data and algorithms, which also complicates long-term support of a
platform.

Computation on medical images is very different from computation on other data types [17].
The fundamental unit in a medical image is the pixel, and the operations are those used in
image processing elsewhere: filtering, artefact correction, registration/alignment, and seg‐
mentation to name a few [18]. Medical image analysis techniques are aimed in quantification
of disease, image enhancement, detection of changes, or more generally dealing with medical
image based problems originating from different imaging modalities utilizing digital image
analysis techniques [18,19]. While these computations are unique to imaging, later steps that
include classification and characterization or more generally analytical methods are similar to
other big data efforts originating from different fields [20].

3. PESSCARA design

We have developed the Platform to Enable Sharing of Scientific Computing Algorithms and
Research Assets (PESSCARA) to address the challenges we see with big data in medical
imaging. The central component of PESSCARA is a Content Management System (CMS) that
stores image data and metadata as objects. The CMS we chose is TACTIC (http://www.south‐
pawtech.com), an open-source CMS with a Python API to access objects [21]. The Python API
allows efficient development and testing of image processing routines on large sets of image
objects [22]. TACTIC manages both project data and files, with project data stored in the
database and files stored in the file system. TACTIC can store any type of data and image data
format, including file formats commonly used in medical research, such as Analyze, NRRD,
NifTI, and DICOM. The properties assigned to the image objects can be used to select the subset
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of images to be processed, define the way that images are processed, and to capture some or
all of the results of processing. TACTIC also has a workflow engine that can execute a series
of graphically defined steps. Finally, it has project management facilities that can address
planning, data auditing, and other aspects of project management.

To assist communication with the computational environment, we developed a Python library
(tiPY) that facilitates input and output from TACTIC (Figure 1). PESSCARA is the first system
that provides the research community with an environment suitable to deal with the require‐
ments of medical image analysis while supporting the spirit of open and accountable research.

Figure 1. PESSCARA architecture. Most image analysis systems consist only of a data archive. PESSCARA includes
this and allows for both federated and local data archives. PESSCARA also has an Asset Manager that allows flexible
tagging of data, easy browsing of the data, and a workflow engine for processing data based on tags. Workflows and
components of workflows are created in the development environment, and workflows are also executed in that same
environment.
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3.1. Databases vs content management

Databases are widely used for storing data. Although the main technology behind a CMS is
essentially a database, in a CMS the content is not just a retrievable object, but also is an asset
with properties. Such an object can be examined and displayed based on its properties, and
based on those properties, it can be related to any other asset in the CMS. These additional
capabilities make a CMS an excellent tool to use for big data research, since such data are
complex and require metadata in order to assure proper processing and interpretation, thus
leading to meaningful information [6,23].

PESSCARA is designed to link image and associated metadata with the computational
environment. It allows users to focus on the content rather than database tables and gives great
flexibility in assigning meaning to the various assets. Content in our example (discussed later
in this chapter) consists of image data, metadata, biomarker information, notes, and tags.

TACTIC tracks the content creation process, which in the case of medical image research means
the original acquired image, and all of its subsequent processing steps until the final measured
version. TACTIC allows tracking of data check-in and checkout by providing a mechanism to
identify changes; it also employs a versioning system to record the history of the changes to
specific content. It also includes user logins and authentication, allowing tracking of who
performed certain steps and when. Our adaptation of TACTIC for medical image research
purposes was straightforward because medical images are digital content.

PESSCARA has a very flexible data-handling schema (Figure 2) that can easily address the
heterogeneous data that are a part of ‘big data’, so it can adapt as new requirements emerge.
It is easy to add other components to this schema to address other needs, for instance when
genomic data need to be processed, rather than simply included as data.

Figure 2. Data-handling schema. PESSCARA allows tags to be created for any object of group of objects. We establish‐
ed the basic organization of PESSCARA to have consistent tags at the Subject, Exam, Series, and Image level. There is
also a ‘study’ level tag that equates to the institutional research board identifier, or essentially the project number. Each
of these has a context that has permitted methods and workflows that can be applied.
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All the data are available through a Representational State (REST) API designed to scale based
on the requests issued from the analytical applications. Some of this is a part of TACTIC,
though more of the management of computational tasks is through other components like
sergeant and the grid engine (see Figure 1).

3.2. Workflow

When dealing with a large number of assets (data and metadata of any kind), it is crucial to
have a mechanism that can automate and efficiently execute a specific series of actions on the
data. In general, the workflows in medical imaging research tend to be linear and simple to
implement. For example, a data importation/curation task typically begins by classifying the
incoming image data based on their type, converting the data to a format suitable for subse‐
quent analyses, placing new images on a queue for human quality control where the system
then displays selected images and enables the reviewer to approve or reject them.

PESSCARA supports such workflows, which may be developed either as Python code, or
developed graphically using the provided tool (Figure 3). PESSCARA users may design
workflows and set the events that trigger workflows and define the users who are allowed to
perform human steps. Tasks within the workflow can be calls to REST APIs, Python code, or
notifications.

The workflows can be initialized based on events that can be either automated or manually
controlled by a user or a prespecified group.

Figure 3. Snapshot of the pipeline creation tool. The pipeline workflow is used to depict the steps that a particular ser‐
ies need to undergo.
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3.3. Grid computing

PESSCARA currently leverages the power of grid computing utilizing sergeant (https://
github.com/potis/sergeant), which is an open-source tool that enables the deployment of code
as web apps. This enables easy scalability, since the web app can be hosted on a cloud-based
infrastructure design. Sergeant offers the ability to interact with each web app through a REST
API, making it easier for people to utilize an application without the hustle of setting up and
configuring binaries or executable. In the case of PESSCARA, a ‘step’ can be a call to sergeant,
which in turn, could launch a grid job that might result in the processing of a large group of
images utilizing the grid engine. This is, in fact, a common thing for us to do in our research
efforts.

Cloud computing has been emerging as a good way to address computational challenges in
modern big data research. This is because it is a way that a small research laboratory can access
large computers, and the pay-as-you-go model provides flexibility for any size user. Cloud
computing also addresses one of the challenges relating to transferring and sharing data,
because data sets and analysis results held in the cloud can be shared with others just by
providing credentials so they may also access the instance in the cloud.

The PESSCARA design allows us to leverage such cloud-computing resources. PESSCARA is
engineered to support architectures such as MapReduce, Spark, and Storm [24–26] that are
popular constructs in cloud computing. These technologies enable researchers to utilize data
for fast analysis, with the end goal to translate scientific discovery into applications for clinical
settings.

3.4. Multi-site synchronization

Content synchronization is an important requirement for multi-centre clinical trials and
settings with multiple collaborators. TACTIC offers a powerful mechanism to synchronize
data among servers hosting the databases and users, ensuring that changes are always up to
date and that the correct version of the content is used. Encryption and decryption through a
public- and private-key mechanism are used for all data transfers.

This is a particularly important feature for scientists, since ‘data’ include not just the raw data,
but also all the metadata (which can be at least as laborious to create) and processed versions
of data. PESSCARA achieves this via the content management system using the object
capabilities, meaning that the visibility of what is shared and synchronized is very flexible and
straightforward to administer.

We decided NOT to use this synchronization for algorithms, primarily because other tools
such as github (www.github.com) already provide this capability, and specialized capabilities
like merging of code—something that is not as easily done with a CMS, unless a special module
was written for ‘code’ objects. Since github has already done this, we preferred to let users
select the tool of their choice for code sharing and management.

PESSCARA: An Example Infrastructure for Big Data Research
http://dx.doi.org/10.5772/63815

105



4. Using PESSCARA

4.1. Data importation, curation, editing

PESSCARA incorporates dcm4che (http://www.dcm4che.org/) for DICOM connectivity and
the Clinical Trial Processor (CTP) (https://www.rsna.org/ctp.aspx) for DICOM de-identifica‐
tion. The dcm4che module is an open-source Java library used as the DICOM receiver. The
receiver can receive the images from a picture archiving and communications system or
directly from the particular imaging modality.

Subsequently, CTP is used to de-identify the data for compliance with HIPAA. Tags that
should be removed from the DICOM object are configured through a lookup table. In addition,
CTP provides a log of all actions, which meets the logging requirements in 21 CFR part 11.
During the de-identification process, a table with the correspondence between patient
identifier and research identifier is kept and securely maintained. This table is useful for adding
information to the patient dataset, such as tags from the pathology reports and survival
information. In addition, when data corresponding to follow-up studies of patients who have
been de-identified are included, CTP will assign the same research identifiers. Although CTP
is capable of removing PHI, it can appear in many unexpected locations (e.g. burned-in pixel
values). For this reason, PESSCARA is typically configured to place imported images in a
‘quarantine’ zone until the assigned user reviews the data. In our case, an important step of
image importation is converting images from DICOM to NIfTI because most image processing
packages do not deal well with native DICOM files. The tiPY library includes a routine to
perform this conversion.

Once data have been imported into TACTIC and some initial workflows have been completed
(i.e. for image series classification, or querying databases to gather additional information such
as genomics or survival information), TACTIC workflow places the object on a queue for data
quality inspection. At this point, information missing can be added manually, and poor quality
items can be censored.

The project management element of PESCARA enables project managers to monitor resource
usage and progress. This can allow tracking of resources used to support accurate billing and
know individual effort. One can also assign total expected counts and thus calculate fractional
completion.

To ensure data security, PESSCARA regularly backs up all parameter files used by CTP,
dcm4che, the virtual machine running TACTIC, and the file storage area. This exists as just
another workflow and thus is flexible in what is included, frequency, and how it is performed.

4.2. Creating image processing modules/dockers

Distribution of image analysis algorithms, particularly when developed in small research
laboratories, is challenging since currently there is not standardized image analysis develop‐
ment environment. When the user employs the PESSCARA infrastructure, they are working
with a standardized environment that usually enables easy deployment of the algorithm.
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However, for algorithms that are not easy to be implemented in the PESSCARA environment
(i.e. the LINUX host running PESSCARA), there is support for docker containers (http://
www.docker.com) to perform ‘steps’ of a workflow.

Just as sergeant is able to ‘request’ execution of steps through a REST API that might result in
submission of jobs to a grid engine, it is possible to ‘request’ the instantiation of a docker
container that could perform a given step. The benefit of a docker container is that the execution
environment is defined by the docker creator and is allowed to be different from the host
environment. Virtual machines also have this benefit, but virtual machines require much more
computer resource to execute. A disadvantage is that currently Microsoft Windows and Apple
OS X applications are not supported; though, Windows support has been announced.

For development purposes, PESSCARA supports a majority of tools used in the image
processing community, including ITK, Slicer3D, FSL, and others. However, for algorithm
development, Python is the preferred language for PESSCARA. Python is a very approachable,
readable language that includes a number of powerful tools including Numpy, Matplotlib,
scikit-learn, nipype, RPy, and pandas. The Jupyter Notebook development framework extends
Python and is at the core of a substantial shift in the methodology of science, enabling iteration,
documentation, and sharing of science. This philosophy is in perfect alignment with PESS‐
CARA. It promotes reproducible research (i.e. provenance tracking of the entire history from
input data, algorithms used, intermediate calculations, and results). Its interactive capabilities
means that code that code already run can have its results used rather than re-running the
code.

While Python is the ‘first language’ of PESSCARA, there are many libraries and developers
that depend on other languages, including non-Python tools such as ITK, FSL, ANTs, Slicer,
and others. Furthermore, Jupyter enables development in many different languages including
R, C++, and Julia. [27].

A Jupyter Notebook (which includes code, data, and results) can be easily shared by simply
giving the URL and login credentials to your audience. In addition, the Results/Output and
comments (including LaTex and Markdown) can be integrated into the Notebook to document
what has been done in a long-term and shareable way.

The basic model for such ‘shared science’ is import/export. The user often starts by importing
other investigators’ Notebooks, but they may also start their own. They can then develop in
their own ‘sandbox’, and when they feel they have something to share, they can ‘export’ it,
which makes it publicly visible and available to be imported by others. Exporting the code in
conventional Python format is also supported. They can also save all code and results as HTML
for publishing on the web, or as PDF as a ‘final’ document to be saved in an electronic
laboratory notebook [28].

Based on this architecture, the algorithms can be utilized by a variety of cloud services and
important characteristic to consider when large amount of data are involved.
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4.3. Creating and executing workflows

As noted above, workflow is critical in modern science. One must be able to execute the
research process consistently. When dealing with ‘big data’, efficiency is also essential. In the
following section, we show a multi-centre implementation of a workflow created with
PESSCARA (Figure 4). The application will be aimed at developing imaging biomarkers for
differentiating between progression and pseudoprogressions in case of glioblastoma multi‐
forme (a type of malignant brain tumour) using large data sets and then applying the findings
from a large data set to a live clinical trial and ultimately routine clinical practice.

We see PESSCARA having two configurations: one for development and one for clinical trials
or practice. The development configuration includes the CMS system with the data used for
development as well as a large batch-oriented computational environment. Once the code and
the workflows have been established, the clinical configuration is created containing only the
workflows and the computational environed to support them.

Following is an example of how the two configurations of PESSCARA can work.

Figure 4. Translation of workflows created with PESSCARA for a multi-centre set-up. Each of n Centers collects image
data and sends via CTP software. The same CTP software also acts as a receiver at the Central Analysis Lab, where
CTP sends it to PESSCARA for analysis. We expect there would be a separate instance of PESSCARA for a clinical trial
to minimize the chance that a developer would alter data or impact performance.

Researchers from the participating institutions can use the PESSCARA development config‐
uration to develop the image analysis algorithms as well as the workflows necessary to
compute the image-based biomarker. Typically, data from multiple centres are used for
analysis. Both development and clinical trial configurations will typically have an input
process where data are reviewed for quality and then stored. In the case shown in Figure 5,
we imagine that Center 3 is responsible for curating the data, and after that, Center 2 will
perform visual QC of image quality and automated image segmentation. Center 3 then reviews
Center 2’s work, and Center 1 is notified that data analysis is complete. In the development
configuration, there is a loop where Center 1 along with other centres may refine the analysis,
and further computational models/biomarkers are tested. When the workflow is completed
and the supporting web app established the PESSCARA, clinical trial configuration is created.
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Figure 5. Example workflow. In this case, images are first identified by the Series Classifier. Once they are labelled,
Data Curation is performed, in this example at a remote centre (Center 3). Then, human-assisted segmentation is per‐
formed, and biomarkers and then computed. This is again reviewed by a human, and if acceptable, the measurements
are sent to the central data collection.

The clinical trial configuration is focused on efficient calculation of a biomarker developed via
the above mechanism, and in some cases, it also provides a mechanism for immediate delivery
of the biomarker result. As with development, when a subject has been identified in Center 1
as suitable for the study, it is forwarded to the PESSCARA DICOM receiver set-up for this
study. The dataset PHI are de-identified through use of the CTP functionality and a precon‐
figured CTP configuration file. All the received files are placed in a folder, where they are
‘ingested’. The metadata are also forwarded to the system utilizing the tiPY library. A
configuration file exists in the receiving pool to assign the proper tags to the data to be ingested,
such as institutional review board number, data type, and project name. The ingesting process
will create a new entry inside TACTIC or will update the information if the data already exist.
Once the data have been injected, a Series workflow is triggered. The first step of the workflow
is a classifier step, which routes the data for a specific study to the right pipeline—for instance,
that an image series designed to measure perfusion is sent to an algorithm that calculates
perfusion. Subsequently, DICOM field tags are extracted and a normalized series description
is assigned to each object (e.g. ‘Axial’, ‘T1’, and ‘Post-Contrast’ might all be assigned to an axial
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postcontrast T1 image). If the classifier finds all the required series (T1 weighted postcontrast
and perfusion in this case), a notification is send to the centre responsible for data curation).
Otherwise, a notification/report of the data missing is send to the predesigned contact person
in the originating centre.

Once data curation is finished, a notification is sent to centre 2 where the tumour segmentation
is performed. The Image analyst can get the data either through the web page or through a
link, to perform the tumour segmentation task. Once this is completed, the step(s) responsible
for perfusion analysis computation as well as the registration of the tumour ROI to the
perfusion image is executed. Once the data are reviewed and found acceptable, the imaging
biomarkers extracted from perfusion are assigned to the appropriate tags for that examination.
Once this step in completed, the data metadata and all analytics extracted are available for
analysis utilizing any kind of ‘big data’ analysis methodology. This may be simply stored for
later group analysis or may be made available for immediate clinical decision-making. All the
data and metadata created during the execution of the workflow are backed up to a different
server for protection over data loss.

4.4. Current status and next steps

Currently, the system is under development with further optimization needed to enhance its
security features. Additionally, further resources are needed to provide the users with more
resources for faster testing and support for algorithms with higher computational require‐
ments. The system has been undergoing rapid development—the documentation and training
resources have not kept up.

We hope that the next phases will see further connections of PESSCARA with non-imaging
data repositories; improvements in the workflow engine enable a wider variety of algorithms
on a wider variety of platforms and greater connections to clinical systems.

We do intend to provide the basic system as open access tools through github so researchers
will be able to set the same environment locally with more resources. We also hope to provide
a simple demonstration environment (http://www.PESSCARA.org) that will allow prospec‐
tive users to test the PESSCARA environment.

5. Conclusion

Big data techniques will lead to an improved model of healthcare delivery with the potential
to achieve better clinical outcomes and increased efficiency. However, appropriate infrastruc‐
ture is needed to enable the data collection and curation especially in case of heterogeneous
(with respect to data) environments such as healthcare.

PESSCARA aims to minimize the requirements for data downloading and transfer, since data
and metadata are hosted within the same infrastructure. Code development also can be
performed through a web interface making the system easy to use for inexperienced users.
Perhaps even more important is that researchers can share their algorithms—the analysis

Big Data on Real-World Applications110



performed, and the subsequent results—which is a significant step toward reproducible
research. When big data originate from multimodal data that have complex connections to
other data, the use of a CMS is a must. PESSCARA is and will continue to meet the unique
demands of big data research in medical imaging by leveraging a good CMS that is effectively
connected to powerful computational resources, and an algorithm development environment
designed for code and result sharing. ‘Shared Science’ is the future of science, and PESSCARA
is one tool for medical imaging to participate in this new world of big data and shared science.
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