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Abstract

Protein adsorption on surfaces occurs shortly after scaffold insertion. This process is of
pivotal  importance  to  achieve  therapeutic  success  in  tissue  engineering  (TE),  and
favorable proteins should be adsorbed at the interface without unfolding to preserve
their structure and function. Protein misfolding at the interface is a common phenom‐
enon, which can impair cell adhesion and scaffold colonization. Many efforts have been
done to improve scaffold biocompatibility by ameliorating protein adsorption, but with
poor results. In the present chapter, we propose the use of a novel class of molecules,
aptamers, to improve scaffold biocompatibility. Aptamers are small, single stranded
oligonucleotides, which specifically bind to a target molecule: they work as antibod‐
ies, but without many of the drawbacks associated to the use of antibodies. We propose
to immobilize aptamers on scaffolds to retain specific proteins, acting as docking points
to guide cell activity. In particular, we show the results obtained by enriching different
polymeric scaffolds with aptamers against human fibronectin, a naturally abundant
protein in tissues, which plays a pivotal role in cell adhesion. We demonstrate that
scaffold enrichment with aptamers lead to a better colonization of the substrate from
cells. The results we obtained pave the way to the possibility of further investigating
the role of aptamers as useful molecules to improve scaffold biocompatibility in the
contest of tissue engineering.

Keywords: aptamers, biocompatibility, fibronectin, scaffold, SELEX, tissue engineer‐
ing
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1. Introduction

Regenerative medicine (RM) is a therapeutic approach that aims to restore structure and function
of damaged tissues and organs, in particular to find a solution for those that become perma‐
nently damaged and untreatable [1].

RM can be potentially applied to different tissues [2], and one of the most promising fields is
that related to bone [3, 4].

Tissue regeneration is a complex task that encompasses completely restoring the lost struc‐
ture, including its micro-architecture and consequently its functionality. As for bone regener‐
ation, optimal healing is achieved when certain prerequisites are met, namely, osteoinduction,
osteoconduction, osteogenesis, and mechanical stability [5].

Osteoinduction is the process that allows the recruitment and stimulation of immature pre-
osteoblastic cells to mature osteoblasts and to produce new bone [6]. This phenomenon is
regulated by a class of molecules known as inductive agents, mainly represented by bone
morphogenetic proteins (BMPs) [3]. As a consequence of osteoinduction, osteogenesis can be
achieved. Osteogenesis is carried out by osteoblasts, and consists in the formation of new bone.
To improve the outcome of bone regeneration, biomaterials are often used to fill the gaps
created by lost tissue. Such biomaterials must be osteoconductive, i.e., capable of supporting
bone deposition on their surface [6]. Finally, mechanical stability of the healing site is the fourth
factor to consider in order to reach regeneration of sound bone and avoid formation of fibrous
tissue [5].

RM for bone tissue currently includes four approaches: molecular, cellular, use of bone
substitutes, and tissue engineering (TE).

Progresses in molecular biology and a deeper knowledge of the mechanisms of fracture healing
at a molecular level have allowed for the identification of a large number of key molecules that
can be used locally or systematically to enhance bone repair [7]. Autologous cells can be an
alternative or complementary choice for healing bone fracture. Mesenchymal stem cells
(MSCs) have been proposed as a useful in regenerative interventions. MSCs can be collected
from bone marrow [8], from peripheral blood [9], or from adipose tissue [10, 11]. Further
possibilities to harvest MSCs in dental applications could be other types of stem cells direct‐
ly isolated from oral tissues such as the dental pulp (DPSCs) or the periodontal ligament
(PDLSCs) [12–14]. As mentioned before, biomaterials have also been proposed as a tool to
provide a substrate for new bone cells to deposit new bone, acting as gap fillers and osteo‐
conductive scaffold. A wide number of synthetic bone substitutes are now available includ‐
ing hydroxyapatite (HA), β-tricalcium phosphate (β-TCP), and calcium-phosphate cements,
glass ceramics, and biocompatible metals [15, 16].

These different approaches are often combined and the investigation of the optimal condi‐
tions and tools to regenerate a tissue created a field called tissue engineering.
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1.1. Tissue engineering

Tissue engineering (TE) was first defined in 1988 at the first TE symposium in California, as
“an interdisciplinary field of research that applies the principles of engineering and the life sciences
towards the development of biological substitutes that restore, maintain and improve tissue function”.
It has been demonstrated that TE offers great potential in clinical applications [17, 18], and, in
particular, bone tissue engineering seems to harbor a great potential. At present, bioabsorba‐
ble scaffolds combined with bone-marrow aspirate and osteoinductive factors (BMPs) have
yielded promising results [16], and, more recently, the applicability of a β-TCP scaffold seeded
with autogenous bone-marrow cells for bone reconstruction has been shown in a sheep
model [19]. Moreover, TE has been used to improve fracture healing and to augment the bone-
prosthesis interface in arthroplasty, with promising results and safety [20, 21].

1.1.1. Scaffold

Scaffolds are a central concept in TE. They are 3D porous structures designed to promote cell
adhesion, proliferation, and extracellular matrix deposition in order to allow for the restora‐
tion of damaged tissue [22].

Scaffolds can be divided into biological and synthetic materials. Biological scaffolds are
derived from human and animal tissues, whereas synthetic ones are made of artificial
biomaterials [23]. As materials of biological origin, although often possessing favorable
characteristics, suffer from scarce availability, safety concerns and sometimes possibility of
inflammatory or even immune responses, synthetic biomaterials have been the center of
increasing attention. The state of art on scaffolds has evolved over the last years and in‐
volves the employment of natural or synthetic polymers. Collagen is the most abundant
polymer in tissues and, as a consequence, among the most investigated material for the
production of natural-derived scaffolds [24–26]. Together with collagen, chitosan, alginate,
and cellulose are promising biomaterial for bone tissue engineering applications [27–30].
Among the synthetic polymers used for scaffold fabrication, polylactic-co-glycolic acid (PLGA)
and polycaprolactone (PCL) are probably the most studied [31]. However, their characteris‐
tics for TE applications are still suboptimal compared with those of natural polymers [4].
Alternatively to the use of polymers, calcium phosphate, apatite forms, and bioglasses find
wide application in bone engineering [32]. Regardless of their chemistry, the main feature
scaffolds should possess is biocompatibility.

2. Biocompatibility

The concept of biocompatibility is widely used within biomaterial science, but it is still
uncertain what it really means. When it was first used in the early 1940s, a material was
considered biocompatible if it could be placed in contact with tissues without altering them:
a biocompatible material was conceived to be ideally inert. However, as research progressive‐
ly revealed that a true biological inertia is not possible, because any thing that enters in contact
with a tissue induces a non-self response from the host immune system, the concept of
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biocompatibility had to be necessarily reviewed. For years materials were considered
biocompatible if they were non-toxic, non-immunogenic, non-carcinogenic, non-irritant, and
so on against human body. During the 1980s, new evidences brought about another change of
view and lead to a more modern definition of biocompatibility. First, it was clear that materials
always react with tissues and that they are not inert. Second, it was shown that biological
responses to biomaterial are different across tissues, and that the tissue itself affects material
biocompatibility. Third, the scientific community realized that some clinical situation require
that materials get degraded and removed from the host after accomplishing their function [33].
Accordingly to these concepts, a widely accepted definition of biocompatibility was outlined
at the Consensus Conference in Boston in 1987 as follows: “Biocompatibility refers to the ability
of a material to perform with an appropriate host response in a specific situation” [34].

In conclusion, focusing on this definition, a material is inserted into a tissue to perform a
function, not simply lie inertly, and tissue responses to the material have to be adequate to the
specific desired applications [35].

Biocompatibility as defined above is a pivotal concept for TE and scaffolds fabrication. A
scaffold can be considered for in vivo application if it has been proven to be biocompatible in
vitro, i.e., if it can support cell adhesion and proliferation. Cellular responses, in turn, heavi‐
ly depend on protein adsorption on the scaffold surface. Protein adsorption on materials is a
spontaneous phenomenon that can be accompanied by protein denaturation, i.e., alteration of
protein conformation and function [36]. Protein denaturation on to surfaces may occur for
different reasons, mainly due to the chemical and physical characteristics of the material, and
for that, a series of methods to enhance the biocompatibility of the surfaces have been
developed.

2.1. Modern approaches to enhance scaffold biocompatibility

It has been solidly established that shortly after implantation biomaterials are covered with a
thin layer of host proteins, and it is believed that the state of adsorbed proteins play a key role
in scaffold colonization from cells [37]. Therefore, controlling the amount, composition and
conformation of adsorbed proteins is a viable approach to obtain a highly biocompatible
surface [38]. In recent years, several strategies have been developed to guide protein adsorp‐
tion and thus to improve cell adhesion, including immobilizing short fragment or proteins on
scaffolds, or chemically and physically modifying scaffold surfaces.

2.1.1. Chemical and physical treatments

It has been demonstrated that some proteins bind preferentially certain chemical groups. For
example it has been shown that fibrinogen binds methyl (–CH3) functionalized surfaces, but
not carboxy (–COOH) ones, whereas the hydroxy (–OH) groups enhance the affinity for
albumin over fibrinogen [39–41]. Therefore, the first strategy developed to control protein
adsorption on scaffolds was enriching surfaces with functional groups, by combining chemical
and physical treatments.
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Chemical graft modification entails surface activation through different methods, such as
chemical reactions or UV, plasma, and ozone exposure [42], followed by covalent grafting of
the desired functional groups. Chemical grafting has been used to improve hemocompatibil‐
ity of vascular grafts by enriching them with heparin and polyethylene glycol (PEG or PEO).
The drawbacks of this approach include the loss of protein mobility at the material surface,
because they are covalently bound and the possible release of toxic monomers [38].

To overcome issues associated to chemical graft deposition, self-assembled monolayers
(SAMs) were developed. SAMs was widely used to study in vivo responses of implanted
biomaterials in the past, although nowadays is limited to gold- and silver-coated surfaces [38,
43, 44].

An increasingly popular method to graft surfaces with functional groups is plasma modifica‐
tion. Plasma is considered the fourth state of matter and it is obtained when gases are excited
by specific electromagnetic frequencies. Plasma modification is cheap and seems to be very
effective, but it is still being currently investigated for the development of biomedical devices,
including metals, polymers, and ceramics [38, 45].

2.1.2. Immobilization of RGD and other recognition sequences for integrins

One of the most recent approaches developed to enhance scaffold biocompatibility is the
surface immobilization of small peptides able to mimic proteins involved in cell adhesion, to
enrich scaffolds with docking points for cells (Ruoslahti, 1996). The best investigated peptide
is the arginine-glycine-aspartic acid (RGD) motif, an ubiquitous adhesive sequence found in
many ECM proteins responsible for their interaction with cellular integrin receptors [46].
Several groups have studied the in vitro ability of RGD and related motifs to improve osteoblast
adhesion, migration, and gene expression [47–49]. Moreover, coating titanium implants with
the RGD peptide has been shown to induce a direct activation of macrophages, osteoblasts,
and osteoclasts in rat tibia and femur and in dog femur [50–52].

However, Hennessy et al. enriched hyaluronic acid disks with RGD and observed poor cell
adhesion and inhibitory effects of the RGD binding domain, probably due to the fast adsorp‐
tion of fibronectin, vitronectin and fibrinogen within 30 min, which competed with RGD motifs
to bind integrins [53].

2.1.3. Surface coatings

The application of coatings that mimic the ECM could be an alternative method to improv‐
ing scaffold biocompatibility. In particular, coatings for bone biomaterials should promote the
creation of a suitable environment for osteoblast, osteoclasts, and progenitor cells, that promote
implant integration, by improving bone/implant contact (BIC) [46]. Coating titanium im‐
plants with collagen, which is the most abundant protein in bone tissue, supports in vitro
adhesion, migration, and differentiation of osteoblasts [54, 55]. Similarly, coatings of hydrox‐
yapatite-based scaffold with chondroitin sulfate (CS), wide spread in cancellous and cortical
bone, Hyaluronic acid (HA) or heparin have demonstrated to increase BMPs secretion and
consequently osteoblasts differentiation [56, 57].
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All the issues connected to the strategy described, prompted us to develop a new method to
enhance scaffold biocompatibility by using a novel class of molecules, called aptamers, to
improve protein adsorption and cell adhesion.

3. Aptamers

In the 1980s molecular virology revealed that small structured oligonucleotides could bind
proteins with high affinity and specificity. That evidence supported the use of oligonucleoti‐
des as specific receptors, which 10 years later lead to the discovery of aptamers [58]. The
word “aptamer” was first used in 1990 by Ellington and Szostak to describe small RNAs
molecules able to bind small organic dyes. It derives from the fusion of the Latin expression
“aptus”, which means “to fit”, and the Greek word “meros”, which means “part” [59]. Since
then, aptamers have been defined as short oligonucleotides that by adopting specific 3D
conformations are able to bind specific and selected targets [60].

Aptamers are mostly short single-stranded or double-stranded DNA or RNA oligonucleoti‐
des, usually 20–80 bp long and 6–30 kDa heavy. Aptamers are constituted of a random
sequence region at center, flanked by constant designed primer binding sites and the 3′ and
5′ ends. The sequence region in the center is necessary for target recognition (Figure 1), which
occurs after aptamer 3D adaptation. In this phenomenon intermolecular interactions, such as
Van der Waals forces, hydrogen and electrostatic interactions, stabilize the bond between
aptamers and their ligands [61, 62]. The aptamers-ligands interactions are highly specific and
capable to discriminate among analogues, i.e., enantioselective aptamers have 12.000-fold
higher affinity for L-arginine than for D-arginine [63].

Aptamers are thought to be an excellent alternative to the use of monoclonal antibodies (mAB).
Compared with antibodies, aptamers overcome their issues and improve their clinical
applicability and suitability for industrialization. First of all, aptamers are low-immunogenic
and low-toxic molecules, and they are not directly recognized by the human immune system
as foreign agents [64–66]. Unlike antibodies, aptamers have a wider target range, they are
smaller so that they can easily penetrate into tissue barriers and cells [67]; moreover they can
also bind small ligands, such as ions and small molecules, which cannot be recognized by
antibodies [68]. Furthermore, aptamers are thermally stable, and can undergo repeated cycles
of denaturation/renaturation without damaging their binding efficiency. Finally, aptamer
production and eventually modification is cheaper, easier and faster than that of mAB [68].

The interest of research on aptamers is increasing, as shown by the publication rate on this
topic, which has exponentially grown in 25 years [61], leading to more than 5500 published
articles in the PubMed database including the term “aptamer” in January 2016. In spite of their
popularity, their clinical applications are still limited [62], and as of today only one aptamer-
based drug has been approved by the US Food and Drug Administration (FDA). Pfizer/Eyetech
launched Macugen, a RNA aptamer against VEGF (vascular endothelial growth factor) for the
treatment of wet age-related macular degeneration in 2004 [69]. Barriers to the commerciali‐
zation of aptamers are essentially two. The former is that some in vitro generated aptamers do
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not elicit a comparable in vivo comparable, whereas the latter is that the SELEX process is time-
consuming and not very efficient [62]. In spite of these issues, a recent market report project‐
ed the global aptamer market to $5.4 billion by 2019 [70].

Figure 1. Diagram representing aptamer 3D conformational rearrangement in the presence of the target to form aptam‐
er-target specific complex.

3.1. Aptamers generation

Aptamer selection requires two steps: upstream screening and downstream screening. The
upstream screening step identifies full-length aptamers through SELEX (Systematic Evolu‐
tion of Ligands by EXponential Enrichment), whereas the downstream step aims to isolate the
shortest oligonucleotide sequence required for target binding [61].

3.1.1. Upstream screening

In vitro selection or SELEX (Systematic Evolutions of Ligands by EXponential enrichment) is
the technique used to isolate aptamers, which was first described by Ellington and Gold in
1990 [59, 71].

Figure 2. Schematic representation of the SELEX process steps.
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The SELEX process consists of three steps, which are then repeated to screen for sequences
with higher affinity (Figure 2) [58]: (a) the preparation of an initial oligonucleotides pool
(library) is followed by (b) the selection of aptamer candidates and by (c) their amplification.

3.1.1.1. Library generation

The whole SELEX process starts with the generation of a synthetic oligonucleotides library,
which consists of a pool of ~1012 –1015 different nucleic acid (ssDNA or RNA) sequences,
theoretically able to bind any target molecule. Each sequence represents a possible aptamer
candidate and it possesses a central random region, ~25–30 bp long, flanked by two stand‐
ard primers at the 3′ and 5′ ends [61, 62].

Both ssDNA and RNA libraries can be created and divided in five types, on the basis of the
collected sequences. Standard libraries are the most common ones and contain random 20–60
bp long oligonucleotides. Structurally constrained libraries contain oligonucleotides with
stable regions, which help aptamers to fold according to a certain secondary structure.
Libraries based on a known sequence are constructed by inserting known sequences in the
central part of the oligonucleotide. Finally, libraries based on genomic sequences (genomic
SELEX) are created by digesting genomic DNA, to find proteins capable to bind it [72].

3.1.1.2. Binding and separation

Once the library is generated, it is incubated with the target. Some of the oligonucleotides in
the pool recognize the target and are then considered aptamers (partitioning), whereas
unbound sequences are filtered out from the solution (elution) [61].

Several methods are used to discriminate aptamers from other oligonucleotides. The SELEX
approach initially employed by Gold and co-workers was based on a nitrocellulose mem‐
brane where the T4 DNA polymerase was immobilized [71]. Nowadays, the use of a nitrocel‐
lulose membrane is quite out of order because it has some limitations, such as the inability to
bind any molecules but proteins and the need to perform at least 12 selection rounds [73, 74].
Alternative strategies have then been developed based on common biochemistry techniques.
Chromatographic affinity or magnetic columns are often used for aptamer selection. In the
case of chromatographic affinity column, the immobile phase is composed of agarose beads
and the targets are immobilized through tags with proteins, such as glutathione S-transfer‐
ase (GST) or His-tag, or through chemical reaction with other molecules. Several aptamers
have been selected through this method, however it cannot be applied if the target lacks the
tags or the functional group requested for the coupling with the column [75–77]. On the other
hand, targets can be immobilized on the surface of magnetic beads and used in magnetic
columns, a strategy that is becoming more and more powerful due to the ease of separating
aptamers from other nucleotides only by a magnet [78–80]. Furthermore, capillary electro‐
phoresis has been proposed, because of its speed and high resolution. In fact a successful
selection of aptamers can be obtained in a few rounds, i.e., Bowser and co-workers selected
aptamer against neuropeptide Y and against human IgE in only four rounds [81, 82]. In
addition to the methods described above, aptamers against whole cells have been recently
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selected through the Cell-SELEX method. This technique is complex, because cells cannot be
immobilized, unlike target molecules; however, several research groups have been success‐
ful. Kobatake’s group identified the SBC3, a cell lung cancer cell line with a ssDNA aptam‐
ers [83]. Previously, Tan’s group selected a series of aptamers able to bind two types of ovarian
cancer cells [84], whereas Gold et al. isolated an aptamer for the U251 cell line derived from
glioblastomas just in 2003 [85].

Further strategies have been implemented to improve SELEX performance, although their
efficiency in selecting aptamers is not still clear.

3.1.1.3. Amplification

After the separation of aptamers from a specific nucleotides, they are amplified by PCR, in the
case of ssDNA aptamers, or by RT-PCR in the case of RNA aptamers. Consequently, prod‐
ucts of amplification are used as a new sub-library for the following selection round [62].

3.1.2. Downstream screening

After the upstream screening or SELEX, selected aptamers are generally ~80 bp long, but the
binding region is actually usually 10–15 nucleotides long [68, 86]. As a consequence, redun‐
dant and useless nucleotides can be deleted through a process called “aptamer truncation”.
Many strategies have been tested to minimize aptamer sequences without damaging its
binding ability. Most of these strategies are predictive and based on computational biology.
Giangrande et al. were able to truncate an RNA aptamer against PSMA (prostate-specific
membrane antigen) while preserving its binding activity and functionality, using structure
simulations and target docking algorithms. Partial fragmentation was used by Green et al. to
select the shortest sequence of DNA aptamers to bind PDGF (platelet-derived growth factor)
[87]. Wang and co-workers detected the non-essential region of the hPTK7 (anti-human protein
tyrosine kinase 7), hybridized them with complementary oligonucleotides probes [88]; the
same approach was used by Duan and co-workers to select the basic region of anti-CD133
aptamer as marker for cancer stem cells [89].

All the methods described for aptamer truncation are effective; however, their application is
hindered by their complexity, length, and cost [61].

3.2. Biomedical applications of aptamers

The similarities between aptamers and mABs lead to their applications in various field,
including research tools [90], bioassays [91, 92], food safety [93], and environment monitor‐
ing [94], as demonstrated by a plethora of reviews recently published on this topic. However,
a major field of interest for aptamers is biomedicine, where aptamers can be used as sensors
for biomarker discovery, molecular imaging probes, drug delivery systems and drugs,
especially in cancer nanomedicine and therapy [58, 61].
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3.2.1. Aptamers as potential drugs

Although the most studied aptamers are against thrombin, VEGF and PDGF, aptamer
applications range from cancer to infectious pathogens.

3.2.1.1. Therapeutic aptamers in eye disease

The first therapeutic aptamer approved by the FDA was the Pegaptanib, which today is
commercially available as Macugen® (Pfizer and Eyetech) [64, 65]. The Pegaptanib is a 27
ribonucleotide pegylated RNA aptamer antagonist of VEGF165 [95]. Since its approval in 2004,
the Macugen® has always been used for the treatment of AMD, a degenerative ocular disease
that causes vision loss in older adults due to retinal damage. However, the efficacy of this
aptamer was then discovered to be important also for the treatment of diabetic macular
edema (DME) and proliferative diabetic retinopathy (PDR) with promising results in clinical
trials [96, 97]. At present, the spectrum of use of Pegaptanib is being broadened to other
pathologies such as ischemic diabetic macular edema (MIDME), uveitis, choroidal neovascu‐
larization secondary to pathologic myopia, and iris neovascularization [98–100].

The limits of anti-VEGF agents to treat AMD are their inability to promote the regression of
new blood vessels, which are the cause for the loss of vision. To bypass this limitation, the
E10030 aptamer (Fovista™) was developed by Ophthotech Corp in 2012: the E10030 is a 29
pegylated RNA aptamer able to bind PDGF (platelet-derived growth factor), which regu‐
lates pericytes maturation. The combined administration of E10030 with Pegaptanib showed
successful neovascular regression in preclinical models [101].

3.2.1.2. Therapeutic aptamers for hemostasis

Thrombin is a wide-studied target for anticoagulation, and its in vivo inhibition is a major
solution to prevent and treat blood clotting abnormalities [61, 102]. Anti-thrombin aptamer
(TBA), a 15 bp oligonucleotide, was first selected in 1992 by Toole et al. and it was the most
studied aptamer for clinical applications in 2012 [60, 103]. After the evaluation of TBA
efficiency in vivo [104], the Nu172 aptamer (ARCA Bipharma) was develop as a potential
thrombin inhibitor candidate. Nu172 is a 26 bp aptamer able to prevent fibrinogen cleavage
of a-thrombin by interacting with the exosite I. Nu172 is currently in phase II clinical trials to
be certified for anticoagulation in invasive medical procedures, coronary artery bypass graft
and percutaneous interventions [105].

3.2.1.3. Therapeutic aptamers for cancer

The goal of new therapeutic approaches in Oncology is often to block the neoplastic progres‐
sion through the inhibition of specific cell-pathways, which lead to cell abnormal prolifera‐
tion. Several clinical trials have proposed the use of aptamers to specifically bind tumor cells
and stop cancer development. The specific cell membrane receptors that can be blocked in
tumors are numerous, but only few have been investigated with aptamers. A pivot role is
played by nucleolin, a protein which is often over-expressed on the surface of cancer cells and
that is firstly involved in cell survival, growth and proliferation, as well as in nuclear trans‐
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port and transcription [106]. In particular, nucleolin seems to manage the internalization of the
tumor-homing F3 peptide and its inhibition affects several signaling pathways responsible for
abnormal cell proliferation during cancer progression, such as NF-kB and Bcl-2 pathways [107,
108].

AS1411 (Antisoma, PLC) is a 26 bp long aptamer rich in guanosine and screened for against
nucleolin [66, 106]. When AS1411 interacts with surface nucleolin, the complex is internal‐
ized and prevents its binding with Bcl-2, thus inducing cell apoptosis. AS1411 has shown good
growth-inhibitory properties in vitro (Table 1) and the ability to be accumulated in tumor
tissue [66, 109].

Cell Line Description Dose of AS1411
administered

Time of exposure
to AS1411

A549 Human epithelial lung carcinoma 1 μmol/l 6 days

DU145 Human epithelial prostate carcinoma 2 μmol/l
15 μmol/l

6 days
5 days

MDA-MB-231 Human breast adenocarcinoma 15 μmol/l 5 days

MCF-7 Human breast adenocarcinoma 15 μmol/l 5 days

HeLa Human cervix adenocarcinoma 15 μmol/l 5 days

Primary cells from leukemia Human leukemia 10 μmol/l 7 days

Primary cells from lymphoma Human lymphoma 10 μmol/l 7 days

Table 1. Dose administered and time of exposure of different cell lines to AS1411 aptamer, in order to observe growth
ihnibition [66, 109].

3.2.1.4. Therapeutic aptamers in microbiology

When aptamers were first described by Ellington and Gold in 1990, their ability to bind viral
proteins was clear, and, consequently, their use to treat viral and bacterial diseases has always
been investigated [110, 111].

Ebola epidemic of 2014 and other emerging viruses have prompted several research groups
to use specific aptamers in the treatment of these diseases by blocking sites essential for virus
infectious progression [112–115]. For example, it has been shown that specific aptamers against
influenza major targets are able to inhibit or block virus fusion, penetration, and replication
[116–120]. Aptamers are also thought to be useful to kill multidrug-resistant (MDR) bacteria
in vivo, possibly by blocking resistance enzymes such as NMD-1 (New Delhi metallo-β-
lactamase) or by inducing the classic pathway of the complement in lieu of antibodies [121–
124].

3.2.2. Aptamers as sensors for biomarker discovery

Biomarkers are molecules that change their expression level when physiological conditions
are altered, and can thus be used to indicate the progression state of a disease or the risk of
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developing it. Biomarkers are therefore a tool with high potentiality for disease screening and
early diagnosis. However, a very limited number of biomarkers have been thus far discov‐
ered. The use of mABs to identify disease specific targets is often unfeasible, because these
targets are frequently cell epitopes and it is impossible to design and select a mAB against an
unknown receptor, and aptamer research is moving to fill the gap. Normally, target cells are
amplified, collected, and lysed. The lysate is then incubated with aptamers and target proteins
go through a comparative proteomic analysis: briefly, they are separated through the SDS-
PAGE and analyzed with mass spectrometry [61].

In recent years, many research groups have worked to find aptamers that specifically bind
biomarkers. In particular, the tyrosine kinase 7 has been discovered as a potent marker of T-
cell acute lymphoblastic leukemia [125], tenascin-C as biomarker for glioblastoma cells [85],
the Igμ heavy chain for Burkitt’s lymphoma [126], whereas the stress-induced phosphopro‐
tein I for ovarian cancer [127].

3.2.3. Aptamers as molecular imaging probes for diagnostic

Aptamers have also been proposed as detecting agents in diagnostics, both as molecular
beacons or as sensors for bio-imaging [58, 61].

In 2001, Hamaguchi et al. developed an aptamer beacon for thrombin. A thrombin aptamer
was modified with complementary sequences at 3′ and 5′ ends to form a stem-loop struc‐
ture. Furthermore, the 5′-end was labeled with a fluorescent moiety, whereas the 3′ with a
quencher. In the absence of thrombin, the complementary 3′ and 5′ ends lie in close proximi‐
ty and this results in fluorescence quenching, whereas in the presence of thrombin, aptamer
acquires its 3D specific conformation, moving the fluorophore and the quencher apart, setting
off a fluorescence signal in a dose-depends manner [128]. One year later the same approach
was proved by Tan and co-workers [129] and then by several research groups [79, 130–132].

The idea of labeling aptamers with fluorophores was pursued also to develop new probes for
computerize tomography (CT) and for magnetic resonance imaging (MRI). In addition, this
idea seemed appealing in combination with nanomaterials for CT and MRI analysis (i.e.,
liposomes, quantum dots (QDs), carbon nanotubes, gold and magnetic nanoparticles), to
improve in vivo imaging and phototermal therapy, thanks to aptamers’ accurate targeting and
the rapid diffusion through blood circulation of nanomaterials [58]. This approach was used
to image C6 cancer cells using a Cy3-labeled aptamer against nucleolin transmembrane protein
in 2010 [133]. The same year Min et al. proposed the use of a QDs-aptamer complex specific
for PSMA(+) and PSMA(–) (prostate specific membrane antigen) to detect prostate cancer cells.
The complex was able to discriminate between prostate cancer cells and normal or other cancer
cells [134]. In 2013, Kim et al. immobilized a VEGFR2 (vascular endothelial growth factor
receptor 2) aptamer on a magnetic nanocrystal surface for the detection of the angiogenic
vasculature in glioblastoma by MRI with high sensitivity and efficiency [135].
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3.2.4. Aptamers as drug delivery systems

The ability of aptamers selected through the cell-SELEX to recognize cell antigens have been
exploited to deliver a variety of molecules, mainly drugs, into cells [58]. For this purpose,
aptamers can be used alone or in combination with other delivery systems, such as poly‐
mers or liposomes, in order to enhance their specificity [61].

Building on their previous work on a QDs-aptamer complex specific for PSMA(+) and
PSMA(–) (see Section 3.2.3), Min et al. were able to load the construct with doxorubicin, an
anticancer drug, and to effectively introduce it inside prostate cancer cells [136]. Levy’s group
relied on an aptamer against PSMA to introduce a siRNA in prostate cancer cells, which
inhibited gene expression within 30 min [137].

To enhance polymers specificity as drug delivery system, they can be funtionalized with
aptamers; this strategy has shown to be promising for clinical applications. Farokhzad et al.
encapsulated rhodamine-labeled dextran within a nanoparticle of poly (lactic acid)-block-
polyethylene glycol copolymer with a terminal carboxylic acid functional group (PLA-PEG-
COOH) conjugated to an aptamer against the PSMA antigen of prostate cancer cells. The
system was able to enter PSMA over-expressing cells in less than 2 h [138]. The same group
further generated a nanoparticle with poly (D,L-lactic-co-glycolic acid)-block-poly (ethylene
glycol) (PLGA-b-PEG) copolymer conjugated with the A10 aptamer against PSMA to deliver
docetaxel inside cancer cells. This system was tested in vivo, and induced the complete
regression of the tumor in five out of seven mice [139]. Following these promising results,
several others similar constructs based on the conjugation of polymers and aptamers were
efficiently tested [140], and even aptamers conjugated to dendrimers were tested, as report‐
ed in a review published in 2011 by Lee et al. [141].

Liposomes were also engineered with aptamers to deliver cisplatin and taxol inside breast
cancer cells. The AS1411 aptamer-liposome bioconjugate system efficiently transported
cisplatin inside tumorigenic cells, and effectively killed the target cancer cells but not healthy
control ones [142]. Moreover, compared with the control liposomes, liposomes conjugated
with the AS1411 aptamer and containing taxol, increased the cellular uptake of the construct
in the breast cancer cells [143].

Taken together, these results support the use of aptamers as enhancer for drug delivery
systems; however, more in vivo evaluation is required to allow their use in clinic [61].

4. Aptamers to enhance scaffold biocompatibility

As mentioned earlier in this chapter (see Section 2.1), one of the most investigated topics in TE
is developing new methods to improve scaffold biocompatibility. To reach this goal, scaf‐
folds should be highly dynamic and possess surfaces capable to interact with cells, positive‐
ly modulating protein adsorption [36].

Several research groups have aimed to reach this goal by immobilizing the RGD peptide
binding motif on scaffolds (see Section 2.1.2), by modifying chemically or physically scaffold
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surfaces (see Section 2.1.1) or by coating scaffolds with other highly biocompatible materials
(see Section 2.1.3).

In this section we propose a new method to improve natural polymeric scaffold biocompati‐
bility, by using ssDNA aptamers screened for against human fibronectin as docking points, to
ameliorate the adsorption of fibronectin, a naturally occurring molecule in damaged tissues,
which is mainly involved in cell adhesion and in the regeneration process. The correct
adsorption of fibronectin may lead to a faster colonization of the scaffold in vitro and to an
acceleration of the regeneration process in vivo. Figure 3 summarizes the rationale to use
aptamers to enrich biomaterials with specific molecules.

Figure 3. Diagram representing the rationale of functionalizing substrates with aptamers to retain specific proteins.
Un-functionalized scaffold adsorbs proteins from the environment based on their availability (A). Aptamer functional‐
ized scaffold specifically binds and retains target protein, by selectively enriching the adsorption for a specific protein
(B).

Biomaterial functionalization with aptamers is not new in the literature. Wendel’s group
pioneered the field in 2007, by coating a vascular prosthesis with aptamers against circulat‐
ing endothelial progenitor cells (EPCs), to retain specific cells from the bloodstream and
quickly create an autologous functional endothelium. Aptamers against EPCs were screened
through the Cell-SELEX and covalently grafted on to polydimethylsiloxane (PDMS) and
polytetrafluoroethylene (PTFE) substrates. Functionalized scaffolds were incubated with
whole porcine blood, washed twice to remove non-specific debris, and stained for CD31 and
CD144 by immunofluorescence to identify EPCs. EPCs were observed only on aptamer-grafted
prosthesis, whereas no CD31 and CD144 positive cells were retained on control discs [144].
Five years later, Chen et al. designed an artificial ECM using aptamer-grafted polyethylene
glycol (PEG) hydrogels: aptamers screened for against cell surface receptors were used as
binding sites for cells and they were attached on to the gel through free radical polymeriza‐
tion. It was demonstrated that the amount of cells adhered to hydrogels was proportional to
the amount of aptamer incorporated into the hydrogels [145].
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Considering those results, we want to show the possibility of enriching natural synthetic
scaffolds with aptamers against human Fibronectin to enhance cell adhesion and growth.

For this purpose, we used aptamer screened for against human fibronectin (Base Pair
Biotechnologies, Pearland, TX) and modified at their 3′-end with a thiol group and at their 5′-
end with biotin.

4.1. Aptamers enhance cell adhesion and proliferation on polymeric scaffolds

Two natural polymer scaffolds were used as substrates: a thiolate hyaluronic acid/polyethy‐
lene glycol hydrogel (tHA/PEGDA) and a chitosan modified with D-(+)-raffinose film. tHA/
PEGDA gels are 3D matrices normally used for stem cell culture and which offer scant adhesion
to cells. For this reason, they are often enriched with adhesion molecules, such as RGD
peptides, when firmer adhesion is required. Aptamers were bound to these hydrogels by
exploiting the acrylate functional groups of PEGDA, which can easily bind thiol groups on
aptamers. Five microliters of aptamer at increasing concentration were mixed to each 50 μl gel.

Chitosan is one of the most investigated natural polymers for TE applications, because it is
highly biocompatible [146]. However, some cell types grow slowly on chitosan films, and
consequently they were chosen as substrates to be enriched with aptamers. Aptamers were
immobilized on 2% chitosan films (r = 3.0 mm; h = 0.25 mm) at increasing concentration by
exploiting the spontaneous ability of chitosan to bind sulfur-containing substances [147].

Figure 4. Study of aptamer ability to enhance the proliferation of human osteoblasts (hOB) on tHA/PEGDA hydrogel.
Microphotographs, taken with an inverted microscope, showing hOB cells on tHA/PEGDA after 48 h of culture (A–D).
The rate of cell growth is proportional to the quantity of aptamer used for the functionalization (E).

Five thousand hOB cells (human osteoblasts) on tHA/PEGDA gels and 5000 MC3T3-E1 cells
(murine preosteoblasts from bone/calvaria) on 2% chitosan films were cultured for 7 days.
Cells were monitored day by day with an inverted microscope.

Cell proliferation on tHA/PEGDA and chitosan substrates is shown in Figures 4 and 5.
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Figure 5. Study of aptamer ability to enhance the proliferation of murine osteoblastic cells (MC3T3-E1) on 2% chitosan
films. Microphotographs, taken with an inverted microscope, showing MC3T3-E1 cells on 2% chitosan films after 48 h
of culture and stained with the Trypan Blue to discriminate viable and dead cells. The rate of cell growth is proportion‐
al to the quantity of aptamer used for the functionalization (E).

In both the cases, aptamers increase the number of adhering cells and the rate of cell growth
is proportional to the amount of aptamer used. Cell morphology appear round both in control
groups and in aptamer-rich samples, unlike the flattened spindle shape morphology that is
normally observed on tissue culture plastic substrates, and is routinely associated to firm cell
adhesion. Although cell adhesion does appear improved in the presence of aptamers, as
indicated by a significantly higher number of cells, the culture substrate is mechanically elastic
and the normal morphological features of a good adhesion cannot be achieved.

Figure 6. Histograms representing the amount of protein adsorbed on polymeric scaffolds with or without aptamers.
Scaffolds were incubated for 2 h with 30 μg of proteins. The amount of protein bind by the scaffold was quantitated
through the Bradford.

Although aptamers act on both substrates presumably in comparable ways, by binding
fibronectin, the rationale for their use is possibly different, as suggested by results of protein
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adsorption assays reported in Figure 6, where 30 μg of serum protein were incubated for 2 h
on different scaffolds with or without aptamers and quantitated with Bradford.

The presence of aptamers on tHA/PEGDA quantitatively increases the amount of fibronec‐
tin on the gel and this may explain the improved cell adhesion and proliferation. Cells on
control gels do not get in contact with adsorbed proteins and lack good attachment points for
their integrins. Availability of a higher amount of adhesive protein then results in more firmly
adhering cells. On the other hand, chitosan is known to bind massive amounts of protein from
the supernatant and aptamers do not affect the quantity of adsorbed proteins. A viable
hypothesis for the effects of aptamers on chitosan is therefore that aptamers may affect the
quality of adsorbed protein. Aptamers may preserve the natural conformation of fibronectin
on films, without unfolding it and maintaining a favorable exposure of adhesion sequences
for cells.

Evidences reported show that aptamers are a viable approach to improve the biocompatibili‐
ty of scaffolds, ameliorating the process of adhesive protein adsorption on surfaces both
quantitatively and qualitatively, and should further investigated to create tissue-specific
scaffold for tissue engineering.

5. Summary

Scaffolds for tissue engineering should support an appropriate cellular activity. In particular,
cell adhesion and proliferation depend mainly on the efficiency of protein adsorption at the
interface, a process deeply influenced by surface chemistry. Nowadays, a wide number of
treatments have been proposed to enhance scaffold biocompatibility, including physical and
chemical treatments or biological coatings. In this chapter we reported on the use of aptam‐
ers to improve scaffold biocompatibility.

After a general presentation on tissue engineering in Section 1, Section 2 described the rationale
to control protein adsorption on biomaterial surfaces. A panoramic view of the methods
developed and reported in literature to improve scaffold biocompatibility was reviewed. At
the end of the section the possibility of using aptamers for this goal was outlined.

Section 3 contained general information about aptamers. The technique to obtain aptamers
(SELEX) was well described and a general view on the use of aptamers in biomedical appli‐
cations was outlined. Finally, in Section 4 after the explanation of the rationale to use aptam‐
ers as enhancers for scaffold biocompatibility, our preliminary results were reported. In
particular, we investigated the possibility to immobilize aptamers on different substrates to
improve scaffold biocompatibility in vitro, with similar results. Aptamers were bound to tHA/
PEGDA hydrogels or to chitosan films: in both the cases the adsorption of proteins was
ameliorated, as well as the adhesion and proliferation of cells. The results obtained paved the
way to further investigation of the use of aptamers in combination with scaffolds for tissue
engineering applications.
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