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Abstract

Skeletal muscle is a major metabolic organ that plays a critical role in regulating glucose
homeostasis and lipid utilization. Impaired muscle metabolic response is evident in
diseases  such  as  diabetes,  obesity  and  cardiovascular  diseases,  and  is  also  often
associated with microvascular dysfunction. Here, we investigate the changes that can
occur  in  the  muscle  microvasculature  and the  profound impact  they can have on
metabolism.

Under basal conditions, vasoactive compounds are able to affect metabolism in muscle
by providing more glucose and oxygen to resting muscle. Insulin and exercise increase
the perfusion of muscle, and thus provide more microvascular surface area, increasing
the delivery of these metabolites to muscle. Endothelial dysfunction can therefore
impair the delivery of oxygen, glucose and hormones to muscle, both through effects
on blood flow distribution and the transport of these factors across the endothelium,
leading to a decrease in oxygen consumption and glucose metabolism. Obesity and
diabetes are associated with endothelial dysfunction and are accompanied by
underlying changes in metabolism and reductions in insulin sensitivity.

The muscle is a highly metabolic organ, and the vasculature is essential to maintain
appropriate metabolic response; therefore, the muscle microcirculation may be a target
for treating metabolic disease.

Keywords: Skeletal muscle, blood flow, capillary, transendothelial transport, diabetes,
endothelium, perfusion, exercise, insulin, vasodilation, vasoconstriction
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1. Introduction

Skeletal muscle is normally thought of in the context of exercise or posture, and its ability to
contract to generate force or motion is an essential part of mobility. It is a highly metabolic organ,
responsible for breakdown and storage of glucose and fat in order to provide the energy required
for these contractions. In addition, skeletal muscle is the primary tissue responsible for the
increased glucose metabolism during hyperinsulinemia and exercise [1]. The vascular system
in skeletal muscle is essential in metabolism and exercise, and can directly affect its ability to
generate the energy needed for contraction and movement, and to appropriately dispose of
glucose. Here, we will discuss the structure and function of the muscle microcirculatory system,
and the role that microvascular function plays in muscle metabolism. We will discuss the effects
of diet and obesity on vascular function, how these effects may translate to impaired muscle
metabolism, and the possibility of targeting the microcirculatory system in order to treat both
vascular and metabolic disease.

2. Muscle microcirculatory system

As is common in other tissues, the vascular network in skeletal muscle consists of arteries
branching into smaller and smaller vessels. In skeletal muscle, a terminal arteriole gives rise
to groups of capillaries that run parallel to muscle fibres, and each muscle fibre can be supplied
by several different groups of capillaries from independent terminal arterioles [2]. Vascular
casts of the rat hind limb have demonstrated that the muscle capillaries are long and tortuous
[3], and thus have a lot of contact with myocytes (Figure 1). Original methods to assess the
structure and location of the microcirculatory system in skeletal muscle used microscopy to
gain 2D images from fixed or frozen tissues. However, the skeletal muscle is particularly
sensitive to certain artefacts when freezing [4], and limitations to counting capillaries in 2D
include lack of estimation of capillary length, tortuosity or fibre size [5]. More recent advances
in 3D visualization in vivo supply more spatial information about the relationship between the
microcirculation and the muscle tissue, as capillaries are found to be embedded in grooves in
the sarcolemma of muscle fibres [6].

Figure 1. Muscle microcirculatory system. Arteries feed into the muscle, supplying arterioles, each of which controls a
capillary network. Blood is then removed from the capillaries through venules and veins. (Grey: muscle fibres. Red:
artery, arterioles and capillaries. Blue: venules and vein).
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Blood flow through these capillaries can be controlled through dilation or constriction of the
blood vessel network. Most of this regulation does not occur at the capillary level, as the
capillaries are not associated with an underlying smooth muscle network required for dilation
and constriction. While subject to changes in blood flow, as well as being in direct contact with
factors in the blood, the capillary itself does not usually regulate blood flow. Instead, the vessels
that have smooth muscle surrounding the endothelial wall, such as the arteries, precapillary
arterioles, post‐capillary venules and veins, are responsible for vasoconstriction and vasodi‐
lation. Factors that are vasoactive throughout the body also affect the muscle microvasculature.
Nitric oxide (NO), endothelium‐derived hyperpolarizing factor and prostacyclin are known
vasodilators, and more recently carbon monoxide and hydrogen sulphide have been included
in this list [7], and there are a range of hormones that can cause vasoconstriction, including
endothelin, angiotensin, serotonin and others. The effects can vary depending on where the
vasomotion is taking place. For example, vasoconstriction in the precapillary arteriole will
induce low pressure in the capillaries, whereas venular constriction will increase blood
pressure in the local capillary environment, and may increase shear stress.

Resting blood flow is low, approximately 5–10 ml/min/100 g [7], but increases rapidly by a
factor of up to 20 (up to 80–100 ml/min/100 g) during exercise [8]; however, this can be highly
variable depending on the muscle. In resting skeletal muscle, it is estimated that only about
25% of the capillaries are perfused at any time [9], but that this can increase to 100% with
exercise; however, some recent publications suggest that no capillaries are unperfused at rest,
and instead capillary surface area is recruited by exercise [10]. A coordinated response between
the terminal arterioles has been shown, and capillary perfusion can increase through broad
regions of a muscle [2]. Early studies by Lindbom and Arfors using intravital microscopy
showed that oxygen partial pressure itself in the rabbit tennuisimus muscle could increase
perfusion. This is likely mediated through the nervous system [11], which is thought to
maintain a low‐level vasoconstriction in muscle microvasculature. Thus, the sympathetic
nervous system is likely to be important in blood flow regulation [12].

Measurement of functional capillary density in skeletal muscle has been made possible by
advances in imaging techniques. Contrast‐enhanced ultrasound (CEU) technology is used in
perfusion studies in a variety of tissues, and showed that physiologic hyperinsulinemia can
increase human skeletal muscle perfusion and microvascular volume [13]. This technique can
also detect microvascular complications [14]. However, an in vitro study designed to more fully
understand the data acquired from CEU has shown that while alterations in the filling rate of
the microvascular volume can be detected, CEU cannot discriminate between different flow
patterns that reflect changes in capillary perfusion in vivo [15]. This may be explained by new
developments to the capillary recruitment theory, whereby instead of recruiting previously
unperfused capillaries, capillary surface area is recruited by elevating capillary haematocrit
and extending the length of the capillary available for exchange [10].

There are several other techniques that have been used to estimate functional capillary density
or capillary recruitment. Earlier methods used laser Doppler fluxmetry (LDF) at the muscle
surface, and showed effects of different vasoconstrictors to either increase or decrease the
capillary surface area [16]. Further studies demonstrated an increase in LDF signal by insulin,
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but not by adrenaline, which increases bulk flow without effect on capillary recruitment [17],
suggesting that LDF does indeed reflect changes in capillary recruitment, and not bulk flow.
Skeletal muscle perfusion can also be assessed by nuclear magnetic resonance (NMR) arterial
spin labelling, which has been validated as a method with strong spatial and temporal
resolution [18], and can be combined with assessments of muscle oxygenation and energy
metabolism [8]. Positron emission tomography (PET) utilizes short‐lived radioisotopes to
measure blood flow and its distribution, and also offers the ability to measure oxygen con‐
sumption and extraction. This technique has been used to show that NO is involved in
maintaining resting skeletal muscle blood flow [19]. In addition, the PET technique demon‐
strated that exercise can recruit capillaries [20]. Near‐infra red spectroscopy (NIRS) is a non‐
invasive method that has been used in skeletal muscle to measure blood flow and oxygen
consumption [21], and can be used to show differences in oxygen consumption in tissue, which
may indicate the distribution of blood flow through skeletal muscle. NIRS has been used to
link tissue oxygenation to blood flow in a range of conditions from critically ill patients to
athletes [22, 23].

The microvascular endothelium functions as a barrier between the blood and the underlying
tissue [24]. In skeletal muscle, there is a continuous endothelial barrier with tight junctions
between the endothelial cells, and thus the molecule’s ability to reach the muscle is restricted.
In comparison, an organ with a discontinuous endothelium or one with large pores in the
endothelial barrier, such as liver, has a greater direct contact with molecules in the blood. These
differences make the muscle microvasculature highly regulated; thus, the constitution of the
plasma is very different to the muscle interstitium. Our own results have shown very different
concentrations of insulin and lipid in the muscle interstitium when compared to plasma [25],
and the endothelial barrier may account for a lag time of 5 min between plasma and interstitial
glucose levels [26], in spite of the fact that glucose is a small molecule thought to easily diffuse
across the endothelium. Plasma is therefore substantially different from the interstitial fluid
[27, 28]; and as the interstitial environment is largely modified by supply from the blood, or
removal through the lymph, the endothelial barrier is an important component of regulating
the muscle microenvironment.

In addition to the basic structure of the endothelium, the endothelial glycocalyx is an approx‐
imately 1 μm thick layer on the luminal side of the vascular endothelial cells, which consists
of a mesh of polysaccharide structures, which provide a layer of protection for the endothelial
cells, regulating access of molecules in the plasma based on molecular size, charge and
structure [29]. The glycocalyx is a dynamic addition to the endothelial barrier [30–32] and,
while perhaps not directly involved in regulating blood flow or metabolism, is a structural and
functional barrier that may alter the composition of the muscle interstitium.

Sampling the interstitial environment is difficult, with many techniques inducing inflamma‐
tion, allowing only small sample sizes, or being unable to provide a dynamic measure of
changes in response to certain stimuli [28]. Our own studies use lymph sampling [25, 33–36],
which does not induce inflammation at the sampling point, and allows studies of temporal
changes. The lymph vessel is highly permeable and has a slow flow rate, allowing equilibration
with the interstitial fluid. However, the volume sampled is quite small, restricting this
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technique to larger animals. In addition, there may be some modification of the lymph fluid,
which may alter results [37]. Other techniques can indirectly sample the interstitium, such as
microdialysis. For larger molecules, this technique can have a low recovery, providing only a
dilute sample, and the insertion of the probe may induce inflammation. However, this
technique has been used in many human applications [38–44]. In general, the consensus is that
the muscle interstitium is substantially different from plasma, and the muscle microvascula‐
ture is an important component of the regulation of the muscle microenvironment.

3. Skeletal muscle metabolism

Metabolism in muscle provides working muscle with energy, and metabolic processes are
increased in times of need. Muscle can utilize both glucose and fat for energy, and typically
relies on fat oxidation during both increased energy expenditure (exercise) and decreased
energy intake (fasting) [45], but is also the primary tissue for insulin‐mediated glucose uptake
[1]. Plasma free fatty acids typically supply most of the fuel for skeletal muscle under low and
moderate levels of exercise [46]; however, rates of glycogen utilization also increase with
contraction [47]. The fuel selection is dependent on not only the intensity of exercise but also
the type of muscle fibre recruited for exercise and the availability of fuels [48].

Metabolism of both fat and glucose requires mitochondria to generate energy through aerobic
respiration. Within the mitochondria, glucose, fats and proteins are broken down through a
series of enzymatic reactions, and the products feed into the electron transport chain, causing
oxidative phosphorylation and the generation of ATP (energy) (Figure 2). Skeletal muscle is
heterogenous, and the mitochondrial content of different muscle fibre types is a major
component of the metabolic preference of each muscle fibre type. Red muscle contains a high
number of mitochondria, thus providing a very high level of oxidative capacity. These red
fibres (Type I) are useful in endurance type activities, and are served by an extensive vascular
network in order to supply the oxygen required for oxidative phosphorylation and thus
efficient production of ATP, which provides the energy for all forms of muscle work [49]. In
contrast, Type II muscle fibres, known as white fibres, have lower levels of mitochondria and
vessel density. This muscle is typically used for very short maximal intensity activities, such
as sprints: it is more glycolytic, such that instead of undergoing full oxidation, glucose is broken
down to lactate to give a quick release of energy (Figure 2). Recent studies have shown that
red fibres have a larger capillary to fibre ratio, a greater capillary density and more tortuous
capillary pathways than white [50]. Thus, vascularization is tightly tied to metabolism in
skeletal muscle—vascularized muscle is more oxidative, and leads to more complete metab‐
olism of glucose, and less vascularized muscle supplies less oxygen to the myocyte leading to
anaerobic respiration and production of lactate [49]. However, studies have shown that
capillary density in some muscles has a greater relativity to muscle fibre size, rather than the
oxidative capacity of the muscle fibre [5]. Glancy et al. concluded that the embedding of the
capillaries in the sarcolemma increased oxygen delivery to the myocyte. Interestingly, the
mitochondrial pool was located close to embedded capillaries, though the authors believe that
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while this increased oxygen delivery to the myocyte, it was not associated with mitochondrial
oxygen access [6].

Figure 2. Role of microcirculation in muscle metabolism. Glucose and fats are the main source of energy for muscle
fibres (A). Glucose is broken down to pyruvate, which can be metabolized without oxygen to lactate, producing 2ATP,
a pathway used preferentially in white muscle fibres. Alternatively, pyruvate can be transported into the mitochondria
of the muscle fibre (B), where both pyruvate and fats can be converted to acetyl‐CoA. This enters the Krebs cycle and
activates oxidative phosphorylation (OXPHOS), requiring the delivery of oxygen from the blood. This method is com‐
mon in red muscle fibres: it produces much more ATP than anaerobic production of lactate, but also produces carbon
dioxide, which must be removed by the blood. Thus, the microcirculation is essential for delivering glucose, fats and
oxygen, and removing carbon dioxide from the muscle.

Exercise requires more ATP [49], which can be derived both anaerobically for short‐term
activity or aerobically using the electron transport chain in mitochondria (Figure 2). A model
has been generated to predict this transition from rest to work, and has shown the importance
of myoglobin in oxygen delivery to working muscle [51]. Exercise causes increases in blood
flow primarily to red muscles [52]: muscles consisting of more red fibres showed a quicker
increase in blood flow than white, and, interestingly, the red muscles also showed a quicker
return to rested blood flow levels than the white [53]. The maximal metabolic rate is related to
both mitochondrial size and number as well as capillary volume [54], emphasizing the
importance of the microvasculature in metabolism.

Aerobic exercise training has been shown to double skeletal muscle mitochondrial content, yet
maximal whole body oxygen uptake only increased approximately 15% [55]. As these effects
of exercise on mitochondrial content and oxygen consumption are not proportional, some
conclude that the ability to deliver oxygen to mitochondria is in fact limiting to aerobic
respiration, rather than mitochondrial content [6, 56]. This contribution of the vasculature may
include both the presence of blood vessels and also their function, specifically their ability to
redirect blood flow through the muscle.

4. Blood flow distribution affects muscle metabolism

As already discussed, there can be changes in the distribution of blood flow through muscle
by altering functional capillary density. This redistribution of flow can directly alter metabo‐
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lism: some vasoconstrictors and vasodilators can alter oxygen consumption and glucose
uptake independently of any direct effects on muscle metabolism [16, 57]. This was demon‐
strated by showing that the effects of vasoactive substances on metabolism in perfused skeletal
muscle were not replicated in incubated skeletal muscle, implicating the essential role of the
microvasculature in mediating those changes in metabolism [58, 59]. Vessel surface area, the
distance for the factor to travel, and the concentration gradient can all alter the rate of diffusion
according to Fick’s equation. Vasodilation allows a greater surface area for exchange, and
conversely vasoconstriction reduces the surface area for diffusion. However, as discussed
above, the areas of the blood vessel responsible for exchange are typically the capillaries, which
themselves do not undergo vasomotion, but are controlled by the larger surrounding vessels.
Thus, a larger effect on diffusion of oxygen and other metabolites can be induced by vasomo‐
tion that alters the distribution of flow through muscle, which will decrease the distance for
the factor to travel from the blood vessel to all areas of the muscle, as shown in Fick's equation
[60]. When a greater number of capillaries are perfused, as occurs with capillary recruitment,
each myocyte is supplied with a great amount of oxygen and glucose, and metabolism is
increased. This is independent of extra work being performed by the muscle (such as during
exercise), and demonstrates that changes in blood flow even during resting conditions may
influence metabolism [60].

4.1. Factors that can induce capillary recruitment

There are several known factors that can increase the number of perfused capillaries. From a
physiological perspective, exercise and reactive hyperaemia are both associated with a
substantial increase in perfusion. Exercise also induces a major increase in blood flow: while
muscle only uses approximately 15% of the cardiac output at rest, this increases to 88% during
maximum exercise [49], mainly to muscles consisting predominantly of red fibres [53]. There
is also an increase in capillary recruitment with exercise [61–64], and this was associated with
an increased perfused capillary density of 1.5‐ to 3‐fold [65]. It is possible that both exercise
and reactive hyperaemia induce their blood flow effects through the sympathetic nervous
system [11]; however, alternative models of local blood flow regulation have also been
postulated [66]. NO does not appear to be involved in exercise‐induced capillary recruitment
[67], and in fact inhibiting NO during exercise can increase local muscle oxygen uptake, but
seems to decrease glucose uptake [19, 67]. As discussed, NO is considered a vasodilator;
however, there are some inconsistencies with regards to its effects on metabolism. In resting
muscle, inhibition of NO synthesis causes free fatty acid uptake, increased oxygen uptake, but
not glucose uptake [68], and the authors proposed a possible contribution of an inhibitory
effect of NO on mitochondrial respiration to explain their data; thus, the contribution of NO
to basal metabolism may be slight. PET has been used to show that NO is involved in main‐
taining resting skeletal muscle blood flow, and suppresses resting muscle oxygen uptake, likely
because NO competes with oxygen and inhibits mitochondrial respiration [19]; further studies
demonstrated that NO may contribute to the regulation of free fatty acid metabolism at rest
[68]. Thus, while NO is a known vasodilator, its role in metabolism is unclear. These divergent
results may reflect differences depending on the dose of NO inhibitor used, but also may
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indicate a role of NO in the mitochondrial function of working muscle, as it can inhibit
oxidative phosphorylation [69].

While many hormones are themselves vasoactive, including serotonin, epinephrine, norepi‐
nephrine and angiotensin, many do not appear to change muscle perfusion. GLP‐1 (Glucagon‐
like peptide‐1) increases capillary perfusion, though the involvement of NO in this process is
so far controversial [70–73]. GLP‐1 receptor agonists have beneficial effects on the vasculature
[74–78] and metabolism of glucose [70, 71, 79–81]; though whether this reflects a direct effect
on glucose metabolism, an indirect effect through blood flow changes, or a combination of
these is not clear. GLP‐1 induces angiogenesis, consistent with increasing functional capillary
density, though this is a long‐term adaptation rather than an acute increase in the perfusion of
skeletal muscle [74]. This effect of angiogenesis, or increasing the size and number of capilla‐
ries, has been shown to protect against metabolic disease [82].

There are two classes of vasoconstrictors determined based on their general effects on metab‐
olism. Type A vasoconstrictors, including angiotensin, vasopressin, and low doses of norepi‐
nephrine and endothelin increase oxygen consumption and perfusion pressure in the constant‐
flow pump‐perfused hindlimb [3, 83, 84]. Type B vasoconstrictors reduce muscle metabolism,
such as serotonin (5‐hydroxytryptophan) [3, 85]. Studies have shown that vasoconstrictors
from these different groups may control different areas of vascular flow in the muscle, as
evidenced by both washout of red blood cells that had been trapped in the muscle, and by
corrosion casting of the arterial tree [3], a technique which uses a polymer to fill the perfused
vascular area, the tissue is then corroded away to form a 3D model. Serotonin was shown to
reduce the available capillary surface area, and is associated with a reduction in metabolism
measured by oxygen uptake [85].

Angiotensin II (Ang) is often associated with hypertension, and is a vasoconstrictor that can
have different effects on metabolism depending on which receptor type it engages. Ang
receptor 1 is associated with reduced metabolism, while Ang receptor 2 can recruit the
microvasculature [86], and similar effects have been detected in cardiac muscle [87]. In
addition, Ang may have effects on blood vessel permeability, which may separately alter the
metabolism through increased delivery of oxygen and nutrients [88]. Ang II increases blood
flow, but appears to impair insulin‐mediated glucose metabolism, without altering the access
of insulin to the muscle interstitium [89]. These data on insulin access are not consistent with
other published data, indicating that Ang II can reduce the number of insulin receptors on
endothelial cells, which may lead to a reduction in receptor‐mediated transcytosis [90], if
insulin transport is indeed receptor‐mediated. Some of these inconsistences may be due to the
time of exposure to the vasoconstrictor: one study has shown that short‐term Ang II can
increase NO production, but long‐term can reduce NO bioavailability [91]. Acute Ang receptor
blockade has been shown to improve microvascular responses in hypertensive individuals
[92], who may have elevated levels of Ang: Ang receptors are therefore considered to be
involved in both metabolic and microvascular actions in vivo [93].

Endothelin is a vasoconstrictor released in response to insulin [94, 95], and at low doses behaves
as a type A vasoconstrictor; increases in glucose uptake and oxygen consumption indicate
augmented metabolism in the muscle. However, at high concentrations, this vasoconstriction
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continues to lead to high blood pressure, and also reduces oxygen consumption and glucose
uptake by the muscle [83]. Thus, the concentrations of vasoconstrictors in the system are an
important component of their effects on metabolism. However, it is important to realize that,
in vivo, the plasma does not contain just one vasoconstrictor, but a mix of several vasoactive
compounds, and the interactions among these molecules may be complex. Data have shown
that adiponectin [96] and insulin [83] can prevent the vasoconstriction induced by endothelin.
These results appear to depend on a prior vasodilation before endothelin‐mediated vasocon‐
striction, and yet NO itself is able to prevent the increased pressure after exposure to endo‐
thelin [96]. This may perhaps be due to the systemic introduction of NO‐donors to the system
in comparison to the local action of insulin or adiponectin. The ability of insulin to dilate against
endothelin‐mediated constriction, and limit effects on pressure and oxygen consumption, has
not been observed against any other vasoconstrictor. Thus, there is a very complex balance
between a number of hormones and vasoactive molecules that act together to regulate
metabolism.

4.2. Insulin's hemodynamic effects also alter metabolism

Insulin is known as a metabolic endocrine hormone; however, amongst its varied effects on
nutrient disposal and storage, insulin also has hemodynamic effects and was first noted to
increase blood flow at supraphysiological concentrations [97]. Later, physiological concentra‐
tions of insulin were found to induce vasodilation of blood vessels [98], and the release of the
vasoconstrictor endothelin [94]. It is thought that the combination of the vasodilation by NO
and the low dose of endothelin may combine to cause capillary recruitment [94, 95], as many
studies have indicated that insulin is capable of inducing capillary recruitment in healthy
individuals in skeletal muscle [13, 17, 99–102] and in skin, which is used as a surrogate measure
of muscle [103]. Capillary density is directly correlated with insulin sensitivity in human skin
[103], reinforcing the idea that capillary recruitment is an important process in insulin‐
mediated glucose uptake [13, 17, 99–103].

As we show above, altering muscle perfusion is sufficient to change basal metabolism without
a direct effect on the myocyte; however, the increased perfusion induced by insulin‐mediated
capillary recruitment is also hypothesized to assist in the delivery of insulin to the myocyte,
thus augmenting insulin's metabolic response. In a study by Miles et al. [104], the half time to
maximum response for glucose disposal in dogs exposed to insulin infusion was not signifi‐
cantly different to that of interstitial insulin, yet the effects on arterial insulin were much
quicker. This temporal relationship confirms that the time required for insulin to reach the
interstitial space is the limiting factor for insulin‐mediated glucose uptake, which agrees with
results suggesting that insulin rapidly causes glucose uptake in cell culture [105]. Only once
insulin is present at the cell surface can it bind to receptors to cause glucose uptake. In fact, the
correlation between insulin levels and glucose uptake is strongest when using lymph insulin
concentrations to represent the interstitium than the vein or arterial concentrations [33]. The
study by Chiu et al. differs from that of Miles et al. because the focus is specifically on the
muscle—local glucose uptake across the leg correlates with muscle lymph insulin concentra‐
tions, while Miles et al. used thoracic lymph, which is likely to be representative of the whole
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body, and corresponds well with the whole body glucose disposal rate [104]. Therefore, the
concentration of insulin at the cell surface, rather than in the blood, is a better predictor for the
rate of insulin‐mediated glucose uptake, thus increasing insulin delivery to the muscle is
shown to improve insulin's metabolic effects.

As mentioned, insulin can increase the available surface area to augment its access to mus‐
cle, but it is possible that there may be other delays in the access of insulin to the interstitial
space that are also altered by the microcirculatory system. The effects on metabolism occur
during passive diffusion of oxygen, and probably glucose, in muscle. However, there can
be regulated steps in transendothelial transport. Transport of insulin across the endothelial
barrier is controversial: some studies have shown that transport is saturable, and as such
must be receptor‐mediated, yet others have shown no saturation, even at high concentra‐
tions, claiming that there is no evidence for receptor‐mediated transport. The insulin recep‐
tors present on endothelial cells are suggested to be an important part of the trafficking of
insulin across the endothelial barrier [106, 107]. However, these studies may be of limited
relevance as they use a macrovascular cell type rather than a representative cell of a capilla‐
ry. A knockout mouse model of endothelial IRS‐2 is insulin‐resistant and showed decreased
access of insulin from the blood to the interstitium [108], implicating insulin signalling in
transendothelial insulin transport. However, studies of microvascular cells demonstrated
that fatty acids impair insulin transcytosis, and interestingly the insulin receptor and insu‐
lin signalling pathways did not appear to be involved [109]. There have also been studies
showing that insulin itself can increase the accessibility of the glycocalyx in muscle, consis‐
tent with reports of insulin effects to increase blood volume [30], and the authors posit that
structures within the glycocalyx are involved in insulin transport through the glycocalyx
towards the endothelium for subsequent transport to the muscle interstitium. Thus, any de‐
fect in endothelial function may have severe implications for metabolism, particularly in
the case of insulin and metabolic disease.

5. Vascular dysfunction in metabolic disease

The prevalence of diabetes has been increasing steadily in the United States and in many parts
of the world. In 2010, 25.8 million individuals in the United States were diagnosed with
diabetes, almost double the rate of ten years earlier [110]. In fact, 11.3% of the adult population
was estimated to have diabetes, either diagnosed or undiagnosed. Diabetes is one of the leading
causes of death and disease in the world currently, and is linked with a variety of cardiovascular
diseases, including heart disease, stroke and hypertension [110]. The links between a metabolic
disease such as diabetes and cardiovascular disease are not always readily apparent; however,
as we have discussed here, the microcirculation is intrinsically tied to metabolism. Below, we
will investigate various aspects of the metabolic syndrome, and how the muscle microvascu‐
lature may be affected.
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5.1. Hypertension

Hypertension is often characterized by excessive vasoconstriction, which may be driven by
dysregulation of the Ang system, excess amounts of endothelin, or changes in the autonomic
nervous system. Microvascular dysfunction can occur due to functional issues as discussed
here, but also structural impairments of the arterioles or capillaries, which may lead to capillary
drop‐out: this combined with arteriolar constriction increases peripheral resistance and thus
blood pressure [111]. In addition, some forms of hypertension show a decreased capillary
permeability, preventing hormone and nutrient access to the underlying tissue [112]. Excessive
vasoconstriction by endothelin in hypertension and the metabolic syndrome may prevent
appropriate insulin‐mediated haemodynamics and also impair basal metabolism [83]. Further,
we have shown that high levels of endothelin‐1 can also reduce exercise capacity in muscle,
likely due to the fact that oxygen and fuel access to the muscle is impaired with excessive
vasoconstriction [113].

Some treatments for hypertension also have effects on metabolism. A recent study investigat‐
ing the use of renal denervation to treat resistant hypertension has demonstrated a simulta‐
neous improvement in metabolic parameters [114]. Recent studies showing negative results
of renal denervation on metabolism also did not confirm effects on blood pressure [115, 116],
which bring into question the technique of catheter‐based renal ablation [117]. Some claim that
renal denervation may have beneficial effects on the microvasculature [118], and the original
findings posited that the skeletal muscle may be a primary site of improved metabolism [114],
but have not yet been confirmed. Further, other studies have found no improvement in
endothelial function as measured by peripheral arterial tone (PAT) using Endo‐PAT [119],
though these studies acknowledge that many of the patients did not have impaired endothelial
function initially, thus no improvement may be detectable.

Regardless of the suitability of renal denervation in restoring endothelial function, other
hypertensive treatments are known to restore microvascular function, including acute Ang
receptor blockade [92]. Hypertension may therefore be linked to metabolic disease, including
muscle metabolism, through effects on the microvasculature [111].

5.2. Obesity

Obesity is typically associated with excess caloric intake, or decreased energy expenditure.
Our own studies have indicated that a high fat diet can increase both visceral and subcutaneous
fat depots and also impair muscle metabolism [120]. Elevated levels of fat can induce inflam‐
mation [121] typically through Toll‐like receptor 4. This inflammation has been detected in a
number of tissues, including the muscle and the vasculature [122], and the type of fats are likely
to affect the level of inflammation. Trans fats have been found to be particularly pro‐inflam‐
matory [123]. Saturated fatty acids, such as palmitate, activate an inflammatory response in
microvascular endothelial cells; however, the related mono‐unsaturated fatty acid did not
[109]. In one study that used palmitate to induce inflammatory pathways in microvascular
endothelial cells, transcytosis of insulin was reduced, and there was increased monocyte
migration into the tissue [109]. While these studies were carried out in microvascular endo‐
thelial cells from adipose tissue, it is possible that a similar effect occurs in muscle. These in
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vitro studies used palmitate, as it is the most abundant saturated fatty acid in the western diet
—whether these effects could also occur in vivo must be confirmed. In association with obesity,
perivascular fat accumulation in obesity may prevent appropriate vascular function, either
through mechanical impairment, vasocrine signalling or the associated inflammation [124,
125].

While there are many studies demonstrating inflammation due to lipid and high fat diet, some
show that there may be gender differences, as women do not seem to experience changes in
inflammation with lipid infusion, and also experience a lower impairment in insulin sensitiv‐
ity [126]. Yet, it is still generally accepted that plasma lipid induces endothelial dysfunction
[127], and as such, regardless of inflammation, fat may directly alter endothelial function [128]
and thus metabolism. Generally, lipids are known to cause endothelial dysfunction [129] and
to impair muscle microvascular responses [130], and obesity is associated with blunted
microvascular responses in humans [131]. Further, both visceral and subcutaneous adipose
tissue are associated with impaired capillary recruitment [132]. A number of adipokines have
been associated with effects on muscle metabolism. Adiponectin and leptin improve skeletal
muscle metabolism [133], yet perhaps counter‐intuitively, levels of adiponectin are inversely
related to fat volume. Interestingly, adiponectin can also have beneficial effects on endothelial
cells [134]. Leptin can stimulate fatty acid oxidation, and thus protect against fat deposition
[135]. However, high levels of leptin with high fat diet [136] can lead to leptin resistance,
including in endothelial cells [137]. Proinflammatory cytokines such as TNF‐α (tumour
necrosis factor‐alpha) [138] and C‐reactive protein are secreted from adipocytes and may cause
insulin resistance at high levels [139]. An effect of TNF‐α on endothelial cells is also known
[134]. Other proinflammatory cytokines such as interleukin‐6 (IL‐6) have variable effects on
endothelial function and skeletal muscle metabolism [140], and thus overall effects on
metabolism are unclear. Alterations in the secretion of adipokines and interleukins from fat
depots have been implicated in the progression of both metabolic and vascular disturbances
associated with obesity [124], and visceral fat depots have been linked to a pro‐inflammatory
state and impaired capillary recruitment in skin [132], which may reflect impaired perfusion
in skeletal muscle. Thus, obesity is associated with impaired capillary recruitment, which puts
endothelial function as a potential link between obesity and metabolic disease.

Obesity is associated with a muscle fibre type switch, promoting a more ‘white’ muscle [141].
The number of lipid droplets within muscle fibres was twice as abundant in obese compared
to lean individuals [142], and intramyocellular lipid is associated with impaired metabolism
in vivo [143]. This increased fat content may be associated with mitochondrial dysfunction
[144]; however, lipid accumulation itself may not alter metabolism [145]. For example,
endurance athletes typically have more red muscle fibres, associated with a high capillary
density, but also high intramyocellular lipid content. Obese individuals also have high
intramyocellular lipid, but less red muscle fibres and a lower capillary density, so it is likely
that intramyocellular lipid is only associated with impaired metabolism when the lipid supply
is in excess of need. While the energy and lipid oversupply in obesity may impair mitochon‐
drial function [146], the possibility that appropriate blood supply is lacking may also drive the
switch to a less efficient muscle fibre type. Obesity as measured by body mass index (BMI) is
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associated with a reduced capillary density [147], and both capillary density and muscle fibre
type are linked to metabolic disease in humans [148].

Therefore, the exact stimulus for the muscle fibre type switch in obesity is not clear—does a
change in the metabolic requirements of white muscle cause capillary drop‐out, or does the
capillary rarefaction in fact decrease the transport of oxygen and nutrients to the muscle, and
thus reduce metabolism? An interesting correlate exists in adipose tissue, where hypoxia due
to a low level of blood vessel density was originally thought to be a method to limit adipose
tissue expansion [149]. However, recent results have suggested that increased mitochondrial
content and angiogenesis in fact alter adipose metabolism to be more energy‐efficient [82]. A
similar situation may exist in skeletal muscle, such that increased capillary density and
function, as well as increases in mitochondria, may prevent an obesity‐induced switch to white
muscle fibres, and thus assist in preventing metabolic disease.

5.3. Insulin resistance and diabetes

A mixed meal increases flow to muscle capillaries in healthy lean people, and perhaps more
importantly increases muscle perfusion, yet this effect is blunted in obese individuals [150].
As the degree of microvascular surface area is related to insulin sensitivity [103, 151], this
impaired perfusion is likely to be responsible for impaired glucose disposal after the meal. In
fact, in dogs fed a high fat diet, the ability of insulin to increase the dispersion area of insulin
is impaired, and is associated with impaired glucose disposal [152]. Impaired insulin‐mediated
capillary recruitment has been detected in a range of disease models, including inflammation
[138, 140], hypertension or excessive vasoconstriction [92, 153], dyslipidemia [129, 132, 154]
and obesity in both rodents [138, 155, 156] and humans [147]. In a model of experimental insulin
resistance achieved by pancreatic venous diversion in dogs, glucose disposal rate was sup‐
pressed, the time for insulin to move into the lymph was delayed and insulin receptor activity
was impaired. The authors conclude that transendothelial transport was impaired, and was
responsible for one third of the insulin resistance observed in these animals, cellular defects
being responsible for the remaining insulin resistance [157].

In general, vascular dysfunction has been observed in prediabetes [158, 159], diabetes [99, 128,
160] and offspring from individuals with type 2 diabetes [161], which may have profound
effects on metabolic responses to insulin, as discussed above.

5.4. Complications of diabetes

As mentioned above, many of the leading causes of death associated with diabetes are related
to cardiovascular disease. While heart disease and stroke are major macrovascular complica‐
tions of disease, diabetes has many microvascular co‐morbidities, including diabetic retinop‐
athy, peripheral neuropathy and nephropathy. The endothelium has been implicated in
diabetic nephropathy [162], and the blood vessels formed in response to reduced perfusion in
retinopathy show abnormal structure and function [163]. Because of this association, diabetes
is the leading cause of kidney failure, non‐traumatic lower‐limb amputations and new cases
of blindness in adults in the United States [110]. Around 60–70% of people with diabetes have
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mild to severe nervous system damage, with 30% exhibiting impaired sensation in hands and
feet, which can lead to non‐traumatic amputation in extreme cases. Impaired blood flow may
be one of the early signs of this diabetic neuropathy [164], and denervation of the skeletal
muscle can cause muscle atrophy [165]. However, as the nervous system is partly involved in
regulating microvascular function [12], through direct or hormonal means, neuropathic
changes may also directly alter endothelial function, and therefore muscle metabolism [166].
Targeting endothelial dysfunction is therefore a viable treatment for preventing vascular
complications associated with diabetes [167], and may help prevent muscle atrophy.

6. The vascular system as a target for treatment of metabolic disease

Since insulin resistance and its associated pathologies exhibit endothelial dysfunction; it
follows that restoring blood flow patterns to normal would ameliorate at least some of the
negative outcomes. For example, several studies have suggested that insulin's haemodynamic
effects may account for a substantial amount of the metabolic outcome [168], and be impaired
in disease and obesity, contributing to the metabolic deficit [97]; therefore, restoring endothelial
function could help to improve insulin sensitivity.

Several drugs are also known to have effects on capillary recruitment. As discussed above,
Ang can alter metabolism by vasoconstriction, and thus the disruption of the Renin‐Angio‐
tensin‐Aldosterone system is likely to be a good target for treatment of any associated
metabolic disease, whether by using angiotensin receptor blockers or through angiotensin
converting enzyme inhibitors [169]. The differential expression of Ang receptors may provide
local or tissue specific effects. Irbesartan, an Ang receptor blocker, improves microvascular
responses to insulin in hypertensive individuals [92], however does not appear to induce
capillary recruitment alone. While angiotensin receptor blockers also have effects in other
tissues such as the pancreas [170], it is possible that their measured effects on insulin sensitivity
may arise from effects on the muscle microvasculature, leading to alterations in metabolism.
In support of this, studies have shown that Ang receptor blockade using losartan increases
microvascular perfusion, leading to increased insulin delivery to muscle, and protecting
against lipid‐induced insulin resistance, thus protecting insulin's metabolic effects [171]. It is
also important to note that these effects may not just be driven by plasma levels of vasocon‐
strictors, but also the receptor expression, as a change in expression of Ang receptor subtypes
may alter endothelial function [86], and thus indirectly alter metabolism [93].

Phosphodiesterase (PDE) inhibitors were originally investigated as a possibly microvascular
treatment that may increase metabolism. Studies on sildenafil have shown an effect to increase
NO and induce arteriolar dilation [172], an effect that is now used in treatment of erectile
dysfunction. Tadalafil, a PDE‐5 inhibitor, increased capillary recruitment and also increased
forearm glucose uptake in women with type 2 diabetes, possibly due to its effects on the
microvasculature, though had no effect in healthy women [40]. These microvascular and
metabolic effects have led to the proposal that tadalafil may be investigated as a treatment in
insulin resistance [173], and this class of drugs have also been investigated in the setting of
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muscular dystrophy; however, some have shown a direct effect on the myocyte to alter
metabolism [174], so studies using this drug to link muscle microvascular function and
metabolism are limited.

Some drugs, such as the thiazolidinediones, are known to have effects on blood flow and
vasodilation [175, 176]. Some of this class of drugs can increase capillary density through
angiogenesis [177], which may contribute to the beneficial metabolic effects of these drugs.
However, while improvements in NO bioavailability are seen, this causes only minor effects
on skeletal muscle blood flow [178]; and one review has indicated that while the effects of this
class of drugs on macrovascular disease are well known, the microvascular effects, particularly
to prevent the development of microvascular complications of diabetes, are less impressive
[178]. While the thiazolidinediones may be protective in early cardiovascular disease, effects
in end‐stage atherosclerosis are deleterious [179] and so far data are lacking to indicate any
substantial effects on the muscle microvascular to improve metabolism.

The glycocalyx may be considered another target for treatment. This dynamic structure is
proposed to be involved in regulating metabolism [30–32], and is impaired by hyperglycemia,
ischemia and other aspects of aging and type 2 diabetes [31, 32, 180, 181]. Thus, some have
highlighted the glycocalyx as a potential therapeutic target for treatment in the acute care
critical situation, long‐term vascular health [182], as well as potentially in regulating metabo‐
lism; however, specific interventions are so far limited. Methods of protecting or restoring the
damaged glycocalyx include synthesis of components or protection against enzymatic
degradation, as well as blocking free radical production [182]. Some suggested pharmacolog‐
ical interventions have included infusion of albumin to maintain stability, inhibiting TNF‐α,
preventing enzymatic attack through use of anti‐thrombin, or inhibition of mast‐cell degra‐
nulation, though these strategies require further investigation [182].

A recent potential target for treatment of metabolic disease and energy excess is brown adipose
tissue (BAT), which dissipates excess energy as heat from the body. BAT is scarce in humans,
yet browning of white adipose tissue to form beige fat increases energy expenditure. Factors
that affect brown adipose tissue, such as exercise, cold exposure and PGC1a (Peroxisome
proliferator‐activated receptor G coactivator‐1 alpha), also can induce changes in skeletal
muscle, and some studies have suggested that skeletal muscle may actually play a large role
in these increases in energy expenditure [183]. There are several important components to
increase the thermogenic capacity of a tissue: there must be an increase in mitochondria to
metabolize glucose, uncoupling or proton leak to dissipate the energy, and an adequate supply
of oxygen and glucose to cause this aerobic respiration. The angiogenesis that occurs during
adipose tissue browning increases oxygen delivery, and we therefore hypothesize that blood
vessels are an essential component of increased thermogenesis. This role of angiogenesis has
not been completely studied; however, it has been shown that vascular endothelial growth
factor‐A (VEGF‐A) overexpressing transgenic mice have increased vascularization and
upregulated uncoupling protein‐1 (UCP‐1) and PGC‐1a in BAT, and improves deleterious
effects of high fat diet on metabolism [184]. From a metabolic perspective, overexpression of
VEGF in adipose tissue protects against obesity and insulin resistance [82], even in the absence
of changes in mitochondrial content and uncoupling, increased functional capillary density
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by angiogenesis can increase metabolism. Skeletal muscle may undergo a process similar to
browning of fat, leading to greater energy expenditure, and thus may be a target for treatment
of obesity and its metabolic complications. In general, angiogenesis is likely to be a key player
in increased oxidative capacity and energy expenditure in adipose tissue and muscle. If
angiogenesis were also linked to increased mitochondrial content, causing a switch to a more
‘red’ muscle, and with potential effects on uncoupling in muscle, even greater energy con‐
sumption would occur.

Thus, there are many drugs and possibly other interventions that may target the muscle
microvasculature, but simultaneously impact metabolism in muscle. In addition, factors that
can change the basal or stimulated metabolic rate in muscle, by promoting angiogenesis or
increased capillary density, may also have the potential for treating diseases associated with
obesity and energy excess.

7. Conclusion

Metabolism in skeletal muscle, and in many other tissues, relies on appropriate delivery of
oxygen and metabolites by the blood. The microvascular system is a major component in the
delivery of any hormone, and should be considered in any endocrine disease. The muscle
microvasculature is a dynamic system that can be altered by a wide range of factors, including
vasoconstrictors and vasodilators, the nervous system, inflammation, obesity and other disease
states. Thus, endothelial function is integral to regulating metabolism, in skeletal muscle and
other tissues, and may be a target for treating not just diseases of the vascular system and
cardiovascular disorders but also for treatment of metabolic diseases such as diabetes.
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