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Abstract

Optical spectroscopy methods have had considerable impact in the field of biomedical
diagnostics, providing novel methods for the early or noninvasive diagnosis of various
medical conditions. Among them, fluorescence spectroscopy has been the most widely
explored mainly because fluorescence is highly sensitive to the biochemical makeup of
tissues.  It  has been shown that  tumors were easily detected on account of  altered
fluorescence properties with respect to fluorescence of ordinary tissue. Breast cancer is
one of the most commonly diagnosed cancers among women in the world and also it is
one of the leading causes of deaths from cancer for the female population. However,
when detected in early stage, it is one of the most treatable forms of cancer. Therefore,
fluorescence  technologies  could  be  highly  beneficial  in  early  detection  and timely
treatment of cancer. This chapter presents main results and conclusions that have been
reported on the use of fluorescence spectroscopy for the investigation of breast cancer.
It also gives an overview on the instruments and methodology of measurements, on the
main endogenous fluorophores present in tissues, on the tissue fluorescence, and on the
statistical methods that aid interpretations of fluorescence spectra. Finally, examples of
using various fluorescence techniques, such as excitation, emission and synchronous
spectroscopy, excitation-emission matrices, and lifetimes, for the breast cancer diagnosis
are presented.

Keywords: fluorescence, breast cancer, fluorophores, tissue fluorescence, cancer diag-
nosis

1. Introduction

According to World Cancer Research Fund International (WCRFI), 1.7 million women have been
diagnosed with breast cancer in 2012 [1]. With 25% share of all diagnosed cancers, breast cancer
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is a leading malignant disease in female population throughout the world. It is also present in
male population, but with about 100 times less incidence that is fairly stable over the last 30
years. Breast cancer incidence is highest in North America, West Europe, and Oceania (in highly
developed countries); in 2012, record-high values of age-standardized rate per 100,000 were
recorded in Belgium (111.9) and Denmark (105.0). Breast cancer is age- and hormone-status–
related, being highest for woman 50–70 years old. Fortunately, prognosis is very good for early
diagnosed disease. Five-year survival rate (see Table 1) is 100% for 0 and I stage conditions [2].
Therefore, the early diagnosis of breast cancer (and also all cancers) is a key for the successful
treatment. On the other hand, in the absence of any early detection or screening and treatment
intervention, patients are diagnosed at very late stages when curative treatment is no longer an
option [3].

Stage 0 I II III IV

5-year survival rate 100% 100% 93% 72% 22%

Table 1. Five-year survival rate of patients diagnosed with breast cancer of different stage.

Generally, tumor-observing methods can be categorized to screening, diagnostic, and moni-
toring tests. Clinical breast examination, mammography, and ultrasonography are the most
common methods used for screening. Clinical examination by a specialist is usually the first
step in breast cancer detection. However, this test is quite subjective and the results depend
on the experience and skill of the examiner and most importantly, it does not detect small-size
tumors. Mammography is the most cost-effective test, but with moderate sensitivity of 67.8%
and specificity of 75%. Mammography combined with clinical breast examination slightly
improves sensitivity (77.4%). For screening, ultrasonography is usually recommended to
younger persons (premenopause), but it fails to detect microcalcifications and shows poor
specificity (34%). Modern imaging techniques, such as positron emission tomography (PET),
magnetic resonance imaging (MRI), and computed tomography (CT) are important tools for
cancer detection and treatment. Some important features of the most common breast cancer
tests are listed in Table 2.

Medical diagnostics of breast cancer based on optical spectroscopy and optical imaging are in
the early stage of development in comparison with the traditional methods. But the need for
sensitive and early cancer detection along with advances in technology played, and still plays,
an essential role for the extensive research in this field. For example, lasers have provided a
new technology for excitation, and microchips and miniaturized sensors have eased signal
detection, while optical fibers have transformed the ways of access to the object of examination.
The most attention among a variety of optical techniques is given to fluorescence, Raman
spectroscopy, diffuse reflectance, elastic scattering spectroscopy, Fourier transform infrared
microspectroscopy, near-infrared imaging, and optoacoustic tomography. These techniques
offer several principal advantages over the traditional methods, including (a) noninvasiveness
through the use of safe, nonionizing radiation, (b) display of contrast between soft tissues based
on optical properties, and (c) a facility for continuous bedside monitoring. Detailed description
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of optical methods in cancer research is beyond the scope of this chapter, which is devoted to
fluorescence techniques. Those interested in more information on this subject can read some
of topical books (e.g., Biomedical Photonics Handbook edited by T. Vo-Dinh [4]).

Method Benefit Deficiency

Clinical Breast

Examination

no equipment needed highly subjective, large FP and FN values

Mammography suitable for screening large FP and FN values, use of X-ray

radiation

Ultrasonography use of non-ionizing radiation, noninvasive,

able to analyze lesions in dense breasts

large FP and FN results, not sensitive

enough

Magnetic Resonance

Imaging (MRI)

able to detect small DCIS, use of

non-ionizing radiations

expensive, can not be used with patients

with metal implants

Computed tomography

(CT)

painless, noninvasive, accurate expensive, use of X-radiation

Positron Emission

Tomography (PET)

can indicate cancer from disordered

metabolism,accurate

expensive, allergic reactions to RP, use of

injection RP

Note: FP – false positive, FN – false negative, RP – radioactive pharmaceutic, DCIS – ductal carcinoma in situ.

Table 2. Some important features of the most common breast cancer tests.

In the past several decades, fluorescence spectroscopy has been applied to many different types
of samples, ranging from individual biochemical species to organs of living people. It has been
applied so far for almost every type of cancer, both in- and ex vivo, and it has demonstrated
advantages over other light-based methods in terms of sensitivity, speed, and safety. Since the
early twentieth century, it is known that tissues fluoresce when exposed to light of a suitable
wavelength and that infiltrating tumors can be detected on account of altered fluorescence
signals. These alternations are the result of the exceptionally high sensitivity of fluorescence
on the biochemical makeups of tissues, and are premise for the diagnoses of tissue pathologies
by fluorescence. Tissue fluorescence comprises emissions of a number of natural fluorophores
(endogenous fluorophores) that have unique spectral characteristics when excited with
ultraviolet or visible light. Among them, regarding fluorescence, the most important are
tryptophan, reduced nicotinamide adenine dinucleotide (phosphate) (NAD(P)H), elastin,
collagen, flavins, and porphyrins. The changes in the concentrations and microenvironments
of fluorophores alter tissue fluorescence to a sufficient extent to detect metabolic and patho-
logical changes related to precancerous and cancerous growth, even though fluorescence
measurements are not capable of detailing structural changes in tissues. The fluorescence of
tissue and tissue fluorophores are discussed later in detail in a separate section.

It is impossible to present beauty, complexity, versatility, and usefulness of fluorescence in a
single chapter. Many good treatises could be used for this purpose [5–7]. Thus, with this chapter
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we intended to provide an overview of applications of fluorescence spectroscopy for the breast
cancer diagnosis. This application is a small part of the extremely large and growing field of
biomedical fluorescence. To do so, brief descriptions of basic principles of fluorescence,
instruments, and techniques are given in Section 2. Tissue fluorescence, management, and
interpretation of fluorescence data are explained in Sections 3 and 4. Fluorescence measure-
ments ought to be subjected to mathematical quantification and interpretation for obtaining
appropriate data for cancer diagnosis. Useful mathematical tools, mainly modern statistical
tools, are described in Section 5. Examples of applications are given in Section 6, and they are
selected to cover most of the fluorescence techniques listed in Section 2. These examples are
mainly drawn from our own work, simply because we are most familiar with them.

2. Fluorescence spectroscopy methods and instrumentation

Photoluminescence is the physical process of light emission from any substance that has not
been heated and takes place from the electronically excited states. Depending upon the nature
of the excited state, luminescence can be strictly divided into two types, fluorescence and
phosphorescence. Fluorescence is a rapid and spin-allowed emission of light from singlet
excited states, while in phosphorescence emission of light comes due to spin-forbidden
transitions from triplet excited states to the ground state. The fluorescence process, depicted
in Figure 1, is ruled by three important events: (1) excitation of a molecule by an incoming
photon from the ground state S0, (2) vibrational relaxation of S1’ excited state electrons to the
lowest excited energy state S1, and, finally, (3) emission of a lower-energy photon and return
of the molecule to the ground state.

Figure 1. One form of a Jablonski diagram explaining the process of fluorescence.

Fluorescence measurements are the core of any fluorescence technology, and they are presently
widely utilized by scientists from many disciplines. Depending on the temporal nature of
excitation and detection, fluorescence measurements can be classified as steady-state (imple-
mented with constant illumination and observation) and time-resolved (performed with
pulsed excitation). Generally, steady-state measurements are simpler than time-resolved since
they require less complex instrumentation and are easier for interpretation. Also, they are
sufficient for many applications, so they are more common in practice. However, being simply
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an average of time-resolved phenomena, steady-state measurements do not account all of the
molecular information imparted to fluorescence. Characteristic examples are information on
the distribution of emission decays or the nature of fluorescence quenching.

Fluorescence measurements can also be classified according to the type of observed data.
Emission spectra are obtained by recording emission intensity over the spectral range of
interest for the fixed energy of excitation. Excitation spectra are created by measuring the
variation of emission intensity at the fixed energy (wavelength) while changing excitation
energy in the desired spectral region. Generally, these spectra are symmetric (mirror image)
because the same transitions are involved in both absorption and emission, and similar
vibrational levels are present in both ground and excited state. Certainly, many exceptions may
occur, but their explanation is beyond the scope of this chapter. Synchronous fluorescence
method involves simultaneously scanning both emission and excitation wavelengths while
maintaining the interval constant between emission and excitation (constant-wavelength
mode) or maintaining the frequency gap constant (constant-energy mode). When selected
interval corresponds to the difference between the excitation and emission maxima of a specific
molecule, the emission of that molecule is maximally intensified in the measured spectrum.
Consequently, synchronous luminescence spectra have sharper spectral characteristics than
conventional, characteristics that are particularly valuable for discrimination between different
biological tissues.

Biological materials are complex and comprise many different fluorophores, chromophores
(molecules that absorb light but do not emit one), and light scatters. Because of that, the
measurement of a single spectra, either emission or excitation or synchronous, is sometimes
insufficient for the analyses and diagnostics. In this case, more comprehensive measurements
are required to thoroughly combine excitation and emission features of tissue; commonly, this
type of measurement is referred as multidimensional fluorescence measurement. Excitation-
emission matrices (EEMs), also termed excitation-emission landscapes, are the most widely
used type of multidimensional measurements. They combine in a three dimensional (3D) space
the set of emission spectra excited by the light of different wavelengths. One can say the EEM
of a sample is its characteristic fluorescent fingerprint, taking that the majority of the fluores-
cence characteristics of the sample are included in EEM. Alternatively, three-dimensional total
synchronous fluorescence spectroscopy (3D-TSFS) can be used for the same purpose. During
3D-TSFS measurements, a series of SFS spectra are recorded for a range of synchronous
intervals; therefore, 3D-TSFS is a multidimensional extension of SFS. The term “three-
dimensional” refers to the space defined by the excitation or emission wavelength, synchro-
nous interval, and the fluorescence emission intensity.

For medical diagnostics, measurements of quantum yield, polarization, and excited state
lifetime may also be valuable. Quantum yield is the ratio of the number of photons emitted
from fluorophore to the number of photons absorbed. Polarization gives information on the
movement of fluorophore, if there is any, during the time between the absorption and emission
of light, namely during the excited state lifetime.

To stimulate and measure fluorescence from a sample, one needs to use instrument with five
basic components: (1) light source, (2) wavelength selector elements on the excitation and
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emission paths to/from sample, (3) sample holder/positioner, (4) polarizers, and (5) detector
(Figure 2).

Figure 2. Five basic components of spectrofluorometer.

Polychromatic light from light source is dispersed on a dispersing element from which light
beam of selected wavelength is directed on a sample to excite fluorescence. Most frequently,
Xe arc lamps are used. These days, deuterium, tungsten, or halogen lamps are rarely utilized
for excitation, since they are relatively weak sources for fluorescence. Lasers, laser diodes, and
light-emitting diodes (LEDs) are also frequently used. They produce intense monochromatic
light, so there is no need for the wavelength-selecting element on the excitation path. The
drawback is that excitation spectra cannot be measured with these light sources. Tuneable and
supercontinuum lasers are an exception, which can produce emissions over the given spectral
interval, but these are rather expensive devices. Light dispersion can be accomplished with
prisms and diffraction gratings; the latter is dominantly used in the modern spectrofluorom-
eters. The detector can be either single-channeled or multi-channeled. The single-channeled
detector, usually photomultiplier tube (PMT) or semiconductor, detects the intensity of one
wavelength at a time. Multi-channeled detectors, such as charge-coupled device cameras
(CCDs), record the intensity of emission over the range of wavelengths simultaneously. In
addition, modern instruments include some other important components, such as polarizers,
filters, and optical fiber connectors. Laboratory spectrometers are complex and robust devices
capable of versatile and sensitive measurements. However, for many applications, and for the
convenience and mobility of measurements fluorimeters can be designed as miniaturized
devices. These devices are particularly suitable for clinical investigations of tissue fluorescence
[8].
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3. Breast tissue fluorescence

Native fluorescence (autofluorescence) of breast tissue comes from a number of fluorescent
biochemical species (fluorophores) whose excitations and emissions are strongly influenced
by the absorption and scattering of tissue components. Since the latter processes are both
depth- and wavelength-dependent, the observed tissue fluorescence is subject not only to the
concentration and microenvironment of fluorophores, absorbers (chromophores), and scatters
but also it substantially depends on the geometry of excitation and observation.

The breast, or mammary gland, is an organ composed of four major structures: skin, subcu-
taneous tissue, breast tissue, and the nipple centered on the round pigmented skin area
(areola). In the breast tissue, distinct optical characteristics show glandular, adipose (fat), and
fibrous tissue. The differences in autofluorescence of these tissues come from the structural
and compositional differences of which the concentration of fluorophores and their distribu-
tion has the largest influence. Most fluorophores are associated with the structural matrix of
tissues, such as collagen and elastin, or are involved in cellular metabolic processes such as
reduced nicotinamide adenine dinucleotide (NADH) and flavins. Other fluorophores include
the aromatic amino acids (e.g., tryptophan, tyrosine, phenylalanine), various porphyrins, and
lipopigments (e.g., ceroids, lipofuscin) that are the end products of lipid metabolism [9].
Absorption and fluorescence emission spectra of the most important tissue fluorophores are
shown in Figure 3. The excitation (λex), emission (λem), and absorption (λab) maxima for some
important tissue fluorophores are given in Table 3.

Figure 3. Absorption (A) and fluorescence emission (B) of the most important fluorophores present in tissue. (Adapted
from Wagnières et al. [9] with permission of John Wiley and Sons).
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Endogenous fluorophore λex (nm) λem(nm) λab(nm)

Amino acids

Tryptophan 280 350 280

Tyrosine 275 300 275

Phenylalanine 260 280 257

Structure proteins

Collagen 325 400,405 325

Elastin 290,325 340,400 325

Coenzymes

FAD, flavin 450 535 450

NADH 290,351 440,460 260

NADPH 336 464 340

Vitamins

Vitamin A 327 510 300 - 350

Vitamin K 335 480 249

Vitamin D 390 480 280

Vitamin B6 complex

Pyridoxine 332,340 400 291

Pyridoxamine 335 400 -

Pyridoxal 330 385 -

Pyridoxal 5'-phosphate 330 400 -

4-Pyridoxic acid 315 425 307

Vitamin B12 275 305 361

Lipids

Phospholipid 436 540,560 234

Lipofuscin 340-395 540,430-460 335, 435

Ceroid 340-395 430-460,540 -

Porphyrin 400-450 630,690 408

Table 3. Tissue fluorophores and approximate values of their excitation (λex), emission (λem), and absorption (λab)
maxima.

Regarding breast cancer, it has been shown that distinct fluorescence response of tumors
compared to one ordinary tissue is a result of notable differences in concentrations of collagen,
elastin, NADH, and flavin adenine dinucleotide (FAD) [10]. Generally, fluorescence measure-
ments have indicated lower concentrations of collagen and FAD and increased concentrations
of NAD(P)H in malignant tissues compared to normal breast tissue [11]. Transformation from
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normal to malignant tissue leads to degradation and changes in the cross-links of collagen;
breaking the cross-links in collagen is a consequence of the increased presence of collagenase
in the tumor cells [12]. Modulation of the extracellular matrix is a common characteristic of
invading tumor cells and usually involves increased production of collagenases by the tumor
cells or stromal fibroblasts [13]. It has also been shown that the changes in the metabolic status
of tissue have influence on the variation in concentrations of both NADPH and NADH. A shift
from aerobic to anaerobic metabolism accompanied with damaged mitochondrial metabolism
caused by malignant alterations leads to an increased concentrations of electron carriers such
as NADH. Increased levels of these coenzymes have been observed in a high-grade malignant
tissue [12, 14].

4. Interpretation of tissue fluorescence data

As in all fluorescence measurements, acquiring experimental data on tissue fluorescence is
associated with procedural and instrumental/technical difficulties. One should note that unlike
some other types of spectroscopy measurements, for example, absorption measurements, the
intensity of recorded fluorescence signal and the shape of spectra strongly depend on the
characteristics and settings of the instrument. One can see later in the text that establishing
diagnosis from fluorescence measurement can be successfully done only if data were acquired
from a statistically significant number of samples. With this in mind, each study related to
tissue fluorescence should be done on a single instrument and with exactly the same instru-
ment settings (such as PMT voltage and monochromator slit widths) for each sample. Even so,
if measurements are done over the longer times some of instrument characteristics may change,
such as the strength of the excitation lamp. Samples most frequently have different surface
morphologies and can be differently or partly illuminated when they are small sized. All of
this may produce unwanted artificial differences in fluorescence spectra, commonly in the
intensity of observed signal. Normalization of measured spectra may resolve this problem;
however, there is no universal method or procedure for this task. For ex vivo measurements, it
is important to note that all excised tissues change over the time. The fluorescence measure-
ments on different tissue samples should be done, in principle, at the similar time interval after
excision.

It is also important to keep in mind distinction between technical (uncorrected for instrument
characteristics) and molecular (corrected) spectrum. Modern instruments commonly produce
both types of spectra. In most cases, technical emission spectra are sufficient for the analysis
and presentation. However, when it is important to compare emission spectra obtained on
different instruments, corrected spectra must be used. Excitation spectra, and conversely SFS,
EEMs, and 3D-TSFS, are more instrument-dependent, being largely influenced with spectral
characteristic of excitation sources. These spectra are, therefore, analyzed and presented after
corrections. In addition, spectra may contain features that originate from physical processes
apart from fluorescence, such as Rayleigh and Raman scatters, which should be excluded from
subsequent analyses.
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Fluorescence spectra of tissues are generally poorly resolved since they are composed from a
broad emission of many fluorophores and affected by strong re-absorption processes. When
needed, better-resolved spectra can be achieved with synchronous scanning.

5. Mathematical tools for fluorescence-based diagnosis of breast cancer

To draw conclusions from experimental data of tissue fluorescence measurements, these data
ought to be interpreted using adequate mathematical methods, most frequently statistical
methods. Even if one analyze fluorescence from a single type of tissue, one must take into
account that tissue characteristics considerably differ between individuals, statistically
speaking they exhibit “a large in-group variances”. For this reason, proper analysis is achieved
only if it is done on a statistically significant number of samples and measurements. The
differences in fluorescence, for example, differences in wavelengths of emission maxima,
integrated emission intensities over some spectral range, excited state lifetimes, etc., between
groups of different-type tissues can be asserted by methods of exploratory data analysis, one
of which is hypothesis testing. One-tailed and two-tailed t-tests are commonly used to find if
there is a statistically significant difference between the mean values of analyzed parameters
in two data groups. Analysis of variance (ANOVA) and Tukey’s test are used when more than
two groups of data should be compared and studied. ANOVA is considered the most used
and most useful statistical technique in biomedical research, even though this method is not
easy to learn and should be implemented with caution.

Frequently, data from measurements of tissue fluorescence are vast, especially in cases of EEM
and 3D-TSFS measurements. The size of data can be significantly reduced without loss of
variance using some of statistical tools available for reducing the dimensionality. Principal
component analysis (PCA) is a common tool for this purpose, and it is also capable of revealing
hidden structures in a data set. Generally, PCA is used to recognize the main variations in a
data set in an unsupervised way. It is also able to study these variations and to aid in visualizing
them. PCA transforms and compresses input variables, which may be correlated, into uncor-
related variables of fewer numbers in such a way that they preserve the majority of variance
of the input data. These new variables are called principal components (PCs) and they are
obtained by a linear orthogonal transformation of input variables, so that each PC is, in fact,
the linear combination of inputs. The largest portion of the input data variance is accumulated
in the first PC, then less variance in the second PC, and so on. Then, for further analyses, one
can use just few PCs, which help to alleviate numerical problems associated with large data
sets and enable efficient visualization and interpretation of data.

Many features of fluorescence differ between healthy and cancer tissues; the selected examples
are shown and discussed in the following section. Even though fluorescence measurements
contain information needed for the cancer diagnosis, the observed data are subtly related in
ways that are often difficult to express in the form of diagnostic rules just by observing spectra
and must be processed for tissue classification purposes. To do so, mathematical algorithms
ought to be developed and optimized to classify tissues into their respective histological
categories. Several methods have been successfully used for this purpose.
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Linear discriminant analysis (LDA) can be used for the discrimination of two or more groups
from one or more linear functions (latent variables) of input data. As a consequence of
singularity problems (caused by fewer samples in group than variables or highly correlated
variables), LDA is incapable of solving high-dimensional data problems. In such cases,
reduction of data dimensionality is required for the successful application of LDA.

Partial least squares (PLSs) discriminant analysis (DA) is a method based on the PLS regression,
which constructs linear discriminant models with no restriction for processing high-dimen-
sional data. Input data are transformed by the PLS-DA into a set of linear components (latent
variables) further used to predict the dependent variable. The dependent variable is in fact a
dummy variable that only serves to show whether a particular sample belongs to the specific
class. With the LDA model, one is able to perform classification of data, that is, to predict the
class to which new, unknown samples belong.

Artificial neural network (ANN) is a model used to approximate unspecified relations between
a large number of input data in a robust manner. ANN learns from data, so it can be regarded
as a machine-learning method and is able to handle a variety of problems including complex
ones such as those involved in medical diagnostics. For example, ANNs can perform data
classifications in both a supervised and unsupervised way, that is, both with prior knowledge
of the data class and without. Unlike human decisions, those made by ANNs are invariably
consistent since they are not liable to suffer from fatigue or bias. Kohonen’s self-organizing
map (SOM) and feed-forward neural network (FFNN) are among the most popular neural
network architectures. SOM converts high-dimensional nonlinear statistical relationships into
simple geometric relationships in an unsupervised way. On the other hand, FFNN uses a
supervised training method which requires data on sample’s group membership entered along
with other data at the network inputs.

Support vector machine (SVM) is a statistical technology developed by the machine-learning
community that can be used for both classification and regression. Compared with other
machine-learning methods, SVM has such advantages as it does not require a large number of
training samples for developing model and is not affected by the presence of outliers. Having
high generalization procedure and feasibility to extract higher order statistics, the SVM has
become extremely popular in terms of classification and prediction. In the context of classifi-
cation, SVM is transforming original data space into a much higher dimension space in which
classification groups would be linearly separable. For the data that belong to one of two classes
(binary classification), SVM aims to derive the hyperplane in the transformed space so that the
data of one class are on one side of the plane, and the data of other class are lying on the other
side of the plane. The position of the hyperplane should be such that the greatest possible
fraction of data is correctly placed and that the distance of both classes from the hyperplane is
maximal. Such conditions minimize the risk of misclassifying data.

The performance of binary classification, the most probable classification case in breast cancer
diagnoses, can be evaluated from a receiver operating characteristic (ROC) curves. The ROC
curve is in fact graphic that shows the performance of a classification at different discrimination
threshold values. It helps in finding how good classification model discriminates samples
belonging to the particular group from all other samples. To construct the ROC, sensitivity and
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specificity of the model are calculated for different threshold values and plotted. Generally, an
excellent model has an area under the ROC curve between 0.9 and 1.

Some other mathematical tools may also be useful for the study of breast cancer fluorescence.
We believe that it is important to mention parallel factor analysis (PARAFAC) since this method
is capable of modeling florescence response of complex fluorescence systems, the category in
which all biological systems fall. Nowadays, PARAFAC has commonly used with EEMs in the
analysis of fluorescence in many fields since it is a multi-way decomposition method capable
of analyzing complex high-dimensional data and perform second-order calibration. Its main
advantages are the uniqueness and simplicity of its solutions. When the correct number of
components and multilinear data are used to build the PARAFAC model, the true underlying
phenomenon is revealed. An additional advantage of this form of analysis is that it can predict
the concentrations of different chemical compounds in complex systems, a phenomenon
known as second-order advantage. For these reasons, PARAFAC is used to detect fluorophores
in multi-component systems and precisely calculate their concentrations.

6. Examples of applications of fluorescence spectroscopy in breast cancer
research

So far, different types of fluorescence measurements have been employed for the breast cancer
diagnosis and they are listed in Table 4 along with comments on the used instrumentation and
obtained sensitivity and specificity of detection.

Measurement type Instrumentation specifics Measurement setup

(nm)

SE, SP

(%)

Comment Ref.

Emission spectra Argon laser Ex 457.9, 488

Em 460-700

- Ex vivo [15]

Emission spectra N2 laser Ex 337

Em 360-560

99.6,

99.6

Ex vivo [16]

Excitation spectra lamp-based spectrophotometer Ex 250-320

Em 340

> 90, - Ex vivo [17]

Emission spectra N2 laser Ex 458

Ex 480-700

100,

100

Ex vivo [18]

EEM lamp-based spectrophotometer with fiber

optics probe

Ex 300-460

Em 310-600

70,

91.7

Ex vivo [19]

EEM lamp-based spectrophotometer Ex 260-540

Em 275-700

- MDA231

MCF10

T47D cell

line

[20]
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Measurement type Instrumentation specifics Measurement setup

(nm)

SE, SP

(%)

Comment Ref.

EEM lamp-based spectrophotometer Ex 335-470

Em 430-640

83.9,

88.9

Ex vivo [11, 21]

3D-TSFS lamp-based spectrophotometer 330-650,

Δλ 30-120

100,

100

87.1,

91.7

Ex vivo [10, 26]

[27]

Synchronous

spectra

lamp-based spectrophotometer Ex 340-650

Δλ 30, 80

93.3,

91.9

Ex vivo [22]

Polarized

fluorescence

spectra

Argon laser Ex 488

Em 540-700

92.6,

91.2

Ex vivo [23]

Emission spectra laser diode

Argon laser Ex

Ex 405, 458

Em 428-700,

Em 470-750

- In vivo [8]

Synchronous

spectra

lamp-based spectrophotometer Ex 250-650

Δλ 40

90, 79 Ex vivo [24]

Lifetime Supercontinuum pulsed laser Ex 447

Em 532, 562,

632, 684

89.8,

93.8

Ex vivo [25]

Note: Ex – excitation, Em – emission, Δλ – synchronous interval, SE – sensitivity, SP – specificity.

Table 4. Fluorescence methods used for breast cancer diagnosis.

6.1. Breast cancer diagnosis using emission and excitation spectra

The first report on the characterization of human breast tissues by fluorescence emission
spectroscopy has been published by Alfano et al. [15] They have obtained normal and
cancerous breast tissues from two different individuals and have measured emission spectra
(460–700 nm) after excitation with an argon ion laser (at 488 and 457.9 nm). However, the
assessment of method’s capability for diagnosis has been impossible because of small number
of investigated samples. Gupta et al. [16] have measured N2 laser-excited (337 nm) emission
spectra (360–560 nm) from different sites on benign (fibroadenomas, 35 patients), cancerous
(ductal carcinomas, 28 patients), and normal specimens (the uninvolved areas of the resected
cancerous specimens). Intensities of emission were much higher from cancerous sites com-
pared to those of benign tumor and normal breast tissue sites (Figure 4). In this ex vivo study,
cancer tissues have been discriminated from benign and normal ones with a sensitivity and
specificity of up to 99.6% using absolute intensity of emission (with aid of stepwise multivariate
linear regression statistical method).
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Figure 4. Mean emission spectra from 245 cancerous (C), 230 normal (N), and 436 benign (B) breast tissue sites. (Adapt-
ed from Gupta et al. [16] with permission of John Wiley and Sons.)

Yang et al. [17] have reported the use of excitation spectra for breast cancer detection. They
have measured excitation spectra in the 250–320-nm spectral region recording emission at 340
nm from 103 malignant and 63 benign breast tissues. The averaged spectra and their difference
(Figure 5) distinct spectral features can be clearly evidenced. Authors have estimated above
90% sensitivity and specificity of cancer diagnosis for this method.

Figure 5. Averaged excitation spectra for emission at 340 nm from 103 malignant and 63 breast tissues. D is the differ-
ence spectrum (M – B). B is benign; M is malignant. (Adapted from Yang et al. [17] with permission of John Wiley and
Sons.)

6.2. Breast cancer diagnosis using EEMs

Considering that EEMs incorporate more information pertinent for the breast cancer diagnosis
than the single emission or excitation spectra, several studies have been conducted using this
method (see Table 4). Palmer et al. [19] have measured EEMs (excitation range: 300–460 nm;
emission range: 310–600 nm) of 20 malignant, 15 normal/benign fibrous, and 21 adipose tissue
samples. They have found four peaks in the spectra of malignant and normal/benign fibrous
tissues which occurs in similar locations (excitation/emission pairs of (300, 340), (340, 390), (360,
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460), and (440, 520) nm). The spectra of adipose tissue were distinctively different; particularly,
the peak at (340, 390) nm was weakly present and the peak at (360, 460) nm has been shifted
to approximately (360, 520) nm. Using PCA as a data reduction technique and SVM for
classification, authors have showed that EEM was successful in discriminating malignant and
nonmalignant tissues with a sensitivity and specificity of 70% and 92%, respectively.

6.3. Breast cancer diagnosis using SFS and 3D-TSFS

Synchronous spectrum, in majority of cases, has more features and provides more information
than the conventional emission or excitation spectra. This comes as a result of simultaneous
acquisition of both excitation and emission spectral characteristics of the sample, which brings
more information to a single spectrum. It has been shown that SFS measurements have better
selectivity and decreased bandwidths than emission or excitation spectra. For these reasons,
they can be used to detect fine differences in the fluorescence of complex systems. Dramićanin
et al. [22] have measured SFS with different synchronous intervals on 21 normal and 21
malignant breast tissue samples. The largest differences between spectra have been found for
synchronous intervals of 30 and 80 nm, Figure 6. Diagnostic criteria have been established
from the areas below different spectral peaks and from the ratios of these areas. The first

Figure 6. Synchronous fluorescence spectra taken with (a) 30 nm and (b) 80 nm synchronous intervals; the average
spectra of 21 normal breast samples and 21 malignant are represented with the red and blue lines, respectively; dashed
lines stand for the raw spectra and full lines for those additionally normalized. (Adapted from Dramićanin et al. [22].)
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criterion yielded a sensitivity of detection of 77.4% and a specificity of 86.1%, while the second
one presented a sensitivity of 90.3% and a specificity of 94.4%.

3D-TSFS and first derivate 3D-TSFS spectra have been measured on the same samples [10],
and showed significant differences between normal and malignant tissues. Based on these
differences, an artificial neural network (SOM) diagnosis method has been established [26],
which provided a sensitivity of 87.1% and a specificity of 91.7% when using 3D-TSFS data, and
100% sensitivity and 94.4% specificity when using first derivate 3D-TSFS data. Diagnosis based
on the use of support vector machine algorithm provided 100% specificity and sensitivity for
both 3D-TSFS and first derivate 3D-TSFS [27].

6.4. Breast cancer diagnosis using lifetime and polarization measurements

In contrast to emission or excitation measurements, excited state lifetime measurements are
not affected by the morphology of specimen and geometry of the measurements. Therefore,
no normalization procedures are needed to compare results obtained with different instru-
ments, which is quite important for the applicability of derived diagnostic methods. Sharma
et al. [25] have measured fluorescence lifetimes at multiple emission wavelengths (532, 562,
632, and 644 nm) under excitation at 447 nm on 93 sites from 6 specimens (34 infiltrated ductal
carcinoma, 31 benign fibrous, and 28 adipose sites). They have found that lifetime values
measured at 532 and 562 nm significantly differ between normal and malignant sites, and
achieved 92.3% accuracy for classifying infiltrated ductal carcinoma.

Choi et al. [23] have performed analysis of parallel and perpendicularly polarized fluorescence
from 36 normal and 36 cancerous tissue samples. First, they have performed random forest
algorithm to the four data sets: the fluorescence intensity and the curvature features for parallel
and perpendicular components. Then, SVM classifiers were designed using the significant
features from the random forest algorithm, which provided >90% specificity and sensitivity of
breast cancer detection.

7. Conclusion

To conclude, fluorescence is sensitive to the biochemical makeup of tissue. There are several
natural fluorophores that exist in tissues and cells that, when excited with ultraviolet and
visible light, fluoresce over well-defined spectral regions. Among them, the fluorescence of
collagen, elastin, NADH, and FAD contribute the most to the different fluorescence of
cancerous tissue in respect to the normal because of altered concentrations and local environ-
ment of fluorophores. Distinct differences in the fluorescence of cancerous and normal tissues
can be observed with almost all conventional fluorescence techniques. For this purpose, up to
now, emission spectroscopy and EEMs have been used most extensively. However, even
though fluorescence differences between tissues are obvious, the development of a sensitive
diagnostic method based on these differences is not an easy task. First, a large number of
specimens must be measured under identical conditions. The specimens should be taken from
different individuals and some gold diagnostic standard must be provided (e.g., histopathol-
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ogy). Fluorescence data ought to be processed with statistical tools that include analysis of
variance, data reduction, and regression to obtain diagnostic criteria, and further with
statistical tools to validate diagnostic results. On the other hand, once established, fluorescence
methods are a great aid for early cancer detection, since methods can be noninvasive and do
not require expensive and sophisticated equipment.
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