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Abstract

Vitamin K acts as a cofactor for γ‐glutamyl carboxylase. Recently, various biological
activities of vitamin K have been reported. Anti‐proliferative activities of vitamin K,
especially  in  vitamin  K3,  are  well  known.  In  addition,  various  physiological  and
pharmacological functions of vitamin K2, such as transcription modulators as nuclear
steroid and xenobiotic receptor (SXR) ligands and anti‐inflammatory effects, have been
revealed in the past decade. Characterization of vitamin K metabolites is also important
for clinical application of vitamin K and its derivatives. In this chapter, recent progress
on the medicinal chemistry of vitamin K derivatives and metabolites is discussed.

Keywords: vitamin K derivative, metabolite, antitumor activity, anti‐inflammatory ac‐
tivity, steroid and xenobiotic receptor/pregnane X receptor

1. Introduction

Vitamin K is a specific cofactor for γ‐glutamyl carboxylase (GGCX), which catalyzes formation
of γ‐carboxyglutamyl (Gla) residues in vitamin K–dependent proteins (Figure 1) [1]. Various
other biological activities of vitamin K and its derivatives have also been reported. For example,
vitamin K3 (menadione), a vitamin K homologue that was considered as a synthetic vitamin K,
has antitumor activity [2–5], as does vitamin K2 (menaquinone) [6, 7]. Among the homologues
of vitamin K2, menaquinone‐4 (MK‐4), which contains four isoprene units, has been intensively
investigated. It binds to nuclear receptor human pregnane X receptor (PXR), which is also called
steroid and xenobiotic receptor (SXR), and regulates transcription of osteoblastic genes [8, 9]. It
also exhibits anti‐inflammatory activity by suppressing the NF‐kB pathway [10], and has an
inhibitory effect on arteriosclerosis [11]. It binds 17β‐hydroxysteroid dehydrogenase 4 and
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modulates estrogen metabolism [12]. Further, it enhances testosterone production [13, 14], and
shows growth‐inhibitory activity toward hepatocellular carcinoma (HCC) cells [6, 7]. These
biological activities of vitamin K and its analogues are attractive targets of drug discovery, and
the activities of vitamin K metabolites have also attracted much interest. A great many natural
and synthetic biologically active 1,4‐naphthoquinone derivatives (i.e., vitamin K derivatives)
have been reported. In this chapter, we will focus on three medicinal‐chemistry studies of vitamin
K activities.

Figure 1. Structures of vitamin K homologues.

2. Menadione derivatives as antitumor agents

The antitumor activity of thioether derivatives is one of the most intensively investigated fields
in the medicinal chemistry of menadione derivatives. Several series of naphthoquinone
derivatives and benzoquinone derivatives bearing an alkyl, alkoxy, or alkylthio group as a side
chain have been synthesized and biologically evaluated by assay of growth‐inhibitory activity
toward human hepatoma cell line HepB3. Almost all of the tested compounds, as well as the
parent menadione, exhibited significant inhibitory activity, and the alkylthio derivatives were
more potent than the corresponding alkyl and alkoxy derivatives. Among these compounds,
a 2‐hydroxyethylthio derivative Cpd 5 (compound 5; NSC 672121) exhibited the most potent
activity (Figure 2) [15]. Subsequent studies revealed that Cpd 5 irreversibly inhibits growth‐
regulatory phosphatase Cdc25 by arylating a cysteine residue in the catalytic site, causing cell‐
cycle arrest [16–19].

Figure 2. Compounds tested in the initial work on development of Cpd5.
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Based on the finding that Cpd5 inhibits Cdc25 and exerts antitumor activities, various
menadione derivatives have been developed as candidate antitumor compounds. Bis(2‐
hydroxyethylthio)naphthoquinone derivative NSC 95397 (Figure 3) showed potent Cdc25‐
inhibitory activity and inhibited proliferation of several cancer cell lines with greater potency
than that of Cpd 5 [20]. Hydroxylated NSC 95397 derivatives exhibited enhanced Cdc25‐
inhibitory activity and inhibited growth of several cancer cell lines [21]. Fluorinated Cpd 5 was
three times more potent than Cpd‐5 itself in Hep3B growth inhibition and induced phosphor‐
ylation of ERK1/2, JNK1/2 and p38 in HepB3 cells [22]. Calculations suggested that fluorinated
Cpd 5 cannot generate reactive oxygen species because of its modified redox profile, and
therefore, the compound appears to function as a pure arylating agent [23]. Modification of
the core structure afforded a maleimide derivative PM‐20 with a submicromolar IC50 value for
HepB3 growth inhibition. Structure‐activity relationship study indicated that the biphenyl
structure of PM‐20 is essential for activity (Figure 3) [24].

Figure 3. Structures of Cpd 5 derivatives bearing a 2‐hydroxyethylthio moiety.

Modification of the hydroxyethyl side chain of Cpd‐5 and NSC 95397 was also investigated.
Carboxylic acid derivatives such as compounds 1, 3, and 4 (Figure 4) were designed to interact
with arginine residues in the catalytic site of Cdc25B, and indeed, they exhibited potent
Cdc25B3‐inhibitory activity [25, 26]. Though the cytotoxic activities of these carboxylic acid
derivatives, especially dicarboxylic acid 4, were low, prodrug‐type benzyl ester derivatives
exhibited enhanced growth‐inhibitory activity toward HeLa cells. It was also found that Cpd
5 derivatives bearing a modified terminal, such as 6, showed selective cytotoxicity toward
neuroblastoma cell lines, whereas the parent menadione and Cpd 5 exhibited cytotoxicity
toward both neuroblastoma cells and normal cell lines [27]. Aminoalkylmenadione derivatives
such as 7 showed angiogenesis‐inhibitory activity (Figure 4) [28].
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Figure 4. Examples of side chain‐modified Cpd 5 derivatives.

A natural product, plumbagin (5‐hydroxymenadione, Figure 5), shows anticancer and
antiproliferative activities [29]. It suppresses the NF‐kB activation pathway by modulating p65
and IkBα kinase activation to potentiate cytokine‐ and drug‐induced apoptosis [30]. Structur‐
ally related naphthoquinone derivatives juglone and 1,4‐naphthoquinone exerted similar
TNFα‐induced NF‐kB inhibitory activities, whereas menadione did not [30]. Another natural
product, lapachol, which has a hydroxyl group instead of the methyl group of MK‐1, has
anticancer activity [31]. A synthetic analogue 8 bearing two isoprene units also exerted
antitumor activity (Figure 5) [32], and various biologically active lapachol derivatives have
been developed [33]. The 2‐hydroxy‐1,4‐naphthoquinone structure has distinct chemistry; for
example, it has the characteristics of 1,2‐naphthoquinone (e.g., lapachol can cyclize to form α‐
lapachone or β‐lapachone), in contrast to 2‐methyl‐1,4‐naphthoquinone.

Figure 5. Some vitamin K–related naphthoquinone derivatives with antitumor activity.

3. Structure‐activity relationship of MK‐4 derivatives as nuclear SXR
ligands

In the early twenty‐first century, it was found that MK‐4 binds a nuclear receptor, steroid, and
xenobiotic receptor (SXR), which is a human homologue of pregnane X receptor (PXR), and
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regulates transcription of osteoblastic genes [8, 9]. Structure‐activity relationships of MK‐4 as
an SXR ligand were intensively investigated by Suhara et al., using deuterated derivatives
(Figure 6). Saturation of double bond(s) in the side chain significantly reduced the SXR
agonistic activity. Triene derivative 9 bearing a 6,7‐saturated side chain exerted only moderate
activity, and diene 10, monoene 11 (phylloquinone‐d7), and alkyl derivative 12 were inactive.
Removal of methyl groups also reduced the activity, but demethylated compounds 13–16 still
retained significant activity [34].

Figure 6. Compounds used in SAR study of SXR.

The length of the side chain is important for the SXR activity of menaquinones. MK‐1 bearing
one prenyl group showed little ligand potency, while MK‐2, MK‐3, and MK‐4 were more active.
In the SXR‐GAL4 one hybrid assay system, MK‐3 was the most potent compound, and MK‐2
and MK‐4 showed somewhat lower activity. In the assay system using SXRE, MK‐2, and MK‐
3 were the most potent compounds [35]. “Double side chain” vitamin K analogues bearing the
same side chains at the 2‐position and 3‐position of the naphthoquinone ring were also
designed and synthesized. MK‐1‐W and MK‐2‐W were as potent as MK‐3 and MK‐4, whereas
MK‐3‐W, MK‐4‐W, and PK‐W showed little activity (Figure 7) [35].

Figure 7. Structures of double side chain vitamin K analogs.

Substitution at the terminal of the side chain of menaquinones significantly affects SXR ligand
potency. Hydroxylated derivatives MK‐2‐ω‐OH, MK‐3‐ω‐OH, and MK‐4‐ω‐OH showed little
activity in the SXR‐GAL4 one hybrid assay system, whereas compounds 17 and 18 bearing a
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terminal phenyl group exhibited more potent activity than the parent menaquinones
(Figure 8). Compounds 17 and 18 also exhibited potent activity in the SXRE assay system
[36]. Thus, a suitable hydrophobic side chain is essential for SXR activity of menaquinones.

Interestingly, Suhara et al. also found that menaquinone derivatives bearing a terminal
hydrophobic substituent have the ability to induce selective neuronal differentiation of
neuronal progenitor cells. The most potent compound 19 was twice as effective as the EtOH
control, based on quantitation of Map2 mRNA (Figure 8) [37].

Figure 8. Structures of menaquinone derivatives with modified terminal.

4. Synthesis and biological activity of menaquinone metabolites

The biological activities of metabolites of vitamin K are also important. MK‐4 is one of the most
interesting vitamin K homologues because of its multifunctional properties, and ω‐carboxyl
homologues of MK‐4 (MK‐4‐ω‐COOH), K acid I, K acid II and their glucuronides have been
identified as metabolites [38–42]. It is considered that MK‐4 is initially metabolized to MK‐4‐
ω‐COOH by ω‐oxidation, followed by β‐oxidation to afford intermediary carboxylic acids
(Figure 9) [43]. These carboxylic acids can be categorized into two groups; MK‐n‐ω‐COOH
derivatives bearing a α,β‐unsaturated carboxy group and MK‐n‐(ω‐2)‐COOH derivatives
bearing a γ,δ‐unsaturated carboxy group. Chemical synthesis of these metabolites is essential
for evaluation of their properties, and several synthetic routes have been reported.
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Figure 9. Putative catabolic pathways of MK‐4.

4.1. Synthesis of menaquinone metabolites

The MK‐4 metabolites K acid I and K acid II are also metabolites of phylloquinone (vitamin
K1). Several chemical syntheses of K acid I and K acid II have been reported. Watanabe et al.
synthesized K acid I by direct addition of a carboxy side chain to the naphthoquinone frame‐
work using BF3 etherate [44]. A route involving a malonyl derivative and decarboxylation was
also investigated (Figure 10) [45]. They also synthesized K acid II. Addition of a side chain
moiety by Friedel‐Crafts acylation, followed by Clemmensen reduction, afforded naphthyl‐
carboxylic acid, and oxidation of the naphthol moiety using Fremy's salt gave K acid II. Direct
alkylation of naphthoquinone using peroxide also afforded K acid II (Figure 11) [44].
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Figure 10. Synthetic route to K acid I (Watanabe et al.).

Figure 11. Synthetic route of K acid II (Watanabe et al.).

Figure 12. Synthetic routes of K acid I and K acid II (Teitelbaum et al.).
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Teitelbaum et al. synthesized K acid I and K acid II by oxidation of MK‐2 and MK‐1, respec‐
tively. They prepared intermediary MK‐n using a menadione‐cyclopentadiene adduct as the
same starting material (Figure 12) [46].

Okamoto et al. synthesized MK‐1‐ω‐COOH by using Wittig reaction as a key step. To prepare
the intermediary aldehyde, they employed alkylation and oxidative cleavage (Figure 13) [47].

Figure 13. Synthesis of MK‐1‐ω‐COOH (Okamoto et al.).

Terao et al. synthesized MK‐3‐(ω‐2)‐COOH and MK‐4‐(ω‐2)‐COOH using Claisen rearrange‐
ment as a key reaction. Claisen reaction of triethyl orthoacetate and MK‐n derivative gave two‐
carbon‐atom‐extended carboxylic acid esters, and then hydration afforded MK‐n‐(ω‐2)‐COOH
derivatives (Figure 14) [48].

Figure 14. Synthesis of MK‐n‐(ω‐2)‐COOH derivatives (Terao et al.).

Masaki et al. employed sulfur‐contractive anionic [2,3]‐sigmatropic rearrangement for side
chain elongation. Treatment of allyl sulfide with base afforded two‐carbon‐atom‐extended
carboxylic acid esters in one pot (Figure 15). MK‐2‐(ω‐2)‐COOH and MK‐3‐(ω‐2)‐COOH were
obtained in this way [49].
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Figure 15. Synthesis of MK‐n‐(ω‐2)‐COOH derivatives (Masaki et al.).

Fujii et al. reported systematic synthesis of menaquinone metabolites. MK‐n‐ω‐COOH
derivatives were synthesized by oxidation of the terminal carbon of MK‐n derivatives.
Stereoselective oxidation with selenium oxide, followed by stepwise oxidation, gave MK‐n‐ω‐
COOH derivatives. K acid II was synthesized by hydrogenation of MK‐1‐ω‐COOH (Fig‐
ure 16) [50]. MK‐n‐(ω‐2)‐COOH derivatives were synthesized by oxidative cleavage of MK‐n
derivatives. Epoxidation of terminal olefin followed by perchloric acid treatment afforded 1,2‐
diols. Oxidative cleavage of the diol moiety followed by oxidative reactions gave MK‐n‐(ω‐
2)‐COOH derivatives (Figure 17) [50]. These synthetic schemes correspond to the putative
catabolic pathways of menaquinones, that is, ω‐oxidation and β‐oxidation.

Figure 16. Synthesis of MK‐n‐ω‐COOH derivatives (Fujii et al.).
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Figure 17. Synthesis of MK‐n‐(ω‐2)‐COOH derivatives (Fujii et al.).

Suhara et al. designed and synthesized ω‐hydroxy derivatives (ω‐alcohols) and ω‐formyl
derivatives (ω‐aldehydes) as menaquinone metabolite analogs. ω‐Oxidized side chain moieties
were prepared from corresponding isoprene derivatives, and the side chain parts were
introduced into the naphthalene core. Oxidation to quinone form afforded ω‐alcohols, and
then PDC oxidation afforded ω‐aldehydes (Figure 18) [51, 52].

Figure 18. Synthesis of MK‐n‐ω‐alcohols and MK‐n‐ω‐aldehydes (Suhara et al.).

4.2. Biological activities of menaquinone metabolites

These menaquinone carboxylic acid derivatives and related quinone carboxylic acids, includ‐
ing ubiquinone derivatives and tocopheryl derivatives, show lysosomal membrane‐stabilizing
activity [45, 47]. Appropriate hydrophobicity of the side chain appears to be essential for this
activity. Some of these compounds also exert inhibitory effects on the generation of the slow‐
reacting substance of anaphylaxis [48].
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MK‐4 has various biological activities, such as anti‐inflammatory activity and antitumor
activity, and these activities of the menaquinone metabolites were also investigated. All tested
menaquinone metabolites inhibited LPS‐induced production of proinflammatory cytokines in
RAW264.7 cells [50]. It is suggested that naphthoquinone structure is essential for the anti‐
inflammatory activity of menaquinone derivatives. Regarding antitumor activity, several
carboxylic acids, such as MK‐2‐ω‐COOH, significantly inhibited proliferation of JHH7 and
HepG2 hepatocellular carcinoma cell lines. On the other hand, MK‐2‐ω‐COOH did not inhibit
proliferation of normal hepatic cells. Anti‐proliferative activity may be associated with
caspase/transglutaminase‐related pathways [53].

The ω‐alcohols and ω‐aldehydes showed apoptosis‐inducing activity toward human leukemia
cell line HL‐60 and human osteosarcoma cell line MG‐63. The ω‐aldehydes were more potent
than the corresponding ω‐alcohols [51, 52]. The vitamin K potency of MK‐4‐ω‐OH, that is, its
coenzyme activity for GGCX, was also evaluated. MK‐4‐ω‐OH showed a larger Vmax/Km value
than that of intact MK‐4, indicating that MK‐4‐ω‐OH has greater coenzyme activity than MK‐
4 [52].

5. Future perspective

Vitamin Ks are attractive lead compounds for drug discovery. One of the most promising
applications is as candidate antitumor agents, though the mechanism of action of Cpd 5 could
be different from that of intact vitamin Ks. In addition, bone homeostasis and neural effects
are also possible targets of vitamin K derivatives. Vitamin K may also be used as a food
supplement, and therefore, characterization of its metabolites is important. It is noteworthy
that some menaquinone metabolites have characteristic activities distinct from those of intact
vitamin K2. Though a clinical study of MK‐4 as an agent to prevent recurrence of hepatocellular
carcinoma was terminated [54], the metabolites and their analogs still represent potential drug
candidates.
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