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Abstract

The aim of this chapter is to review likelihood ratio test procedures in multivariate linear
models, focusing on projection matrices. It is noted that the projection matrices to the
spaces spanned by mean vectors in hypothesis and alternatives play an important role.
Some basic properties are given for projection matrices. The models treated include
multivariate regression model, discriminant analysis model, and growth curve model.
The hypotheses  treated involve a  generalized linear  hypothesis  and no additional
information hypothesis, in addition to a usual liner hypothesis. The test statistics are
expressed in terms of both projection matrices and sums of squares and products matrices.

Keywords: algebraic approach, additional information hypothesis, generalized linear
hypothesis, growth curve model, multivariate linear model, lambda distribution, like‐
lihood ratio criterion (LRC), projection matrix

1. Introduction

In this chapter, we review statistical inference, especially likelihood ratio criterion (LRC) in
multivariate linear model, focusing on matrix theory. Consider a multivariate linear model with
p response variables y1, …, yp and k explanatory or dummy variables x1, …, xk. Suppose that
y = (y1, …, yp)′ and x = (x1, …, xk)′ are measured for n subjects, and let the observation of the ith
subject be denoted by yi and xi. Then, we have the observation matrices given by

1 2 1 2= ( , , , ) , = ( , , , ) .n n¢ ¢XK Ky y y x x xY (1.1)

It is assumed that y1, …, yn are independent and have the same covariance matrix Σ. We express
the mean of Y as follows:
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1E( ) = = ( , , ).pKh h hY (1.2)

A multivariate linear model is defined by requiring that

Ω for all  1,  ,  ,Î = ¼i i pη (1.3)

where Ω is a given subspace in the n dimensional Euclid space Rn. A typical Ω is given by

1= [ ] = { = ; ( , , ) , < < , = 1, , }.¢W = -¥ ¥K Kk i i kq q qX XR h q q (1.4)

Here, ℛ[X] is the space spanned by the column vectors of X. A general theory for statistical
inference on the regression parameter Θ can be seen in texts on multivariate analysis, e.g., see
[1–8]. In this chapter, we discuss with algebraic approach in multivariate linear model.

In Section 2, we consider a multivariate regression model in which xi
's are explanatory variables

and Ω = ℛ[X]. The maximum likelihood estimator (MLE)s and likelihood ratio criterion (LRC)
for Θ2 =O are derived by using projection matrices. Here, Θ= (Θ1 Θ2). The distribution of LRC
is discussed by multivariate Cochran theorem. It is pointed out that projection matrices play
an important role. In Section 3, we give a summary of projection matrices. In Section 4, we
consider to test an additional information hypothesis of y2 in the presence of y1, where
y1 = (y1. …, yq)′ and y2 = (yq + 1. …, yp)′. In Section 5, we consider testing problems in discriminant
analysis. Section 6 deals with a generalized multivariate linear model which is also called the
growth curve model. Some related problems are discussed in Section 7.

2. Multivariate regression model

In this section, we consider a multivariate regression model on p response variables and k
explanatory variables denoted by y = (y1, …, yp)′ and x = (x1, …, xk)′, respectively. Suppose that
we have the observation matrices given by (1.1). A multivariate regression model is given by

= ,+XQY E (2.1)

where Θ is a k × p unknown parameter matrix. It is assumed that the rows of the error matrix
E are independently distributed as a p variate normal distribution with mean zero and
unknown covariance matrix Σ, i.e., Np(0, Σ ).

Let L(Θ, Σ) be the density function or the likelihood function. Then, we have
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12log ( , ) = log | | tr ( ) ( ) log(2 ).L n np p- ¢- + - - +Q S S S Q QY X Y X

The maximum likelihood estimators (MLE) Θ̂ and Σ̂ of Θ and Σ are defined by the maximizers
of L(Θ, Σ) or equivalently the minimizers of −2log L(Θ, Σ).

Theorem 2.1 Suppose that Y follows the multivariate regression model in (2.1). Then, the MLEs of Θ
and Σ are given as

1ˆ = ( ) ,
1 1ˆ ˆˆ = ( ) ( ) = ( ) ,nn n

-¢ ¢

¢ ¢- - - XI P

Q

S Q Q

X X X Y

Y X Y X Y Y

where PX = X(X′X)− 1X′. Further, it holds that

{ }ˆ ˆ ˆ2log ( , ) = log | | log(2 ) 1 .L n np p- + +Q S S

Theorem 2.1 can be shown by a linear algebraic method, which is discussed in the next section.
Note that PX is the projection matrix on the range space Ω=ℛ X . It is symmetric and idempo‐
tent, i.e.

= , = .¢ 2
X X X XP P P P

Next, we consider to test the hypothesis

1 1 2: E( ) = = ,H ÛX OQ QY (2.2)

against K ; Θ2≠O , where X = (X1 X2), X1; n × j and Θ= (Θ1
′ Θ2

′ ), Θ1; j × p. The hypothesis means

that the last k − j dimensional variate x2 = (xj + 1, …, xk)′ has no additional information in the
presence of the first j variate x1 = (x1, …, xj)′. In general, the likelihood ratio criterion (LRC) is
defined by

max ( , )= .
max ( , )

H

K

L
L

l Q S
Q S (2.3)

Then we can express
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{ } { }

{ }
{ }

2log = min 2log ( , ) 2log ( , )min

= min log | | tr( ) ( )

min log | | tr( ) ( ) .

H K

H

K

L L

n

n

l- - - -

¢+ - -

¢- + - -

X X

X X

Q S Q S

S Q Q

S Q Q

Y Y

Y Y

Using Theorem 2.1, we can expressed as

2/
ˆ| |= .ˆ| |

n n
n w

l Wº
S

L
S

Here, Σ̂Ω and Σ̂ω are the maximum likelihood estimators of Σ under the model (2.1) or K and
H, respectively, which are given by

1ˆ ˆ ˆˆ = ( ) ( ), ( )
= ( )n

n -
W W W W

W

¢ ¢ ¢- - =
¢ -

X X XX X
I P

S Q Q QY Y Y

Y Y
(2.4)

and

1
1 1 1 1 1 1 1 1
ˆ ˆ ˆˆ = ( ) ( ), = ( )

= ( )n

n w w w w

w

-¢ ¢ ¢- -
¢ -

X X X X X
I P Y

S Q Q QY Y Y

Y
(2.5)

Summarizing these results, we have the following theorem.

Theorem 2.2Let λ = Λn/2 be the LRC for testing H in (2.2). Then, Λ is expressed as

| |= ,
| |

e

e h

L
+
S

S S
(2.6)

where

ˆ ˆ ˆ= , = ,W W-e hn n nwS S SS S (2.7)

andSΩandSωare given by (2.4) and (2.5), respectively.

The matrices Se and Sh  in the testing problem are called the sums of squares and products
(SSP) matrices due to the error and the hypothesis, respectively. We consider the distribution
of Λ. If a p × p random matrix W is expressed as
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1

  '
=

=å
n

j

W j jz z

where z j∼ Np(μ j, Σ ) and z1, …, zn are independent, W is said to have a noncentral Wishart
distribution with n degrees of freedom, covariance matrix Σ, and noncentrality matrix
Δ=μ1μ1

′ + ⋯ + μn μn
′ . We write that W∼W p(n, Σ;Δ). In the special case Δ=O, W is said to have

a Wishart distribution, denoted by W∼W p(n, Σ ).

Theorem 2.3 (multivariate Cochran theorem) Let Y= (y1, …, yn)′, where yi∼ N p(μi, Σ ),
i = 1, …, n and y1, …, yn are independent. Let A, A1, and A2 be n × n symmetric matrices. Then:

1. Y′AY∼ W p(k , Σ; Ω )⇔A2 =A, trA=k , Ω= E (Y)′AE (Y).

2. Y′A1Y and Y′A2Y are independent ⇔ A1A2 = O.

For a proof of multivariate Cochran theorem, see, e.g. [3, 6–8]. Let B and W be independent
random matrices following the Wishart distribution W p(q, Σ) and W p(n, Σ ), respectively, with
n ≥ p. Then, the distribution of

| |=
| |

L
+
W

B W

is said to be the p-dimensional Lambda distribution with (q, n)-degrees of freedom and is
denoted by Λp(q, n). For distributional results of Λp(q, n), see [1, 3].

By using multivariate Cochran’s theorem, we have the following distributional results:

Theorem 2.4LetSeandSh be the random matrices in (2.7). Let Λ be the Λ-statistic defined by (2.6). Then,

1. SeandSh are independently distributed as a Wishart distributionW p(n −k , Σ )and a noncentral
Wishart distributionW p(k − j, Σ ;Δ),respectively, where

1
= ( ) ( ) .¢ -X XX P P XD Q Q (2.8)

2. Under H, the statistic Λ is distributed as a lambda distribution Λp(k − j, n − k).

Proof. Note that PΩ = PX = X(X′X)− 1X′, Pω =PX1
=X1(X1

′ X1)−1X,′ and PΩPω = PωPΩ. By multivariate
Cochran’s theorem the first result (1) follows by checking that

2 2( ) = ( ), ( ) = ( ),
( )( ) = .

W W W W

W W

- - - -

- -
w w

w

I P I P P P P P
I P P P O
n n

n
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The second result (2) follows by showing that Δ0 =O, where Δ0 is the Δ under H. This is seen
that

0 1 1 1 1= ( ) ( )( ) = ,wW¢ -X P P X OD Q Q

since PΩX1 = PωX1 = X1.

The matrices Se and Sh  in (2.7) are defined in terms of n × n matrices PΩ and Pω. It is important
to give expressions useful for their numerical computations. We have the following expres‐
sions:

1 1 1
1 1 1 1= ( ) , = ( ) ( ) .e h

- - -¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢- -X XX X X XX X X X X XS Y Y Y Y S Y Y Y Y

Suppose that x1 is 1 for all subjects, i.e., x1 is an intercept term. Then, we can express these in
terms of the SSP matrix of (y', x')′ defined by

=1
= = ,

n
yy yxi i

i xy xxi i

- - æ öæ öæ ö
ç ÷ç ÷ç ÷- -è øè ø è ø

å
S S

S
S S

y y y y
x x x x (2.9)

where ȳ and x̄ are the sample mean vectors. Along the partition of x= (x1
′ , x2

′ )′, we partition S
as

1 2

1 11 12

2 21 22

= .
yy y y

y

y

æ ö
ç ÷
ç ÷
ç ÷
è ø

S S S

S S S S

S S S
(2.10)

Then,

1
2 1 22 1 2 1= , = .e yy x h y y

-
× × × ×S S S S S S (2.11)

Here, we use the notation Syy⋅x =Syy −SyxSxx
−1Sxy, Sy2⋅1 =Sy2−Sy1S11

−1S1y, etc. These are derived
in the next section by using projection matrices.

3. Idempotent matrices and max-mini problems

In the previous section, we have seen that idempotent matrices play an important role on
statistical inference in multivariate regression model. In fact, letting E (Y)=η= (η1, …, η, p)
consider a model satisfying
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= [ ], for all = 1, , ,ÎW Ki i pRRh (3.1)

Then the MLE of Θ is Θ̂= (X′X)−1X′Y, and hence the MLE of η is denoted by

ˆˆ = = .W WX PQh Y

Here, PΩ = X(X′X)− 1X′. Further, the residual sums of squares and products (RSSP) matrix is
expressed as

ˆ ˆ= ( ) ( ) = ( ) .nW W W W¢ ¢- - -S I Ph hY Y Y Y

Under the hypothesis (2.2), the spaces ηi’s belong are the same and are given by ω = ℛ[X1].
Similarly, we have

ˆˆ = ,
ˆ ˆ= ( ) ( ) = ( ) ,n

w w w

w w w w

=
¢ ¢- - -

X P
Y I P

Qh
h h

Y

S Y Y Y

where Θ̂ω = (Θ̂1ω
' O)′ and Θ̂1ω = (X1

′ X1
′ )−1X1

′ Y. The LR criterion is based on the following decom‐
position of SSP matrices;

= ( ) = ( ) ( )
= .

n n

e h

w w wW W¢ ¢ ¢- - + -

+

I P I P P PS Y Y Y Y Y Y

S S

The degrees of freedom in the Λ distribution Λp(fh, fe) are given by

= dim[ ], = = dim[ ] dim[ ].e hf n f k j w- W - W -

In general, an n × n matrix P is called idempotent if P2 = P. A symmetric and idempotent matrix
is called projection matrix. Let Rn be the n dimensional Euclid space, and Ω be a subspace in
Rn. Then, any n × 1 vector y can be uniquely decomposed into direct sum, i.e.,

= , , ,^+ ÎW ÎWvy u v u (3.2)

where Ω⊥ is the orthocomplement space. Using decomposition (3.2), consider a mapping

: , i.e. = .W W®P Py u y u
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The mapping is linear, and hence it is expressed as a matrix. In this case, u is called the
orthogonal projection of y into Ω, and PΩ is also called the orthogonal projection matrix to Ω.
Then, we have the following basic properties:

(P1) PΩ is uniquely defined;

(P2) In − PΩ is the projection matrix to Ω⊥;

(P3) PΩ is a symmetric idempotent matrix;

(P4) ℛ[PΩ] = Ω, and dim[Ω] = tr PΩ;

Let ω be a subset of Ω. Then, we have the following properties:

(P5) PΩPω = PωPΩ = Pω.

(P6) PΩ −Pω =Pω ⊥∩Ω, where ω⊥ is the orthocomplement space of ω.

(P7) Let B be a q × n matrix, and let N(B) = {y; By = 0}. If ω = N[B] ∩ Ω, then ω⊥ ∩ Ω = R[PΩB '].

For more details, see, e.g. [3, 7, 9, 10].

The MLEs and LRC in multivariate regression model are derived by using the following
theorem.

Theorem 3.1

1. Consider a function of f (Σ)= log|Σ| + trΣ−1S of p × p positive definite matrix. Then, f (Σ ) takes
uniquely the minimum at Σ=S, and the minimum value is given by

>
( ) = ( ) .min f f p+

O
S

S
S

2. Let Y be an n × p known matrix and X an n × k known matrix of rank k. Consider a function of p × p
positive definite matrix Σ and k × p matrix Θ= (θij) given by

1( , ) = log | | tr ( ) ( ),g m - ¢S + S - -Y X Y XQ S Q Q

where m > 0, − ∞ < θij < ∞, for i = 1, …, k; j = 1, …, p. Then, g(Θ , Σ ) takes the minimum at

1 1ˆ ˆ= = ( ) , = = ( ) ,nm
-¢ ¢ ¢ - XXX XY Y I P YQ Q S S

and the minimum value is given by m log|Σ|
^

+ mp.

Proof. Let ℓ1, …, ℓp be the characteristic roots of Σ−1S. Note that the characteristic roots of Σ−1S
and Σ−1/2SΣ−1/2 are the same. The latter matrix is positive definite, and hence we may assume
ℓ1 ≥ ⋯ ≥ ℓp > 0. Then
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( )

1 1

1 1

=1

( ) ( ) = log | | ( )
= log | | ( )

= log 1 0.
p

i i
i

f f tr p
tr p

- -

- -

- + -

- + -

- + - ³å

S S S
S S

l l

S S S

S S

The last inequality follows from x − 1 ≥ log x (x > 0). The equality holds if and only if
ℓ1 = ⋯ = ℓp = 1 ⇔ Σ=S.

Next, we prove 2. we have

1

1 1

1

tr ( ) ( )
ˆ ˆ ˆ ˆ= tr ( ) ( ) tr { ( )} ( )

tr ( ) .n

-

- -

-

¢- - Q

¢ ¢- - + - -

¢³ - X

Y X Y X

Y X Y X X X
Y I P Y

S Q

S Q Q S Q Q Q Q

S

The first equality follows from that Y−XΘ=Y−XΘ̂ + X(Θ̂−Θ ) and (Y−XΘ̂)′X(Θ̂−Θ)=O. In the
last step, the equality holds when Θ=Θ̂. The required result is obtained by noting that Θ̂ does
not depend on Σ and combining this result with the first result 1.

Theorem 3.2LetXbe an n × k matrix of rank k, and let Ω = ℛ[X] which is defined also by the set {y : 
y = X θ }, where θ is a k × 1 unknown parameter vector. Let C be a c × k matrix of rank c, and define
ω by the set {y : y = X θ , C θ = 0}. Then,

1. PΩ = X(X′X)− 1X′.

2. PΩ − Pω = X(X′X)− 1C′{C(X′X)− 1C}− 1C(X′X)− 1X′.

Proof. 1 Let ŷ = X(X′X)− 1X′ and consider a decomposition y = ŷ + (y − ŷ). Then, ŷ′(y − ŷ) = 0.
Therefore, PΩy = ŷ and hence PΩ = X(X′X)− 1X′.

2. Since C θ = C(X′X)− 1X′ ⋅ X θ, we can write ω = N[B] ∩ Ω, where B = C(X′X)− 1X′. Using (P7),

1= [ ] = [ ( ) ].w^ -
W ¢ ¢ ¢ÇW P B X XX CR R

The final result is obtained by using 1 and (P7).

Consider a special case C = (O Ik − q). Then ω = ℛ[X1], where X = (X1 X2), X1 : n × q. We have the
following results:

X 21
1

2 2 2 21 1 1

= [( ) ],

= ( ) { ( ) } ( ).

^

-
^w ÇW

ÇW -

¢ ¢- - -

n

n n n

w

X X X

I P X

P I P X X I P X X I P

R
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The expressions (2.11) for Se and Sh  in terms of S can be obtained from projection matrices
based on

( ) 21

= [ ] = [ ] [( )X],

= [( ) ].

n n n

n n n n
w^

-

W + -

ÇW - -

1

1 I P X1

X 1 I P

I P P X

R R R

R

4. General linear hypothesis

In this section, we consider to test a general linear hypothesis

: = ,gH QC D O (4.1)

against alternatives Kg : CΘD ≠ O under a multivariate linear model given by (2.1), where C
is a c × k given matrix with rank c and D is a p × d given matrix with rank d. When C = (O 
Ik − j) and D = Ip, the hypothesis Hg becomes H : Θ2 = O.

For the derivation of LR test of (4.1), we can use the following conventional approach: If U=YD,

then the rows of U are independent and normally distributed with the identical covariance
matrix D′ΣD, and

E( ) = ,XXU (4.2)

where Ξ=ΘD. The hypothesis (4.1) is expressed as

: = .gH XC O (4.3)

Applying a general theory for testing Hg in (2.1), we have the LRC λ:

2/ | |= = ,
| |

n e

e h

l L
+
S

S S
(4.4)

where

= '( )
= ( ) ,

e n

n

-
¢ ¢ -

X

A

I P
D I P D

S U U

Y Y

and
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1 1 1 1

1 1 1 1

= ( ( ) ) { ( ) } ( ) ,

= ( ( ) D) { ( ) } ( ) .
h

D

- - - -

- - - -

¢ ¢ ¢ ¢ ¢ ¢ ¢

¢ ¢ ¢ ¢ ¢ ¢ ¢

C XX X C XX C C XX X
C XX X C XX C C XX X

S U U

Y Y

Theorem 4.1The statistic Λ in (4.4) is an LR statistic for testing (4.1) under (2.1). Further, under
Hg, Λ ∼ Λd(c, n − k).

Proof. Let G = (G1 G2) be a p × p matrix such that G1 = D, G1
′ G2 =O, and |G| ≠ 0. Consider a

transformation from Y to (U V)=Y(G1 G2).

Then the rows of (U V) are independently normal with the same covariance matrix

11 12
12

21 22

= = , : ( ),d p d
Y Yæ ö¢Y S Y ´ -ç ÷Y Yè ø

G G

and

1 2

1 2

[( )] = ( )
= ( ), = , = .

E Q
X D X Q D Q

X G G
X G G

U V

The conditional of V given U is normal. The rows of V given U are independently normal with
the same covariance matrix Ψ11⋅2 , and

E( | ) = ( X )
= ,*

+ -

+ G

X
X
D X G

D

V U U

U

where Δ* =Δ−ΞΓ and Γ=Ψ11
−1Ψ12. We see that the maximum likelihood of V given U does not

depend on the hypothesis. Therefore, an LR statistic is obtained from the marginal distribution
of U, which implies the results required.

5. Additional information tests for response variables

We consider a multivariate regression model with an intercept term x0 and k explanatory
variables x1, …, xk as follows.

= ,¢ + Q +1 X EqY (5.1)

where Y and X are the observation matrices on y = (y1, …, yp)′ and x = (x1, …, xk)′. We assume
that the error matrix E has the same property as in (2.1), and rank (1n X) = k + 1. Our interest is
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to test a hypothesis H2 ⋅ 1 on no additional information of y2 = (yq + 1, …, yp)′ in presence of
y1 = (y1, …, yq)′.

Along the partition of y into (y1′, y2′) let Y, θ, Θ, and Σ partition as

1 2 1 2

1 11 12

2 21 22

= ( ), = ( ),

= , = .
æ ö æ ö
ç ÷ ç ÷
è ø è ø

Q Q Q

S S
S

S S
q

q
q

Y Y Y

The conditional distribution of Y2 given Y1 is normal with mean

1
2 1 2 2 1 1 1 11 12

1
02 2 1 11 12

E( | ) = ( )

= ,
n

n

-

-

¢ ¢+ Q + - -

¢ + +

1 X 1 X

1 X% %
Q S S

Q S S

q q

q

Y Y Y

Y
(5.2)

and the conditional covariance matrix is expressed as

2 1 22 1Var[ ( | )] = ,vec n× Ä ISY Y (5.3)

where Σ22⋅1 =Σ22−Σ21Σ11
−1Σ12 , and

1 1
2 2 1 11 12 2 2 1 11 12= , = .- -¢ ¢ ¢- -% %S S Q Q Q S Sq q q

Here, for an n × p matrix Y= (y(1), …, y(p,)) vec (Y) means an np-vector (y(1)
′ , …, y( p)

′ )′. Now we
define the hypothesis H2 ⋅ 1 as

1
2 1 2 1 11 12 2: = = O.-
× Û %H Q Q S S Q (5.4)

The hypothesis H2 ⋅ 1 means that y2 after removing the effects of y1 does not depend on x. In
other words, the relationship between y2 and x can be described by the relationship between
y1 and x. In this sense, y2 is redundant in the relationship between y and x.

The LR criterion for testing the hypothesis H2 ⋅ 1 against alternatives K2⋅1 :Θ̃2⋅1≠O can be
obtained through the following steps.

(D1) The density function of Y= (Y1 Y2) can be expressed as the product of the marginal density
function of Y1 and the conditional density function of Y2 given Y1. Note that the density
functions of Y1 under H2 ⋅ 1 and K2 ⋅ 1 are the same.
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(D2) The spaces spanned by each column of E (Y2 |Y1) are the same, and let the spaces under
K2 ⋅ 1 and H2 ⋅ 1 denote by Ω and ω, respectively. Then

1 1= [( )], = [( )],n nwW 1 X 1Y YR R

and dim(Ω) = q + k + 1, dim(ω) = k + 1.

(D3) The likelihood ratio criterion λ is expressed as

2/ | | | |= = = .
| | | ( ) |

n

w w

l W W

W W

L
+ -

S S
S S S S

where SΩ =Y2
′ (In −PΩ)Y2 and Sω =Y2

′ (In −Pω)Y2.

(D4) Note that E (Y2 |Y1)′(Pω −Pω)E (Y2 |Y1)=O under H2 ⋅ 1. The conditional distribution of Λ
under H2 ⋅ 1 is Λp − q(k, n − q − k − 1), and hence the distribution of Λ under H2 ⋅ 1 is Λp − q(k, n − q − k − 1).

Note that the Λ statistic is defined through Y2
′ (In −PΩ)Y2 and Y2

′ (PΩ −Pω)Y2 , which involve n × n
matrices. We try to write these statistics in terms of the SSP matrix of (y′, x′)′ defined by

=1
=

= ,

n
i i

i i i

yy yx

xy xx

- -æ öæ ö
ç ÷ç ÷- -è øè ø

æ ö
ç ÷
è ø

å

S

S

S S

S

y y y y
x x x x

where ȳ and x̄ are the sample mean vectors. Along the partition of y= (y1
′ , y2

′ )′, we partition S
as

11 12 1

21 22 2

1 2

= .
x

x

x x xx

æ ö
ç ÷
ç ÷
ç ÷
è ø

S S S

S S S S

S S S

We can show that

1
22 1 22 21 11 12

1
22 1 22 21 11 12

= = ,

= = .x x x x x

w
-

×

-
W × × × × ×

-

-

S S S S S S

S S S S S S

The first result is obtained by using
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1= [ ] [( ) ].n n n
w + - 11 I P YR R

The second result is obtained by using

1

0 0 1

= [ ] [( , )]
= [ ] [( ) ] [( )( ) ],

W +

+ - + - -

% %
n

n n n nX

1
1 I P I P I P

R R
R R R

Y X

X Y

where Ỹ1 = (In −P1n
)Y1 and X̃= (In −P1n

)X.

Summarizing the above results, we have the following theorem.

Theorem 5.1In the multivariate regression model (5.1), consider to test the hypothesis H2 ⋅ 1 in (5.4)
against K2 ⋅ 1. Then the LR criterion λ is given by

2/ 22 1

22 1

| |= = ,
| |

n xl ×

×

L
S
S

whose null distribution isΛp − q(k, n − q − k − 1).

Note that S22⋅1 can be decomposed as

1
22 1 22 1 2 1 1 2 1= .x x xx x

-
× × × × ×+S S S S S

This decomposition is obtained by expressing S22⋅1x in terms of S22⋅1 , S2x⋅1 , Sxx⋅1 , and Sx2⋅1

by using an inverse formula

( )
1 1 1

11 12 1 111 11 12
22 1 21 11

21 22

= .
- - -

- -
×

æ ö æ öæ ö -
+ -ç ÷ ç ÷ç ÷

è ø è ø è ø

H H H O H H
H H H I

H H O O I
(5.5)

The decomposition is expressed as

1
22 1 22 1 2 1 1 2 1= .x x xx x

-
× × × × ×-S S S S S (5.6)

The result may be also obtained by the following algebraic method. We have

22 1 22 1 2 2

2 2

= ( )
= ( ) ,

× × W

^w ÇW

¢- -
¢

x wP P
P

S S Y Y

Y Y
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and

1 1= [ ] [( )], = [ ] [ ].n nwW + +1 Y X 1 Y% % %R R R R

Therefore,

1Y1

Y1

= [( )( )]

= [( ) ],

^ ÇW - -

- -

%

%

% %

%
n n

n n

w 1

1

I P P X

I P P X

R

R

Y

which gives an expression for Pω ⊥∩Ω by using Theorem 3.1 (1). This leads to (5.6).

6. Tests in discriminant analysis

We consider q p-variate normal populations with common covariance matrix Σ and the ith
population having mean vector θi. Suppose that a sample of size ni is available from the ith
population, and let yij be the jth observation from the ith population. The observation matrix
for all the observations is expressed as

11 1 21 11
= ( , , , , , , , ) .n q qnq

¢K K KY y y y y y (6.1)

It is assumed that yij are independent, and

~ N( , ), = 1, , ; = 1, , ,ij i ij n i qK KSqy (6.2)

The model is expressed as

= ,+AQY E (6.3)

where

1 1

22= , = .

n

n

qnq

æ ö ¢æ öç ÷ ç ÷¢ç ÷ ç ÷ç ÷ ç ÷ç ÷ ç ÷ç ÷ç ÷ ¢ç ÷ è øè ø

1 0 0

0 1 0
A

0 0 1

L

L
MM M O M

L

Q

q
q

q
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Here, the error matrix E has the same property as in (2.1).

First, we consider to test

1: = = (= ),× × × qH q q q (6.4)

against alternatives K : θi ≠ θj for some i, j. The hypothesis can be expressed as

( )1 1: = , = , .q qH - --C O C I 1Q (6.5)

The tests including LRC are based on three basic statistics, the within-group SSP matrix W, the
between-group SSP matrix B, and the total SSP matrix T given by

=1 =1

=1 =1

= ( 1) , = ( )( ) ,

= = ( )( ) ,

q q

i i i i i
i i

nq i

ij ij
i j

n n ¢- - -

¢+ - -

å å

åå

W S B

T B W

y y y y

y y y y
(6.6)

where ȳi and Si are the mean vector and sample covariance matrix of the ith population, and

ȳ is the total mean vector defined by (1 / n)∑i=1
q niy,̄i and n =∑i=1

q ni. In general, W and B are
independently distributed as a Wishart distribution W p(n −q, Σ ) and a noncentral Wishart
distribution W p(q −1, Σ ;Δ ), respectively, where

=1
= ( )( ) ,

q

i i i
i
n ¢- -åD q q q q

where θ̄ =(1 / n)∑
i=1

q+1
niθi. Then, the following theorem is well known.

Theorem 6.1Letλ = Λn/2be the LRC for testing H in (6.4). Then, Λ is expressed as

| | | |= = ,
| | | |

L
+

W W
W B T

(6.7)

where W, B , and T are given in (6.6). Further, under H, the statistic Λ is distributed as a lambda
distribution Λp(q − 1, n − q).

Now we shall show Theorem 6.1 by an algebraic method. It is easy to see that
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1= [ ], = N[ ( ) ] = [ ].nw -¢ ¢W ÇWA C AA A 1R R

The last equality is also checked from that under H

E[ ] = = .q n¢ ¢A1 1q qY

We have

= ( )

= ( ) ( )

= .

n n

n n

¢ -

¢ ¢- + -

+

1

A A 1

I P

I P P P

T Y Y

Y Y Y Y

W B

Further, it is easily checked that

1. (In −PA)2 = In −PA, (PA−P1n
)2 =PA−P1n

.

2. (PA−P1n
)(PA−P1n

)=O.

3. fe = dim[ℛ[A]⊥] = tr(In − PA) = n − q,

f h = dim ℛ 1n
⊥∩ℛ A =tr (PA−P1n

)=q −1.

Related to the test of H, we are interested in whether a subset of variables y1, …, yp is sufficient
for discriminant analysis, or the set of remainder variables has no additional information or is
redundant. Without loss of generality, we consider the sufficiency of a subvector y1 = (y1, …, yk)′
of y, or redundancy of the remainder vector y2 = (yk + 1, …, yp)′. Consider to test

2 1 1;2 1 ;2 1 2 1: = = (= ),× × × ×L qH q q q (6.8)

where

;1
;1

;2

= , ; 1, = 1, , ,i
i i

i
k i q

æ ö
´ç ÷

è ø
K

q
q q

q

and

1
;2 1 ;2 21 11 ;1= , = 1, , .i i i i q-
× - KS Sq q q
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The testing problem was considered by [11]. The hypothesis can be formulated in terms of
Maharanobis distance and discriminant functions. For its details, see [12, 13]. To obtain a
likelihood ratio for H2 ⋅ 1, we partition the observation matrix as

( )1 2 1= , : .n k´Y Y Y Y

Then the conditional distribution of Y2 given Y1 is normal such that the rows of Y2 are inde‐

pendently distributed with covariance matrix Σ22⋅1 =Σ22−Σ21Σ11
−1Σ12 , and the conditional mean

is given by

1
2 1 2 1 1 11 12E( | ) = ,-

× +AQ S SY Y Y (6.9)

where Θ21̇ = (θ1;2⋅1, …, θq;2⋅1)′. The LRC for H2 ⋅ 1 can be obtained by use of the conditional

distribution, and following the steps (D1)–(D4) in Section 5. In fact, the spaces spanned by each
column of E (Y2 |Y1) are the same, and let the spaces under K2 ⋅ 1 and H2 ⋅ 1 denote by Ω and ω,

respectively. Then

1 1= [( )], = [( )],nwW A 1Y YR R

dim(Ω) = q + k, and dim(ω) = q + 1. The likelihood ratio criterion λ can be expressed as

2/ | | | |= = = .
| | | ( ) |

n

w w

l W W

W W

L
+ -

S S
S S S S

where SΩ =Y2
′ (In −PΩ)Y2 and Sω =Y2

′ (In −Pω)Y2. We express the LRC in terms of W , B , and T. Let

us partition W , B , and T as

11 12 11 12 11 12

21 22 21 22 21 22

= , = , = ,
æ ö æ ö æ ö
ç ÷ ç ÷ ç ÷
è ø è ø è ø

W W B B T T
W B T

W W B B T T
(6.10)

where W12 :q ×(p −q) , B12 :q ×(p −q) , and T12 :q ×(p −q). Noting that PΩ =PA + P(In−PA)Y1
 , we have

{ }1
2 1 1 1 1 2

1
22 21 11 12 22 1

= ( ) { ( ) } ( )

= = .
n n n n

-
W

-
×

¢ ¢- - - - -

-

A A A AI P I P I P I PS Y Y Y Y Y Y

W W W W W
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Similarly, noting that Pω =P1n
+ P(In−P1n)Y1

 , we have

{ }1
2 1 1 1 1 2

1
22 21 11 12 22 1

= ( ) { ( ) } ( )

= = .

n n n nn n n nw
-

-
×

¢ ¢ ¢- - - - -

-

1 1 1 1I P I P I P I PS Y Y Y Y Y Y

T T T T T

Theorem 6.2Suppose that the observation matrixYin (6.1) is a set of samples from N p(θi, Σ),
i = 1, …, q. Then the likelihood ratio criterion λ for the hypothesis H2 ⋅ 1 in (6.8) is given by

/ 2

22 1

22 1

| |= ,
| |

n

l ×

×

æ ö
ç ÷
è ø

W
T

whereWandTare given by (6.6). Further, under H2 ⋅ 1,

22 1

22 1

| | ( 1, ).
| | p k q n q k×

-
×

L - - -
W
T

:

Proof. We consider the conditional distributions of W22⋅1 and T22⋅1 given Y1 by using Theorem

2.3, and see also that they do not depend on Y1. We have seen that

22 1 2 1 2 1 ( ) 1
= , = .n n× -¢ - -A I P YA

I P PW Y Q Y Q

It is easy to see that Q1
2 =Q1 , rank (Q1)=trQ1 =n −q −k  , Q1A=O , Q1X1 = O, and

2 1 1 2 1E( | ) E( | ) = .¢ OY Y Q Y Y

This implies that W22⋅1 |Y1∼ W p−k (n −q −k , Σ22⋅1) and hence W22 ⋅ 1 ∼ Wp − k(n − q − k, Σ22 ⋅ 1). For

T22⋅1 , we have

22 1 2 2 2 2 ( ) 1
= , = ,n n n n

× -¢ - -1 I P Y1
I P PT Y Q Y Q

and hence

22 1 22 1 2 2 1 2= ( ) .¢× ×- -T W Y Q Q Y
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Similarly, Q2 is idempotent. Using P1n
PA =PAP1n

=P1n
 , we have Q1Q2 =Q2Q1 =Q1 , and hence

2
2 1 2 1 1 2 1( ) = , ( ) = .- - × - OQ Q Q Q Q Q Q

Further, under H2 ⋅ 1,

2 1 2 1 2 1E( | ) ( )E( | ) = .¢ - OX X Q Q X X

7. General multivariate linear model

In this section, we consider a general multivariate linear model as follows. Let Y be an n × p
observation matrix whose rows are independently distributed as p-variate normal distribution
with a common covariance matrix Σ. Suppose that the mean of Y is given as

E( ) = ,¢AQY X (7.1)

where A is an n × k given matrix with rank k, X is a p × q matrix with rank q, and Θ is a k × q
unknown parameter matrix. For a motivation of (7.1), consider the case when a single variable
y is measured at p time points t1, …, tp (or different conditions) on n subjects chosen at random
from a group. Suppose that we denote the variable y at time point tj by yj. Let the observations
yi1, …, yip of the ith subject be denoted by

1= ( , , ) , = 1, , .i i ipy y i n¢K Ky

If we consider a polynomial regression of degree q − 1 of y on the time variable t, then

E( ) = ,i Xqy

where

11
1 1

2

1

1
= , = .

1

q

q
p p

q

t t

t t

q
q

q
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-
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If there are k different groups and each group has a polynomial regression of degree q − 1 of y,
we have a model given by (7.1). From such motivation, the model (7.1) is also called a growth
curve model. For its detail, see [14].

Now, let us consider to derive LRC for a general linear hypothesis

: = ,gH C D OQ (7.2)

against alternatives Kg :CΘD≠O. Here, C is a c × k given matrix with rank c, and D is a q × d
given matrix with rank d. This problem was discussed by [15–17]. Here, we obtain LRC by
reducing it to the problem of obtaining LRC for a general linear hypothesis in a multivariate
linear model. In order to relate the model (7.1) to a multivariate linear model, consider the
transformation from Y to (U V):

1 2( ) = , = ( ),G G G GU V Y (7.3)

where G1 = X(X′X)− 1, G2 = X̃ , and X̃ are a p × (p − q) matrix satisfying X̃′X=O and X̃′X̃= I p−q. Then,
the rows of (U V) are independently distributed as p-variate normal distributions with means

E[( )] = ( ),QA OU V

and the common covariance matrix

1 1 1 2 11 12

2 1 2 2 21 22

= = = .
¢ ¢æ ö æ ö¢Y S ç ÷ ç ÷¢è ø è ø

G G G G
G G

G G G G
S S Y Y
S S Y Y

This transformation can be regarded as one from y = (y1, …, yp)′ to a q-variate main variable
u = (u1, …, uq)′ and a (p − q)-variate auxiliary variable v = (v1, …, vp − q)′. The model (7.1) is equivalent
to the following joint model of two components:

1. The conditional distribution of U given V is

*
11 2| N ( , ).n q´ ×X YU V A: (7.4)

2. The marginal distribution of V is

( ) 22N ( , ),n p q´ - O YV : (7.5)

where
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*

1 1
22 21 11 2 11 12 22 21

= ( ), = ,

= , .- -
×

æ ö
ç ÷
è ø
= -

A
Q

X
G

G Y Y Y Y Y Y Y

A V

Before we obtain LRC, first we consider the MLEs in (7.1). Applying a general theory of
multivariate linear model to (7.4) and (7.5), the MLEs of Ξ , Ψ11⋅2 , and Ψ22 are given by

* * 1 *
11 2 * 22

ˆ = ( ) , = ( ) , = .¢ ¢-
× ¢ ¢X -nn n

A
I PY YA A A U U U V V (7.6)

Let

= ( ) , = = ( ) ( )( ),n n¢ ¢ ¢- -A AI P G G I PS Y Y W S U V U V

and partition W as

11 12
12

21 22

= , : ( ).q p q
æ ö

´ -ç ÷
è ø

W W
W W

W W

Theorem 7.1For ann × pobservation matrixY, assume a general multivariate linear model given by
(7.1). Then:

1. The MLE Θ̂ of Θ is given by

1 1 1 1ˆ = ( ) ( ) .- - - -¢ ¢ ¢A AA A X X XQ YS S

2. The MLE Ψ̂11⋅2 of Ψ11⋅2 is given by

1 1
11 2 11 2= = ( ) .n - -
× × ¢X XY W S

Proof. The MLE of Ξ is Ξ̂= (A*′
A*)−1A*′

U. The inverse formula (see (5.5)) gives

1 11
* * 1 1

A

11 12

21 22

( ) ( )( )
= ( ) = [ ( ) ]

= .

n
p q p q

- --
¢ - -

- -

¢ ¢ ¢ ¢æ ö æ ö- -¢æ ö
¢+ -ç ÷ ç ÷ç ÷ ç ÷ ç ÷è ø è ø è ø
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ç ÷
è ø

O
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I IO O
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Therefore, we have

11 12
1 1 1

1 2 2 2 2 1

ˆ = ( )

= ( ) ( ) ( ) .SG- - -

¢ ¢+

¢ ¢ ¢ ¢ ¢ ¢-

A
AA A G AA A G G G G

Q Q Q V U

Y Y S

Using

1 1 1 1 1
2 2 2 2 1 1 2 1( ) = ( ) ,- - - - -¢ ¢ ¢ ¢-G G G G G G G GS S S S

we obtain 1. For a derivation of 2, let B= (In −PA)V. Then, using P
A* =PA + PB , the first expression

of (1) is obtained. Similarly, the second expression of (2) is obtained.

Theorem 7.2Letλ = Λn/2be the LRC for testing the hypothesis (7.2) in the generalized multivariate linear
model (7.1). Then,

=| | / | |,e e hL +S S S

where

1 1 1ˆ ˆ= ( ' ) , = ( )( )e h
- - -¢ ¢Q QD X X D C D C C C DS S S R

and

1 1 1 1 1

1 1

= ( ) ( ) { ( ) }
( ) .

- - - - -

- -

¢ ¢ ¢ ¢ ¢+ -

¢ ¢´

AA AA A X X X X
A AA

R YS S S

S Y

HereΘ̂is given in Theorem 7.1.1. Further, the null distribution is Λd(c, n − k − (p − q)).

Proof. The test of Hg in (7.2) against alternatives Kg is equivalent to testing

*: C =gH D OX (7.7)

under the conditional model (7.4), where C* = (C O). Since the distribution of V does not depend
on Hg, the LR test under the conditional model is the LR test under the unconditional model.
Using a general result for a general linear hypothesis given in Theorem 4.1, we obtain

=| | / | |,e e hL +% % %S S S
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where

* * * 1 *

* * * 1 * 1

= (I ( ) ) ,
ˆ ˆ= ( )( ( ) ) .

e n

h D

¢ ¢-

¢ ¢- -

¢ -

X X

D

C D C C C

%

%
S U A A A A UD

S A A

By reduction similar to those of MLEs, it is seen that S̃e =Se and S̃h =Sh . This completes the
proof.

8. Concluding remarks

In this chapter, we discuss LRC in multivariate linear model, focusing on the role of projection
matrices. Testing problems considered involve the hypotheses on selection of variables or no
additional information of a set of variables, in addition to a typical linear hypothesis. It may
be noted that various LRCs and their distributions are obtained by algebraic methods.

We have not discussed with LRCs for the hypothesis of selection of variables in canonical
correlation analysis, and for dimensionality in multivariate linear model. Some results for these
problems can be found in [3, 18].

In multivariate analysis, there are some other test criteria such as Lawley-Hotelling trace
criterion and Bartlett-Nanda-Pillai trace criterion. For the testing problems treated in this
chapter, it is possible to propose such criteria as in [12].

The LRCs for tests of no additional information of a set of variables will be useful in selec‐
tion of variables. For example, it is possible to propose model selection criteria such as AIC
(see [19]).
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