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Abstract

This chapter considers the design of event-triggered static output feedback simultane‐
ous H∞ controllers for a collection of networked control systems (NCSs). It is shown that
conventional point-to-point wiring delayed static output feedback simultaneous H∞
controllers can be obtained by solving linear matrix inequalities (LMIs) with a linear matrix
equality (LME) constraint. Based on an obtained simultaneous H∞  controller, an L2-
gain event-triggered transmission policy is proposed for reducing the network usage. An
illustrative example is presented to verify the obtained theoretical results.

Keywords: networked control systems, simultaneous stabilization, event-triggered,
static output feedback, H∞ control.

1. Introduction

A networked control system (NCS) is a feedback control system with feedback loop closed
through a communication network. As the signal in an NCS is exchanged via a network, the
network-induced delay, packet dropout, and limited network bandwidth can degrade the
control performance. Many results have been proposed for dealing with these issues [1–5]. In
the early stages, the studies on NCSs were mainly based on periodic task models [4–6]. The
number of data packets to be transmitted will be large as the sampling period is small. This leads
to a conservative usage of network resources and possibly leads to a congested network traffic.
Therefore, how to design networked feedback controllers to achieve desired performance with
low network usage is an important issue in NCSs.

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



Recently, some sporadic task models have been presented in NCSs without degrading system
performance. An important approach is the event-triggered scheme [7–26]. In [7], the state
transmitting and the control signal updating events were triggered only if the error between
the current measured state and the last transmitted state is larger than a threshold condition.
In [8], event-triggered distributed NCSs with transmission delay were studied. Based on the
designed event-triggered policy, an allowable upper bound of the transmission delay was
derived. In [9], for distributed control systems, an implementation of event-triggering control
policy in sensor-actuator network was introduced. In [10], the authors concerned with the
design of event-triggered state feedback controllers for distributed NCSs with transmission
delay and possible packet dropout. Under the proposed triggering policy, the tolerable packet
delay and packet dropout were derived. In [11], an event-triggered control policy was
developed for discrete-time control systems. In [12], under stochastic packet dropouts, an
event-triggered control law for NCSs was calculated by the proposed algorithms. In [13], an
event-triggered scheme was developed for uncertain NCSs under packet dropout. In [14], an
event-based controller and a scheduler scheme were proposed for NCSs under limited
bandwidth. The NCSs were modeled as discrete-time switched control systems. A sufficient
condition for the existences of event-based controllers and schedulers was derived by the LMI
optimization approach. Recently, the event-triggered scheme has been extended to H∞ control
of NCSs for achieving the disturbance attenuation performance [15–21]. In [15] and [18], with
considering transmission delays, event-triggered H∞ state feedback controllers for NCSs were
proposed. Criterion for stability and criterion for co-designing both the controller gains and
the trigger parameters were derived. In [16], an event-triggered state feedback control scheme
was proposed for guaranteeing finite L2-gain stability of a linear control system. In [17], an
event-triggered state feedback H∞ controller for sampled-data control system was proposed.
In [19], the design of event-triggered networked feedback controllers for discrete-time NCS
was considered. In [20], based on Lyapunov-Krasovskii function, an event-triggered state
feedback H∞ controller was derived for NCSs under time-varying delay and quantization.

All the results in [7–20] are derived in the assumption that the system states are available for
measurement. For practical control systems, system states are often unavailable for direct
measurement. In the literature, only few results have been proposed for output-based event-
triggered NCSs [22–26]. In [22], a dynamic output feedback event-triggered controller for NCSs
was proposed for guaranteeing the asymptotic stability. In [23] and [24], by the passivity theory
approach, output-based event-triggered policies were derived for guaranteeing the satisfac‐
tion of L2-gain requirements of dynamic output feedback NCSs in the presence of time-varying
delays. The synthesis of controllers has not been discussed. In [25] and [26], under nonuniform
sampling, new output-based event-triggered H∞ transmission policies were proposed of NCSs
under time-varying transmission delays. Furthermore, the design of static output feedback H∞

controllers for NCSs was discussed. Conditions for the existence of H∞ controllers were
presented in terms of bilinear matrix inequalities. A non-convex minimization problem must
be solved to get a static output feedback H∞ controller.
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On the other hand, few results have been proposed in the literature for simultaneous stabili‐
zation of NCSs. The consideration of simultaneous stabilization is important since it allows us
to design highly reliable controllers that are able to accommodate possible element failures in
control systems. As the signal transmitted through network, the solvability of simultaneous
stabilization problem of NCSs is quite different to that of point-to-point wiring control systems.
Only few results have been proposed for relevant issues [21, 27]. In [27], based on the average
dwell time approach, the simultaneous stabilization for a collection of NCSs was considered.
A sufficient condition for guaranteeing simultaneous stabilization was proposed. In [21],
under the assumption that the network communication channel is ideal (no delay, no packet
dropout, and no quantization error), we considered the design of state feedback event-
triggered simultaneous H∞ transmission policies for a collection of NCSs. Under the proposed
event-triggered transmission policies, the L2-gain stability of all the closed-loop NCSs can be
guaranteeing under low network usages.

It is known that static output feedback controllers are preferred in practical applications since
their implementations are much easier than dynamic output feedback controllers. However,
the design of static output feedback controllers is much more difficult than dynamic ones. In
this chapter, we extend our previous work [21] to static output feedback case. Furthermore,
we consider the network-induced time-varying delay that has not been considered in [21]. We
develop an event-triggered static output feedback simultaneous H∞ transmission policy for a
collection of continuous-time linear NCSs under time-varying delay. It is shown that, under
mild assumptions, conventional point-to-point wiring delayed static output feedback simul‐
taneous H∞ controllers can be obtained by solving LMIs with a LME constraint. Based on the
obtained static output feedback simultaneous H∞ controllers, an event-triggered transmission
policy was derived for reducing network usage. Different to the results presented in [25] and
[26] that only considering the design of an event-triggered H∞ controller for a single system,
this chapter considers the design of a fixed event-triggered H∞ controller that is able to L2-
stabilize a collection of NCSs simultaneously. By the proposed method, highly reliable NCSs
that are able to accommodate possible element failures with low network usage can be
designed. Even simplifying our results to the single system case, our method for designing
static output feedback H∞ controllers is quite different from those in [25] and [26]. In [25] and
[26], a non-convex minimization problem must be solved for getting a static output feedback
H∞ controller. Moreover, the obtained controller can only guarantee uniform ultimate
boundedness but not internal stability. In our approach, (simultaneous) static output feedback
H∞ controllers are obtained by solving LMIs with a LME constraint. Moreover, internal
stabilities of the closed-loop NCSs can be guaranteed.

2. Problem formulation and preliminaries

In this section, the problem to be solved is formulated and some preliminaries are given. For
simplifying the expressions, we use the same notations x, u, w, and z to denote the states, control
inputs, exogenous inputs, and the controlled outputs of all considered systems.
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2.1. Problem formulation

Consider a collect of continuous-time control systems:

1 2

1 11 12

2

( ) ( ) ( ) ( ),      1,2,...,

( ) ( ) ( ) ( )

( ) ( )

j j j

j j j

j

x t A x t B w t B u t j N
z t C x t D w t D u t
y t C x t

= + + =

= + +

=

&

(1)

where x(t)∈R n is the system state, u(t)∈R m is the control input, z(t)∈R s is the controlled
output, y(t)∈R l is the measured output, w(t)∈R r  is the exogenous input, and
Aj,  B1 j,  B2 j,  C1 j,  D11 j,  D12 j, and C2 jare constant matrices with appropriate dimensions.
Here, for convenience, we assume C2 j =C2, j = 1,2,…,N. Suppose that (Aj,B2 j) are stabilizable

and (C2,Aj) are detectable for each j∈ {1, 2..., N }.Furthermore, assume that γ 2I −D11 j
T D11 j >0 for

all j∈ {1, 2..., N }.

In this chapter, we consider the case that the feedback loop of system (1) is closed through a
real-time network, but not by the conventional point-to-point wiring. Suppose that the sensor
node keeps measuring the output signal y, but not all the sampled data need to be sent to the
controller node. The data transmission at the sensor node is not periodic. Let ti (i = 1,2,…) be
the time that the i-th transmission occurs at the sensor nodes. In this case, the controller node
receives the networked feedback data y(ti) and updates the control signal at time ti + τi, i = 1,2,
…, where τi∈ τd min, τd max  is the transmission delay. That is,

1 1( ) ( ), , 1 2i i i i iu t Fy t t t t i = , ,t t+ += + £ < + K (2)

where F is the feedback gain to be designed later. With the same controller (2), the closed-loop
systems are:

1 2 2 1 1

1 11 12 2

( ) ( ) ( ) ( ),      ,  1,2, ,

( ) ( ) ( ) ( )
j j j i i i i i

j j j i

x t A x t B w t B FC x t t t t j N
z t C x t D w t D FC x t

t t+ += + + + £ < + =

= + +

& K
(3)

If the measured data is not critical for L2-gain stability, it will not be sent for saving the network
usage. In this case, the controller node does not update the control signal. If the measured data
is critical, it will be sent through the network to the controller node, and the controller will
update the control signal.

Our main goal is to design an event-triggered transmission rule to determine whether the
currently measured data should be sent to the controller node, such that, under the transmis‐
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sion delay, all possible closed-loop systems in (3) are internally stable and satisfy, for a given
constant γ >0 and for any T >0 and w∈ L 2 0, T ,

2
0 00 0

( ) ( )d ( ) ( ,for s)d ome
T TT Tz t z t t w t w t tg g g£ <ò ò (4)

Note that, a practical control system may have several different dynamic modes since it may
have several different operating points (please see e.g., the ship steering control problem
considered in [28] ). On the other hand, for achieving higher reliability of a practical control
system, we may want to design a controller to accommodate possible element failures. With
considering possible element failures, a control system can have several different dynamic
modes (see e.g., the reliable control problem for active suspension systems considered in [29]).
The problem we considered has a practical importance owing to its high applicability in
designing robust and/or reliable controllers.

2.2. Preliminaries

The following Lemmas will be used later.

Lemma 1 [30]: For any vectors X ,Y ∈R n and any positive definite matrix G∈R n×n, the
following inequality holds:

-£ + +
12 T T TX Y X GX Y G Y

Lemma 2 [31]: For any given matrices Π <0 and Φ =Φ T , and any scalar λ, the following
inequality holds:

2 12l l -FPF £ - F - P +

For convenience, define xt(s)= x(t + s),  ∀ s∈ −τmax, 0 .

Lemma 3 (Lyapunov–Krasovskii Theorem) [32]: Consider a time-delay system:

( ) ( ) ( ( )),  0dx t Ax t A x t t tt= + - " ³& (5)

with τ(t)∈ 0, τmax , ∀ t ≥0. Suppose that x(t)=ψ(t),  ∀ t∈ −τmax, 0 . If there exists a function

max: ([ ,0], )nV C R Rt- ®
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and a scalar ε >0, such that, for all φ∈C( −τmax, 0 , R n), V (φ)≥ε φ(0) 2,  and, along the
solutions of (5),

2d ( ) (0) ,
d

t

t

x

V x
t j

e j
=

£ -

then the system (5) is asymptotically stable. ■

3. Main results

We first consider the design of the event-triggered transmission policy under the assumption
that we have a delayed simultaneous H∞ controller, and then show how to derive simultaneous
H∞ controller under transmission delay.

3.1. Event-triggered transmission policy for NCSs under time-varying delay

Define the equivalent time-varying delay

1 1( ) ,  ,  1,2, .+ += - + £ < + = ¼i i i i iτ t t t t τ t t τ i

It is clear that

min max( ) ,  0,and 1almost everywhereÎé ù" ³ =ë û &τ t τ τ t τ (6)

where τmin≡min
i∈N

{τi}=τd min and τmax≡max
i∈N

{ti+1− ti + τi+1}=max
i∈N

{ti+1− ti} + τd max. Then, the systems in

(3) can be equivalently described as

1 2 2

1 11 12 2

( ) ( ) ( ) ( ( )),      1,2, ,

( ) ( ) ( ) ( ( ))
j j j

j j j

x t A x t B w t B FC x t t j N
z t C x t D w t D FC x t t

t

t

= + + - =

= + + -

& K
(7)

To derive an event-triggered transmission policy in the presence of transmission delay, assume
that, for the systems in (1), we have a conventional delayed static output feedback simultane‐
ous H∞ controller:

( ) ( ( ))u t Fy t tt= - (8)
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which is such that all of the possible closed-loop systems in (7) are internally stable and satisfy
the condition (4) for τ(t)∈ τmin,  τmax . How to get such a delayed static output feedback
simultaneous H∞ controller will be discussed later.

Define the error signal:

1( ) ( ) ( ),i i ie t y t y t t t t += - £ < (9)

We have the following results.

Theorem 1: Consider the systems in (1). Suppose that the controller (8) is such that all the closed-
loop systems in (7) are internally stable and satisfy the condition (4). If there exist matrices
Pj >0, Qj >0, G1 j, G2 j, G3 j, and G4 j, j=1,2,…,N, of appropriate dimensions, and scalars εj >0, j=1,2,
…,N, satisfying the following LMIs:

3 1 4 1 11 max max 1

3 4 2 12 11 max 2 2 max 2

max 3
2

11 11 max 1 max 4

max

max

*
* * 0 0

0,
* * *
* * * * 0
* * * * *

T T T T
j j j j j j j j j j j

T T T T T T T T
j j j j j j j j

j j
T T
j j j j j

j

j

G P B G C D A Q G
G G C F D D C F B Q G
I G

D D r I B Q G
Q

Q

t t
t t

e t
t t
t

t

é ùF X + +
ê úS - - +ê ú
ê ú-
ê ú <

-ê ú
ê ú-ê ú
ê ú-ë û

(10)

where

1 1 2 2 1 1
T T T T

j j j j j j j j jA P P A C C C C G GF = + + + + +

2 2 1 12 2 1 2
T T

j j j j j j jP B FC C D FC G GX = + - +

2 12 12 2 2 2
T T T T

j j j j jC F D D FC G GS = - -

then all the networked closed-loop systems in (7) are internally stable and satisfy the condition
(4) if the following condition holds:

1{1,2,..., }

1( ) min ( ) , i ij N
j

e t y t t t t
e +Î

< × £ < (11)

Proof: For the systems in (7), choose the candidate storage functions:

Event-Triggered Static Output Feedback Simultaneous H∞ Control for a Collection of Networked Control Systems
http://dx.doi.org/10.5772/63020

59



max

0
( ( )) ( ) ( ) ( ) ( ) , 1,2, , .

tT T
j j jt

V x t x t P x t x Q x d d j N
t s

q q q s
- +

= + =ò ò & & K

Define

T 2 T
dj i j

T T
j

Ĥ (x(t),x(t ),e(t),w(t)) V (x(t)) z (t)z(t) w (t)

w(t) y (t)y(t) e (t)e(t), j 1,2, ,N

º + - g

+ - e =

&

K

Along the solutions of the j-th system, we have

( )
max

2
max

ˆ 2 ( ) ( ) ( ) ( )d ( ) ( ) ( ) ( ) ( ) ( )

            ( ) ( ) ( ) ( ) 2 ( ) ( ) ( ) ( )d
i

tT T T T T
dj j j jt

tT T T
j j i t

H x t P x t x Q x x t Q x t z t z t w t w t

y t y t e t e t t G x t x t x

t
q q q t g

e h q q

-
= - + + -

+ - + - -

ò

ò

& & & & &

&

where η(t)= x T (t) x T (ti) e T (t) w T (t) T  and Gj = G1 j
T G2 j

T G3 j
T G4 j

T T . Then,

( )1 2 2 1 1
ˆ 2 ( ) ( ) ( ) ( ( )) ( ) ( )T T T
dj j j j j j jH x t P A x t B w t B FC x t t x t C C x tt= + + - +

1 12 2 2 12 12 22 ( ) ( ( )) ( ( )) ( ( ))T T T T T T
j j j jx t C D FC x t t x t t C F D D FC x t tt t t+ - + - -

11 11 1 11 2 12 11( ) ( ) 2 ( ) ( ) 2 ( ( )) ( )T T T T T T T T
j j j j j jw t D D w t x t C D w t x t t C F D D w tt+ + + -

max

2 ( ) ( ) ( ) ( )d
tT T

jt
r w t w t x Q x

t
q q q

-
- - ò & &

max max 1 1( ) ( ) ( ) ( )T T T T
j j j j j jx t A Q A x t w t B Q B w tt t+ +

max 2 2 2 2( ( )) ( ( ))T T T T
j jx t t C F B QB FC x t tt t t+ - -

max 1 max 2 22 ( ) ( ) 2 ( ) ( ( ))T T T T
j j j j j jx t A Q B w t x t A Q B FC x t tt t t+ + -

max 2 2 12 ( ( )) ( )T T T T
j j jx t t C F B Q B w tt t+ -
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( )2 2( ) ( ) ( ) ( ) 2 ( ) ( ) ( ) ( )d
i

tT T T T
j j i t

x t C C x t e t e t t G x t x t xe h q q+ - + - - ò & (12)

From the definition of τmax, it is clear that τmax≥ t − ti as t∈ ti + τi,  ti+1 + τi+1). As a result,

max

( ) ( )d ( ) ( )d .
i

t tT T
j jt t

x Q x x Q x
t

q q q q q q
-

- £ -ò ò& & & & (13)

By (12), (13), and the Jensen integral inequality [33], we can show that

2 2 1 12 2 1 2 3 1 4 1 11

2 12 12 2 2 2 3 4 2 12 11

2
11 11

*ˆ ( ) ( )
* * 0
* * *

T T T T T
j j j j j j j j j j j j j

T T T T T T T T T
j j j j j j j jT

dj
j

T
j j

P B FC C D FC G G G P B G C D
C F D D FC G G G G C F D D

H t t
I

D D r I

h h
e

é ùF + - + + +
ê ú- - - - +ê ú£ ê ú-
ê ú

-ê úë û

max max 1 1( ) ( ) ( ) ( )T T T T
j j j j j jx t A Q A x t w t B Q B w tt t+ +

max 2 2 2 2( ( )) ( ( ))T T T T
j j jx t t C F B Q B FC x t tt t t+ - -

max 1 max 2 22 ( ) ( ) 2 ( ) ( ( ))T T T T
j j j j j jx t A Q B w t x t A Q B FC x t tt t t+ + -

1
max 2 2 1 max2 ( ( )) ( ) ( ) ( )T T T T T T

j j j j j jx t t C F B Q B w t t G Q G tt t t h h-+ - + (14)

Then, by Schur complement and after some manipulations, it can be proved that if (10) holds,
we have

dj iĤ (x(t),x(t ),e(t),w(t)) for all (t) 0< h ¹

.

That is, under (11),

T 2 T
jV (x(t)) z (t)z(t) w (t)w(t) 0, (t) 0+ - g < h ¹& (15)

This shows that the j-th closed-loop system in (7) satisfies condition (4). To prove the internal
stability, by letting w(t)=0 in (15) yields (note that j can be any number belonging to {1,2,…,N})
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( ( )) ( ) ( ) 0, ( ) 0.T
jV x t z t z t x t< - £ " ¹&

That is, the j-th closed-loop system is internally stable. Note that j can be any number belonging
to {1,2,…,N}. The above proof shows that all the closed-loop systems are internally stable and
satisfy condition (4). ■

Remark 1: Note that condition (11) is checked at the sensor node but not the controller node.
In practice, the transmission event is triggered by the condition

{1,2,..., }

1( ) min ( )
j N

j

e t y th
eÎ

³ × ×

for some constant 0<η <1. In general we set η near to 1. ■

3.2. Synthesis of static output feedback delayed simultaneous H∞ controllers

In this subsection, we introduce how to derive a conventional delayed simultaneous static
output feedback H∞ controller (8) such that all of the closed-loop systems (7) are internally
stable and satisfy the condition (4). We have the following results.

Lemma 4: Consider the systems in (1). For given positive scalars λ and τmax, if there exist
matrices S >0, Q >0, T1 j, T2 j, T3 j, j=1,2,…,N, and matrices M  and L  of appropriate dimensions,
satisfying the following LMIs and LME :

( )

1 3 1 11 max 1 max 1

2 2 3 2 12 11 max 2 2 2 12 max 2
2

11 11 max 1 max 3
1

max

2 1
max

*
* * 0

0* * * 0 0
* * * * 0

* * * * * 2

T T T T
j j j j j j j j j

T T T T T T T T T T T
j j j j j j j j

T T
j j j j

B T SC D SA SC T
T T T C L D D C L B C L D T

D D r I B T
Q

I

S Q

z t t
t t
t t
t

t l l

-

-

é ùL + +
ê ú- - - +ê ú
ê ú-
ê ú <-ê ú
ê ú-ê ú
ê ú- +ë û

(16)

=2 2MC C S (17)

where Λj =S Aj
T + AjS + T1 j + T1 j

T  and ζj = B2 j L C2−T1 j + T2 j
T , then the feedback law (8) with

F = L M −1 is a simultaneous H∞ controller for the systems in (1).

Proof: Let P =S −1. Choose a candidate storage function
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Then, along the trajectories of the j-th system,
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j j j jx t C D FC x t t x t t C F D D FC x t tt t t+ - + - -
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j j j j j j jw t D D w t x t C D w t x t t C F D D w tt+ + + -
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2
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( )max 2 2 1 ( )
2 ( ( )) ( ) 2 ( ) ( ) ( ( )) ( )

tT T T T T
j j j t t

x t t C F B QB w t t T x t x t t x d
t

t t m t q q
-

+ - + - - - ò & (18)

By Lemma 1 and the Jensen integral inequality [33], we can show that

1
max( ) ( )

2 ( ) ( )d ( ) ( ) ( ) ( )d
t tT T T T

j j jt t t t
t T x t T Q T t x Qx

t t
m q q t m m q q q-

- -
- £ +ò ò& & & (19)

As a result,

( )1 2 2 1 12 ( ) ( ) ( ) ( ( )) ( ) ( )T T T
dj j j j j jH x t P A x t B w t B FC x t t x t C C x tt£ + + - +

1 12 2 2 12 12 22 ( ) ( ( )) ( ( )) ( ( ))T T T T T T
j j j jx t C D FC x t t x t t C F D D FC x t tt t t+ - + - -

11 11 1 11 2 12 11( ) ( ) 2 ( ) ( ) 2 ( ( )) ( )T T T T T T T T
j j j j j jw t D D w t x t C D w t x t t C F D D w tt+ + + -

2

( )
( ) ( ) ( ) ( )d

tT T

t t
r w t w t x Qx

t
q q q

-
- - ò & &

max max 1 1( ) ( ) ( ) ( )T T T T
j j j jx t A QA x t w t B QB w tt t+ +

max 2 2 2 2 max 1( ( )) ( ( )) 2 ( ) ( )T T T T T T
j j j jx t t C F B QB FC x t t x t A QB w tt t t t+ - - +

max 2 2 max 2 2 12 ( ) ( ( )) 2 ( ( )) ( )T T T T T T
j j j jx t A QB FC x t t x t t C F B QB w tt t t t+ - + -

1
max ( )

2 ( ) ( ) 2 ( ) ( ( )) ( ) ( ) ( ) ( )d
tT T T T T

j j j j t t
t T x t t T x t t t T Q T t x Qx

t
m m t t m m q q q-

-
+ - - + + ò & &

2 2 1 12 2 1 2 1 3 1 11

2 12 12 2 2 2 3 2 12 11
2

11 11

( ) * ( )
* *

T T T T
j j j j j j j j j j

T T T T T T T T T
j j j j j j j

T
j j

PB FC C D FC PT P PT P PB PT C D
t C F D D FC PT P PT P PT C F D D t

D D r I
m m

é ùQ + - + + +
ê ú= - - - +ê ú
ê ú-ë û

max max 1 1( ) ( ) ( ) ( )T T T T
j j j jx t A QA x t w t B QB w tt t+ +
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max 2 2 2 2 max 1( ( )) ( ( )) 2 ( ) ( )T T T T T T
j j j jx t t C F B QB FC x t t x t A QB w tt t t t+ - - +

max 2 2 max 2 2 12 ( ) ( ( )) 2 ( ( )) ( )T T T T T T
j j j jx t A QB FC x t t x t t C F B QB w tt t t t+ - + -

1
max ( ) ( )T T

j jt T Q T tt m m-+

( ) ( )T
jt tm mº W

where

1 1 1 1
T T T

j j j j j j jPA A P C C PT P PT PQ = + + + +

and

T T T T
j 2 j 2 1j 12 j 2 1j 2 j 1j 3 j 1j 11j

T T T T T T T T
j 2 12 j 12 j 2 2 j 2 j 3 j 2 12 j 11j

T 2
11j 11j

T T T
max j j max j 2 j 2 max j 1j

T T T T
max 2 2 j 2 j 2 max 2

PB FC C D FC PT P PT P PB PT C D
* C F D D FC PT P PT P PT C F D D
* * D D r I

A QA A QB FC A QB
* C F B QB FC C F

é ùQ + - + + +
ê ú

W = - - - +ê ú
ê ú

-ê úë û
t t t

+ t t T T 1 T
2 j 1j max j j

T
max 1j 1j

B QB TQ T
* * B QB

-

é ù
ê ú

+ tê ú
ê ú

tê úë û

By noting (17) and the Schur complement, we know that Ωj <0 if Ω̂ j <0, where

1 3 1 11 max 1 max 1

2 2 3 2 12 11 max 2 2 2 12 max 2
2

11 11 max 1 max 3
1

max

max

*
* * 0ˆ
* * * 0 0
* * * * 0
* * * * *

T T T T
j j j j j j j j j

T T T T T T T T T T T
j j j j j j j j

T T
j j j j

j

PB PT C D A C PT P
PT P PT P PT C F D D C F B C F D PT P

D D r I B T P
Q

I
Q

d t t
t t

t t
t

t

-

é ùY + +
ê ú- - - +ê ú
ê ú-

W = ê ú
-ê ú

ê ú-ê ú
ê ú-ë û

with
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T T
j j j 1j 1j

T
j 2 j 2 1j 2 j

PA A P PT P PT P

PB FC PT P PT P

Y = + + +

d = - +

Moreover, Ω̂ j <0 if and only if Ω̃ j <0, where Ω̃ j is the matrix obtained by pre- and post-
multiplying Ω̂ j by diag{S S I I I S }:

1 3 1 11 max 1 max 1

2 2 3 2 12 11 max 2 2 2 12 max 2
2

11 11 max 1 max 3
1

max

max

*
* * 0
* * * 0 0
* * * * 0
* * * * *

T T T T
j j j j j j j j j

T T T T T T T T T T T
j j j j j j j j

T T
j j j j

j

S S S S B T SC D SA SC T
T T T SC F D D SC F B SC F D T

D D r I B T
Q

I
SQS

d t t
t t

t t
t

t

-

é ùY + +
ê ú- - - +ê ú
ê ú-

W = ê ú
-ê ú

ê ú-ê ú
ê ú-ë û

%

By Lemma 2, it follows that Ω̃ j <0 (and then Ωj <0) if (16) and (17) hold. This proves that the

feedback law (8) with F = L M −1 is a simultaneous static output feedback H∞ controller for all
the systems in (1). ■

4. An illustrative example

Suppose that a control system operates at three different operating points. The dynamics at
these operating points are different. Suppose that it behaves in the following three possible
modes:

1 2

1 11 12

2

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ),  1,2,3
( ) ( )

j j j

j j j

x t A x t B w t B u t
z t C x t D w t D u t j
y t C x t

= + +
= + + =
=

&
(20)

where

[ ]

1 11 21

11 111 121

2

0.211 -1.471 -0.361 0.696 -1.824
-0.585 -1.683 0.729 ,  0.385 ,  -1.182 ,  
-1.811 0.64 -2.287 0.176 2.564

0.686 -0.421 -2.211 ,  1.164, 0.665

0.657 0.265 -1.288
-0.439 0

A B B

C D D

C

é ù é ù é ù
ê ú ê ú ê ú= = =ê ú ê ú ê ú
ê ú ê ú ê úë û ë û ë û
= = =

= ,
.336 -0.246

é ù
ê ú
ë û
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[ ]

2 12 22

12 112 122

2

-0.406 -1.525  0.321 -0.559 -0.591
0.625 -1.145 1.239 ,  0.47 ,  1.521 ,  
-4.185 1.212 -1.431 -0.679 2.351

-0.829 0.451 2.395 ,  -1.523, -0.414, 

0.657 0.265 -1.288
-0.

A B B

C D D

C

é ù é ù é ù
ê ú ê ú ê ú= = =ê ú ê ú ê ú
ê ú ê ú ê úë û ë û ë û
= = =

= ,
439 0.336 -0.246

é ù
ê ú
ë û

[ ]

3 13 23

13 113 123

2

-0.121 -1.235 0.261 0.509 -0.824
0.625 -0.733 0.639 ,  0.585 ,  1.202 ,
-2.106 0.55 1.147 -0.776 3.514

0.686 -0.421 -2.211 ,  1.164, 0.569,

0.657 0.265 -1.288
-0.439 0.3

A B B

C D D

C

é ù é ù é ù
ê ú ê ú ê ú= = =ê ú ê ú ê ú
ê ú ê ú ê úë û ë û ë û
= = =

= .
36 -0.246

é ù
ê ú
ë û

We want to design a static output feedback event-triggered H∞ controller that is able to L2-
stabilize the system at all the three possible operating points with γ =7. Suppose that the
minimal and maximal transmission delays are τd min =0.1ms and τd max =0.45ms, respectively. We
first need to derive a conventional simultaneous static output feedback H∞ controller for all
the modes in (20) and then, based on the obtained controller, we can obtain an event-triggered
transmission policy.

Given λ =0.6 and τmax =0.1 s, by solving (16) and (17) we can get a simultaneous H∞ controller

[ ]( ) ( ( )) 0.885 -1.559 ( ( ))u t Fy t t y t tt t= - = -

With this controller, by solving (10) we can get solutions:

0 01 2

112.141 -30.286 -9.24 60.909 -1.957 8.043
P -30.286 113.675 14.086 P -1.957 42.793 -1.25   

-9.24 14.086 47.207 8.043 -1.25 71.935

é ù é ù
ê ú ê ú= > = >ê ú ê ú
ê ú ê úë û ë û

0 03 1

129.678 -14.921 -18.771  297.0174 -97.1611 42.8020
P -14.921 63.544 -18.135 Q -97.1611 345.4888 58.5580

-18.771 -18.135 40.175 42.8020 58.5580 134.3278

é ù é ù
ê ú ê ú= > = >ê ú ê ú
ê ú ê úë û ë û
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0 02 3

157.5111 14.4987 6.6046 282.727 -17.226 -12.768
Q 14.4987 120.8614 11.6833 Q -17.226 61.7053 -10.87

6.6046 11.6833 117.3282 -12.768 -10.87 103.349

é ù é ù
ê ú ê ú= > = >ê ú ê ú
ê ú ê úë û ë û

11 21

-217.2794 119.9043 11.8195 217.253 -42.004 10.029
G 39.8052 12.3064 -28.9204 G 19.619 73.242 0.249

46.2486 -53.3922 -72.2522 -88.031 31.144 156.995

é ù é ù
ê ú ê ú= =ê ú ê ú
ê ú ê úë û ë û

31 41

-9.24 14.086 47.207
G G -40.504 9.752 16.069

60.91 -1.957 42.793
é ù

é ù= =ê ú ë û
ë û

12 22

-134.794 35.386 65.797 170.595 -39.806 -49.551
G 73.976 -46.104 -60.232 G -7.746 56.83 17.2

118.174 -34.092 -46.002 -21.124 16.814 140.097

é ù é ù
ê ú ê ú= =ê ú ê ú
ê ú ê úë û ë û

32 42

-9.2402 14.0864 47.2070
G G -7.001 -8.089 21.297

60.9096 -1.9572 42.7932
é ù

é ù= =ê ú ë û
ë û

13 23

-150.599 38.683 -6.694 258.559 -32.327 -49.367
G 69.354 -43.986 -33.385 G -40.332 58.951 15.119

126.071 -47.435 -130.298 -142.399 35.247 141.214

é ù é ù
ê ú ê ú= =ê ú ê ú
ê ú ê úë û ë û

33 43

-9.24 14.086 47.207
G G -78.396 1.269 45.971

60.91 -1.957 42.793
é ù

é ù= =ê ú ë û
ë û

1 2 338.2561, 72.7127, and 72.8613e e e= = =

According to Theorem 1 and Remark 1, the event-triggered policy is (let η =0.99):

j {1,2 ,3}
j

1e(t) min y(t) 0.1116 y(t)
Î

³ h× × =
e (21)
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With the triggering condition (21), the sensor node can determine whether the currently
measured data must be transmitted. If the currently measured data is such that condition (21)
is violated, it will be discarded for reducing network usage. If the measured data is such that
condition (21) holds, it will be sent to the controller node for updating the control signal.

By simulation, for guaranteeing the simultaneous L2–gain stability, the number of transmission
events at the sensor node of the first system is 64 in the first 10 s. The average inter-transmitting
time is 0.1563 s. The number of transmission events at the sensor node of the second system is
585. The average inter-transmitting time is 0.0171 s. The number of transmission events at the
sensor node of the third system is 595. The average inter-transmitting time is 0.0168 s. Figures
1–3 are the responses of the event-triggered and non-event-triggered closed-loop systems
under the same initial condition x(0)= 1 -1 1 T  and the same exogenous disturbance
w(t)= (3sin(8t) + 2cos(5t))× e −0.5t (shown in Figure 4). It is clear that the proposed event-triggered
policy guarantees simultaneous L2–gain stability under low network usages. Moreover, it can
be seen that the responses of closed-loop systems controlled by the event-triggered controller
and the non-event-triggered controller are almost the same. That is, the obtained event-
triggered controller, in a very low network usage rate, can perform almost the same control
performance as the conventional non-event-triggered controller. A low network usage rate
will in general lead to a good quality of network service.

Figure 1. Responses of the first closed-loop NCS.
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Figure 2. Responses of the second closed-loop NCS.

Figure 3. Responses of the third closed-loop NCS.
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Figure 4. Disturbance input.

5. Conclusions

In this chapter, we develop an event-triggered static output feedback simultaneous H∞

transmission policy for NCSs under time-varying transmission delay. With the proposed
method, we do not need to switch controllers or event-triggered policies for an NCS with
several different operating points. Moreover, the reliability of NCSs can be improved as
possible element failures can be accommodated. The implementation of the obtained event-
triggered simultaneous H∞ controller is easy as it is in the static output feedback framework.
One weakness of our result is that the conditions for the existence of static output feedback
simultaneous H∞ controllers are represented in terms of LMIs with a LME constraint. Standard
LMI tools cannot be directly applied to find the solutions. Possible issues for further study
include finding less conservative event-triggered transmission policies, considering the
possibility of packet dropouts, and relaxing the continuous monitoring requirement at the
sensor node by replacing the event-triggered scheme with a self-triggered one.
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Nomenclatures

R n real vector of dimension n.

R n×m real n ×m matrix.

∥⋅∥  the Euclidean vector norm.

M T (resp., M −1) the transpose (resp., inverse) of matrix M.

M >0 (resp., M ≥0) the matrix M is positive definite (resp., positive semidefinite).
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M =
A B
* C  the symbol * denotes the symmetric terms in a symmetric matrix

I  the identity matrix of appropriate dimension.

diag{⋯ } the block diagonal matrix.

min z(⋅ ) the minimum value of z(⋅ ).
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