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Abstract

This chapter addresses the following question: What are the advantages of extending a
fuzzy expert system (FES) to an artificial neural network (ANN), within a computer‐
based speech therapy system (CBST)? We briefly describe the key concepts underlying
the principles  behind the FES and ANN and their  applications in  assisted speech
therapy. We explain the importance of an intelligent system in order to design an
appropriate model for real‐life situations. We present data from 1‐year application of
these concepts in the field of assisted speech therapy. Using an artificial intelligent
system for improving speech would allow designing a training program for pronunci‐
ation, which can be individualized based on specialty needs, previous experiences, and
the child's prior therapeutical progress. Neural networks add a great plus value when
dealing with data that do not normally match our previous designed pattern. Using an
integrated approach that combines FES and ANN allows our system to accomplish three
main objectives: (1) develop a personalized therapy program; (2) gradually replace some
human expert duties; (3) use “self‐learning” capabilities, a component traditionally
reserved for humans. The results demonstrate the viability of the hybrid approach in
the context of speech therapy that can be extended when designing similar applications.

Keywords: fuzzy expert system, artificial neural network, assisted speech therapy, ar‐
tificial intelligent system, hybrid expert system

1. Speech therapy: key concepts and facts

Dyslalia is a pronunciation deficiency manifested by an alteration of one or more phonemes
due to several causes such as: omissions, substitutions, distortions, and permanent motor
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impairments. Dyslalia can be simple when it is related with only one sound (eventually in an
attenuated form). An extension of pronunciation–articulation disorder related with more
sounds and/or groups of syllables is called polymorphic dyslalia [1].

The existence of a dyslalia with defectological significance can be diagnosed after the age of
four. Until that, dyslalia is called physiological and it is caused by the insufficient development
of the speech‐articulator apparatus and the neurological systems implicated in the speech
process. This is the age that allows maximization of the therapeutic effects and offers a good
prognosis for improvement/correction. The later the therapy begins, the weaker the effect [2].

There are many causes for dyslalia: the imitation of persons with deficient pronunciation, lack
of speech stimulation, adults encouraging the preschool child to stabilize wrongful habits,
defects in teeth implantation, different anomalies of the speech‐articulator apparatus, cerebral
deficiencies, hearing loss, weak development of phonetic hearing. Also, in severe dyslalias,
heredity is considered an important factor in diagnosing and explaining this deficiency.

Impairment type Number of

subjects

Impairment

frequency (%)

Overall impairment

frequency (%)

Dyslalia 434 91.2 14.8

Dysarthria – – –

Rhinolalia 7 1.5 0.2

Reading‐writing difficulties – – –

Rhythm and

fluency difficulties

17 3.7 0.6

Language impairments Selective mutism 4 0.8 0.1

General development

delays

8 1.6 0.3

Voice impairments – – –

Language impairments in

association with:

Autism 4 0.8 0.1

Down syndrome 2 0.4 0.1

Intellectual deficiencies – – –

Deafness – – –

Total 476 100.0 16.2

Table 1. Speech and language impairments distribution (unpublished data from Suceava—Romania Regional Speech
Therapy Centre).

In dyslalia, the sounds are not equally affected. Thus, the sounds most affected are the ones
that appear later in the child's speech: vibrant—r (very important in Romanian language),
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affricates—c, g, t, hissing—s, z. In fact, the sounds mostly affected are the ones that require a
greater effort to synchronize the elements of the phono‐articulator apparatus (elements en‐
gaged in the emission of sounds: larynx, vocal cords, tongue, lips, teeth, and cheeks). Their
pronunciation involves a certain position of all these elements and a certain intensity of the
exhausted air jet [1].

Regarding the frequency of speech impediments and especially the frequency of dyslalia, the
statistics from the Suceava Romanian Regional Speech Therapy Centre (Table 1; Figure 1)
reveals the following aspects [2]: (i) Disorders that affect speech are more frequent that the
ones affecting the language; (ii) Dyslalia is the most frequent pronunciation disorder, with
sounds r and s most affected; (iii) the proportion of children with speech impediments:

• Decreases constantly until first grade;

• Suddenly decreases between first and second grade;

• Decreases slower and slower between second and fourth grade.

Figure 1. Evolution of speech impairments frequency across subjects’ age.

The characterization of the dyslalia dynamics is of great interest also, in regard to the age of
the subjects as depicted in Figure 1. Before age four no logopedic evaluation was conducted
for children since possible speaking problems might be due to insufficient maturation of the
phono‐articulatory organs and of the involved cortical areas.

After this age, children with speech impairments are integrated in the speech therapy pro‐
grams. The therapy determines the progressive decrease of the proportion of children with
speech problems in relation to their age. At the beginning of the school, the frequency of
children with speech disorders decreases suddenly, mainly because of the acquisition of
writing and reading skills. Moreover, the corrective effort from the teaching community is
highly emphasized. After this age, language disorders are present mainly in children with
organ related disorders—structural disorders of the central or peripheral organs of speech.

The main steps of speech therapy together with the place of fuzzy expert system in therapeutic
process are presented in Figure 2. Each therapy process contains a formative evaluation, which
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can be followed by the therapy within the family. After 3 months, the speech therapist can
finalize the therapy or can reevaluate it [3].

The expert system incorporates information generated from social, cognitive, and affective
examination, as well as from the homework reports and results’ trends [4]. This allows the
expert system to provide critical answers related to the length and frequency of the therapy
session as well as the type of exercise to be used and its content.

Figure 2. Speech therapy process and fuzzy expert system [3].

The therapy customization assumes a differentiated report related to the therapy stages. Thus,
for each subject, there are different weights for each stage within the program structure. The
therapy is generally a formative assessment because the speech therapists permanently
evaluate the evolution of the patient during the exercises. The therapy is continued in familial
environment during home training sessions. Thus, between the weekly sessions, family must
provide the child with the adequate environment to consolidate the skills initiated at the
specialty clinic.

A summative assessment is conducted every 3 months, and the child's evolution is analyzed
over a longer period of time. This is the time for the reconsideration of the therapy and,
eventually, for finalizing the therapeutic process.
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The expert system is designed to function as a true assistant of the speech therapist. It provides
suggestions based on several recordings from the integrated system. Moreover, depending on
the assessments performed by the speech therapist at each session and on the homework
solving, the human expert receives suggestions regarding the most appropriate exercises to
recommend [5].

It is necessary for the speech therapist to have the possibility to intervene in modifying the
knowledge database when the suggestion given by the expert system contradicts the speech
therapist decision. The system has to self‐notify the presence of a contradiction and to ask the
human expert to remove the conflict. This principle is useful for the therapeutic system (in
general) and for the expert system (in particular), especially in the case of the beginner speech
therapist (with less practical training experience). Even if the computer decisions cannot be
considered absolutely correct, they can contribute to the overall success of the therapy by
raising questions which require further clarifications by consulting a human expert.

2. Expert system validation

Since 2006 we have developed Logomon, the computer‐based speech therapy system (CBST)
for Romanian language. The modules of the integrated system are briefly presented in Figure 3
(modules 1,…,9). All administrative tasks are grouped in the Lab Monitor Application. The
expert system takes the information it needs from the database of this module. In the first
scenario, the child exercises in SLT's Lab using Lab Monitor Application.

Figure 3. Architecture of Logomon CBST.
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Another scenario involves the utilization of a dynamic 3D model, a module that indicates the
correct positioning of elements of phono‐articulator apparatus for each phoneme in Romanian
language (the model can translate and rotate; the transparency of each individual elements—
teeth, tongue, cheeks—can also be modified). Homework is mainly generated by the fuzzy
expert system that indicates the number, the duration, and the content of home exercises. These
exercises are played on a mobile device (Home Monitor), without SLT intervention [6]. The
relations between input and output variables are presented in Figure 4.

Figure 4. The relation between input and output variables.

The expert system is fed with information taken from three sources: socio‐psychological
parameters (Lab Monitor Application), tests scores (Lab Exercises), and homework scores
(Home Monitor). These numbers are grouped in nine input variables [3].

1. number of affected phonemes (in order to differentiate between simple and polymorphic
dyslalia);

2. average test score (indicates the intensity of impairment);

3. parents’ attitude regarding speech impairment (the parents’ attitude is a key factor in
therapy prognosis);

4. parents–child relation (offer important clues regarding the importance of home training
sessions);

5. relation between parents (describes the emotional quality of familial environment);

6. child's age (the therapeutical strategy largely vary with subject's age);
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7. child's attention (this variable was taken into consideration due to increasing frequency
of ADHD—attention deficit disorders—among the children);

8. collateral diseases (AIDS, Down syndrome, intellectual disabilities, nutrition diseases);

9. psychological trauma (shows the child's emotional health).

The expert system outputs five numbers that configure the personalized therapy:

1. number of weekly sessions (how many times in a week the child should encounter SLT?);

2. number of homeworks (how many homework sessions should be?);

3. duration of a homework (how long a homework should last?);

4. collaboration with family (should SLT rely on child's family support?);

5. collaboration with physician (does SLT have to collaborate with a physician?).

One major limitation of such a system is the inability to express and/or mimic emotions such
as empathy and to recognize emotional states. To improve this, some studies used the human–
computer interaction (HCI) model in which trained individuals reflecting a particular emo‐
tional state are used. In our previous work, we explored the possibility of adapting and
integrating the classical techniques of emotion recognition in the assisted therapy for children
with speech problems [6].

The fuzzy expert system is based on forward chaining of over 200 rules written in fuzzy control
language (FCL). The expert system engine is coded in Java language and is integrated in our
speech therapy platform. In order to adjust and validate the inferential process, we used our
platform for more than 100 children from 2008 to 2015. The extension of our system using an
artificial neural network (ANN) is demanding especially because it is relative hard for a SLT
to change a fuzzy rule. Thus, in the case of a contradiction between human and artificial expert,
an ANN could facilitate the re‐training process [7, 8].

3. State of the art in fuzzy expert systems, artificial neural network and
medical application

Because of the emergence of interdisciplinary technologies during the past few years, the
interaction between doctors and engineers opened unprecedented opportunities, and the
medical specialists are employing computerized technologies to assist in diagnosis of, and
access to, related medical information.

3.1. Fuzzy expert systems for medical diagnosis

The rapid progress in computer technology plays a key role in the development of medical
diagnostic tools that call for the need of more advanced intelligent and knowledge‐based
systems [9]. This is important since medical diagnosis is characterized by a high degree of
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uncertainty that can be improved through the application of fuzzy techniques that provide
powerful decision support, expert systems knowledge, and enhanced reasoning capabilities
in the decision‐making process. Also, it provides a powerful framework for the combination
of evidence and deduction of consequences based on knowledge stored in the knowledge base
[9]. Therefore, fuzzy expert system (FES) can be used in applications for diagnosis, patient
monitoring and therapy, image analysis, differential diagnosis, pattern recognition, medical
data analysis [10–14].

The areas in which diversified applications are developed using fuzzy logic are fuzzy models
for illness, heart and cardiovascular disease diagnosis, neurological diseases, asthma, abdomi‐
nal pain, tropical diseases, medical analogy of consumption of drugs, diagnosis and treatment
of diabetes, syndrome differentiation, diagnosis of lung and liver diseases, monitoring and
control in intensive care units and operation rooms, diagnosis of chronic obstructive pulmo‐
nary diseases, diagnosis of cortical malformation, etc. The non‐disease areas of applications
are in X‐ray mammography, interpretation of mammographic and ultrasound images,
electrographic investigation of human body. Other areas for the applications of fuzzy logic are
prediction of aneurysm, fracture healing, etc.

Recent research studies have contributed to the development of diagnostic techniques,
quantification of medical expertise, knowledge technology transfer, identification of usage
patterns, and applications of FES in practice by the medical practitioners [15]. According to
[15], 21% of studies present the development of methodologies and models and 13% studies
contributed to the development of neuro‐fuzzy‐based expert systems [9]. These studies
contributed to the development of innovative diagnostic techniques, quantification of medical
expertise, and application of fuzzy expert systems and their implementation in practice.

The rationale behind the decision‐making process in medical diagnosis is a complex endeavor
that involves a certain degree of uncertainty and ambiguity. The computer‐assisted expert
system that incorporates the fuzzy model has been used to aid the physician in this process
[15]. As such, several computer‐assisted applications for patient's diagnosis and treatments as
well as web‐based FES have been recently developed and include ways of handling vagueness

Figure 5. Fuzzy expert system architecture.
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and complexity (Figure 5). Furthermore, disease‐focused intelligent medical systems are
rapidly emerging and are designed to handle more complex variables such as patient moni‐
toring, predictive values, as well as taking into account assessment and performance param‐
eters.

The architecture of a generic medical fuzzy expert system showing the flow of data through
the system is depicted in Figure 6 [9]. The knowledge base for developed medical FES contains
both static and dynamic information. There are qualitative and quantitative variables, which
are analyzed to arrive at a diagnostic conclusion. The fuzzy logic methodology involves
fuzzification, inference engine, and defuzzification as the significant steps [9].

Figure 6. The architecture of a generic medical fuzzy expert system.

The FES uses both quantitative and qualitative analyses of medical data and represents a useful
tool in achieving a high success rate in medical diagnosis. These computer‐based diagnostic
tools together with the knowledge base have proved very useful in early diagnosis of pathol‐
ogies. On the other hand, the web‐based applications and interfaces allow health practitioners
to readily share their knowledge and know‐how expertise [15].

3.2. Application of artificial neural network in medicine

An artificial neural network (ANN) is a computational model that attempts to account for the
parallel nature of the human brain [16]. Analyzing approaches in different scientific proce‐
dures, the ability to learn, tolerance to data noises and capability to model incomplete data
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have made them unique, and once the network has been trained, new data in similar domain
may be analyzed and predicted [17].

In the medical field, ANN applications that have been developed use the “classification”
principle‐based on which patients are assigned to a particular set of classes based on specific
biological measures. For example, ANN applications have been used in the diagnosis of
diabetes (using blood and urine analyses) [18, 19], tuberculosis [20, 21], leukemia [22],
cardiovascular conditions [23] (such as heart murmurs [24]), liver [25], and pulmonary [26]
diagnosis, as well as in urological dysfunctions [27], including expert pre‐diagnosis system for
automatic evaluation of possible symptoms from the uroflow results [28], and ANN applica‐
tions have also been used in image analyses [29, 30] and in analysis of complicated effusion
samples [31]. Finally, a neural networks‐based automatic medical diagnosis system has been
developed for eight different diseases [32], and in detection and diagnosis of micro‐calcifica‐
tions in digital format mammograms [33].

An ANN is a network of highly interconnecting processing elements (inspired by biological
nervous systems—neurons) operating in parallel. The connections between elements largely
determine the network function. A subgroup of processing element is a layer in the network.
Each neuron in a layer is connected with each neuron in the next layer through a weighted
connection [34]. The structure of a neural network is formed by layers. The first layer is the
input layer, and the last layer is the output layer, and between them, there may be additional
layer(s) of units (hidden layers) [16]. The number of neurons in a layer and the number of layers
depend strongly on the complexity of the system studied [34]. Therefore, the optimal network
architecture must be determined. The general scheme of a typical three‐layered ANN archi‐
tecture is illustrated in Figure 7.

Figure 7. General structure of a neural network (modify after [34]).

Based on the way they learn, all artificial neural networks are divided into two learning
categories: supervised and unsupervised. In unsupervised networks, the training procedure
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uses inputs only, and there are no known answers and the network must develop its own
representation of the input stimuli by calculating the acceptable connection weights. On the
other hand, training in the supervised learning involves both input and output patterns so
that the neural weights can be changed to generate the desired output [16]. In medical ap‐
plications, supervised networks may be used as alternatives to conventional response sur‐
face methodology (RSM) while the unsupervised ones can serve as alternatives to principal
component analysis (PCA) in order to map multidimensional data sets onto two‐dimen‐
sional spaces [17].

Models from ANNs are multifactorial models which can predict, classify, approximate
function, or recognize patterns. Theoretically, ANNs are able to estimate any function and if
used properly, it can be used effectively in medicine. Outputs from artificial neural networks
models are generated from nonlinear combinations of input variables, and such models can
be effectively employed to deal with experimental data routinely observed in medicine and to
find rules governing a process from raw input data [17].

3.3. Neuro‐fuzzy models

The development of intelligent systems in the health field is based on the complementarity
between technologies that use the combination between fuzzy logic and neural networks
models. This generated the neuro‐fuzzy model that takes advantage of both the capability in
modeling uncertain data by the artificial neural networks as well as of handling qualitative
knowledge. The neuro‐fuzzy approaches have been used in several studies to build more
intelligent decision‐making systems as additional supportive tools for the physicians.

For example, an application of artificial neural networks in typical disease diagnosis using a
fuzzy approach was investigated in [35]. The real procedure of medical diagnosis which
usually is employed by physicians was analyzed and converted to a machine implementable
format. Similarly, in [16], a series of experiments were described and advantages of using a
fuzzy approach were discussed.

Neuro‐fuzzy (NF) computing becomes a popular framework for solving complex problems
based on knowledge expressed in linguistic rules for building a FES, and on data, for learning
from a simulation (training) using ANNs. For building a FES, we have to specify the fuzzy
sets, fuzzy operators, and the knowledge base. For constructing an ANN for an application,
the user needs to specify the architecture and the learning algorithm. Both approaches have
their own drawbacks, and they should be combined when building an integrated system [36].
This way we can take advantage of the learning capabilities, which is essential for the fuzzy
expert system as well as the linguistic base knowledge that constitutes part of the artificial
neural networks.

Therefore, FES and ANNs have attracted the attention of many scientists, and also a huge
number of successful applications of them are found in the literature, reporting problems
solving in various areas of sciences, such as computing, engineering, medicine, nanotechnol‐
ogy, environmental science, and business.
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4. Fuzzy expert system vs. neuro‐fuzzy expert system

The fuzzy expert systems (FES) and artificial neuronal network (ANN) have common origin
and purposes. They may carry out the logical reasoning, simulating artificial intelligence, by
combining the quantitative and qualitative information and meta‐knowledge. The advantages
and disadvantages of these techniques are complementary. The main disadvantages of FES as
regards to the acquisition of knowledge can be easily eliminated using ANN, due to its ability
to learn from typical examples. On the other hand, limitations of the ANN related to the man–
machine interface and capabilities to explain the reasoning leading to a certain conclusion can
be theoretically compensated using the FES [10].

The FES has the following properties: (i) sequential processing; (ii) the acquisition process of
knowledge takes place outside the expert system; (iii) the logic is a deducible; (iv) the knowl‐
edge is presented in the explicit form; (v) the system is based on the knowledge acquired from
human experts; (vi) the rules in the chain of the rules have their origin in the logic of mathe‐
matics and fuzzy logic; and (vi) the extraction of the conclusion (implementation of the
diagnosis) is done by correlating the exact amount of information and data [10].

The ANN, due to the fact that is designed according to the model of the human brain, has the
ability: (i) to learn; (ii) has the advantage of a parallel processing; (iii) the acquisition of
knowledge takes place inside the system; (iv) the logic is inductively; (v) the knowledge is the
default and gained through examples; (vi), uses parameters and statistical methods for
classification and data clustering; and (vii) the extraction of the learned conclusion is made by
the approximate correlation of data.

A significant difference between the two instruments lies in the basis of reasoning. As such,
the FES is based on the algorithms and deductions, while the ANN is based on the inference
from simulating the learning mechanisms of specialized neurons. Based on the techniques
used for processing information, the ESF uses sequential methods of processing while ANN
has parallel processing, that is, each neuron performs functions in parallel with other neurons
in the network.

In the case of learning processes and reasoning in the FES, learning is made outside of the
system and the knowledge is obtained from outside and then coded in the knowledge base.
For ANN, the knowledge accumulates in the form of weights of the connections between the
nodes (neurons), the learning process being internal, permanently adjusting the knowledge
deployments as new examples. The FES is based on the method of deductive reasoning, unlike
the ANN, in which the methods are inductive. The algorithms of inference of the FES are based
on the logic of the sequence “forward or backward” method in the knowledge base, and the
ANN uses the approximate correlation of the components of the knowledge base in order to
return to items previously learned. The ANN may acquire knowledge through direct learning
from examples, which constitutes an advantage, on the basis of algorithms of specific learning
with the possibility to learn from the incomplete or partially incorrect or contradictory input
data, having the capacity to generalize. On the other hand, the FES has the advantage of a
friendly user interface with the possibility of incorporating elements of heuristic reasoning.
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One of the basic paradigms of artificial intelligence, with applications in the medical field, is
to find a tool which will make it possible to the representation of a large number of meta‐
knowledge, consistent, and usable for the user. There are two approaches of a computerized
system based on knowledge: the first approach is one in which the field of knowledge
representation is based on the rules. This involves the necessity that human experts extract
rules from its experience and express them in the form of explicit and comprehensible rules.
The system has the explanatory and perfect skills and performs well with incomplete infor‐
mation and inaccurate (fuzzy) using the factors of trust, but the construction of such base of
knowledge is a difficult task.

The second approach has a connection with the development of the theory of the neuronal
networks which is automatically created by a learning algorithm from a variety of inference
examples. The knowledge representation is based on the weights of the connections between
the neurons. Due to the default representation of knowledge, there is no possibility to identify
a problem at the level of the singular neuron. In this case, both working with incomplete
information and the provision of evidence of the inference are limited.

From these considerations, combining fuzzy expert system with the neuronal networks will
lay the base for the construction of a practical application for strategic decisions, (especially
medical decisions), both tactical and operative, and will integrate the advantages of both types
of information systems (neuro‐fuzzy system expert) [10].

The main challenge in the integration of these two approaches is the creation of the knowledge
base when they are only available the rules and examples of data. Additional problems may
also occur when incomplete and unreliable information is encoded in neuronal networks.
Therefore, it is necessary that the “learning” network is able to work with incomplete infor‐
mation during training in place of using of special heuristic inference.

The inputs and outputs values in a neuro‐fuzzy expert system are coded using the analog
statuses of neuronal values. An inference is a pair consisting of a vector of the typical inputs
and the vector to the corresponding outputs obtained by the expert answers to these questions.
Knowledge base of the neuro‐fuzzy expert system is a multilayer neuronal network.

To solve the problems raised by the irrelevant values and unknown inputs and outputs of the
expert system, the range neuron should be created. The value of the irrelevant or even
unknown input and output of the expert system is coded using the full range of status of
neurons.

The expert systems become effective and efficient not only to resolve problems of high
complexity but also for the decision‐making problems, which contain a high degree of
uncertainty.

More recently, a hybrid system that includes fuzzy logic, neuronal networks, and genetic
algorithms has been developed this required inclusion of additional techniques. The funda‐
mental concept of these hybrid systems consists in complementarity and addresses the
weaknesses of each other. The fuzzy expert systems are appropriate especially in the case of
systems that have a mathematical model that is difficult to comprehend, for example, when
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the values of the inputs and of the parameters are vague, imprecise, and/or incomplete. It
facilitates the decision‐making process in the case of use of the estimated values for the
inaccurate information (if the decision is not correct, it may be modified later when more
information becomes available). Fuzzy models allow us to represent the descriptive phrases/
qualitative, which are subsequently incorporated in the symbolist instructions (fuzzy rules).

Neuro‐fuzzy expert system has the following two functions: (i) the generalization of the
information derived from the training data processed by the entries with fuzzy learning and
incorporation of knowledge in the form of a neuronal fuzzy network; (ii) the extraction of fuzzy
rules “IF THEN” using the importance of linguistic relative diversity of each sentence in a
prerequisite (“IF” part), using for this purpose a trained neuro‐fuzzy network. The neural
network is similar to the standard multilayer network, having in addition, direct connections
between the input and output nodes. Activation of nodes is muted, taking the values of +1, 0,
or ‐1.

To work with various fuzzifications in the input and the output layers of the system, it is
necessary to interpret the subjective input data. The neuronal network may include groups of
fuzzy neurons and groups of non‐fuzzy neurons involving shades and accurate data. The
output layer will contain only fuzzy neurons.

By incorporating the factor of certainty (groups of non‐fuzzy neurons) extends the traditional
logic in two ways: (i) sets are labeled from the point of view of quality, and the elements in the
same set are assigned different degrees of membership; (ii) any action which results from a
valid premise will be executed with a weighting in order to reflect the degree of certainty.

The entrances of the system “suffer” three transformations to become exits: (i) fuzzification of
the inputs which consists in the calculation of a value to represent the factor of membership
in the qualitative groups; (ii) assessing the rules that consists in the elaboration of a set of rules
type “IF THEN”; (iii) outputs defuzzification in order to describe the significance of vague
actions through the functions of membership and to resolve the conflicts between competing
actions which may trigger [10].

The factor of membership is determined by the function of membership, which is defined on
the basis of intuition or experience. To implement a fuzzy system, the following data structure
is required: (i) the entries in the system; (ii) the functions of the input membership; (iii) the
previous values; (iv) a basis for the rules; (v) the weightings of the rules; (vi) the functions of
the output membership; and (vii) exits from the system.

The use of fuzzy logic leads to finding answers and allows drawing conclusions on the basis
of vague, ambiguous, and inaccurate information. Fuzzy techniques adopt reasoning similar
to human, which allows a quick construction of technical, feasible, and robust systems. The
application of the fuzzy methods involves less space of memory and a lot of calculation power
in comparison with conventional methods. This fact leads to less expensive systems. The fuzzy
expert systems should be constructed in such manner that the overall results are able to change
in a way that is smooth and continuous, regardless of the type of inputs. Artificial neural
networks have the advantage that it can be included in the fuzzy expert systems, becoming
parts of it in the framework of a hybrid neuro‐fuzzy expert system. In the majority of the
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medical applications, the ANN can be used for quick identification of the conditions on the
base of FES rules, laying down quickly the rules that should be applied for a given set of
conditions.

In conclusion, the specialized literature presents several models of integrating the FES with
ANN in the hybrid systems (neuro‐fuzzy expert systems), with medical applications. In the
strategy of the human expert (programmer), the ANN is driven to solve a problem, and then,
the responses are analyzed in order to extract a set of rules. The integrated systems jointly use
the data structures and knowledge. Communication between the two components is carried
out with both the symbolic and heuristic information, FES characteristics, and with their ANN
structures, that is, using weighted coefficients.

5. Results and discussion

To solve issues related to classification, the objects should be grouped in clusters (in our case
patients with speech disorders) based on their characteristics (feature vectors) in predefined
classes. Classifiers are then built from examples of correct classification by a supervised
learning process as opposed to unsupervised learning, where categories are not predefined.

For the classifier design, based on examples of classification, we grouped data into three main
sets:

• Training data: data used in the training process to determine the classifier parameters (for
example, in the case of the artificial neural networks, it is necessary to determine the weights
of connections between neurons) (1).

• Validation data: data used to analyze the behavior during learning algorithm; the perform‐
ance on the validation set during the learning process is used to decide whether or not
learning should be continued (2);

• Test data: used to analyze the performance of a trained classifier (3).

ANN is composed of simple elements operating in parallel. Knowledge of ANN is stored as
numerical values that are associated with connections between artificial neurons, named
weights. ANN training means changing and/or adjusting the weights values. Most often,
ANNs are trained so that for a given input, output returns a value as close to the desired output,
a process exemplified in Figures 8 and 9.

For this process, a set of training data (pairs input–output) is required. To solve classification
problems, we used the tools package offered by Matlab R2014, specifically the neural network
Matlab package (nntool—the tool for classification).

We used a feedforward architecture characterized in [37]:

• An entry level that has as many units (attributes) as the input data;
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• One or more hidden levels (the higher the number of hidden units, the greater the com‐
plexity of the model extracted from the network; however, this can be a disadvantage leading
to decreased network capacity to generalization process);

• A level of output with as many units as the number of classes.

There are two main types of artificial neural networks:

• feedforward—with progressive propagation; the main characteristic of these networks is
that a neuron receives signals only from neurons located in previous layer(s).

• feedback—with recurrent or regressive propagation; these networks are characterized by
the fact that there is a feedback signal from the higher‐order neurons, for those on lower
layers or even for themselves.

We used a feedforward network for illustration (see Figure 9).

To design a simple Matlab neural network for classification (“Pattern Recognition”), we used
“nprtool” tool that opens a graphical interface that allows specification of a network element
characterized by the following:

• a level of hidden units (the number of hidden units can be chosen by the user);

• the logistics activation (logsig) for both hidden units and for the output [(output values
ranged between (0.1)];

• the backpropagation training algorithm based on minimization method of conjugate
gradient.

The artificial neural networks have the ability to learn, but the concrete way by which the
process is accomplished is dictated by the algorithm used for training. A network is considered
trained when application of an input vector leads to a desired output, or very close to it.
Training consists of sequential application of various input vectors and adjusting the weights
of the network in relation to a predetermined procedure. During this time, weights of the
connections gradually converge toward certain values so that each input vector produces the
desired output vector. Supervised learning involves the use of an input–output vector pair
desired [37].

After input setting, the output is calculated by comparing the calculated output with the
desired output, and then, the difference is used to change the weights in order to minimize the
error to an acceptable level. In a backpropagation neural network, learning algorithm has two
stages: the training patterns for the input layer and the updated error propagation. The ANN
propagates the training pattern layer by layer, until it generates the output pattern. If this is
different from the desired target pattern, it will calculate the error and will be backpropagated
from the output to the input. The weights are updated simultaneously with error propagation
[37].
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Figure 8. Create network using Matlab.

Figure 9. Neural network design and training.
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The proposed artificial neural network uses supervised learning with two rules (see Figures 10
and 11):

1. extraction of a subset from the training dataset for testing dataset (not used during setting
network parameters)

2. maintaining an acceptable level of error in the training set to avoid over learning (learning
insignificant details of examples used for training).

The training process is controlled by means of a technique of cross‐validation, which consists
in splitting the initial random set of data in three subsets: for actual training (training); for
controlling learning (validation); and for classifier's quality assurance (testing).

We used backpropagation as the correction algorithm (regressive propagation of errors) with
propagation of the error signal in the opposite direction compared to how the signal travels
during the working phase.

Figure 10. Network training parameters and best validation performance.
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Figure 11. Neural network after 1000 iterations.

The training of the neural network lasted 1000 epochs. Matlab interface allows us to display
graphs of the statistical parameters, for example, the mean square error, regression (the
correlation between desired values and targets, and the values ??obtained; The R correlation
close to 1 means a value very close?? to the desired one). Mean values ??for MSE and R are
available after training in the main window, under Results section. Identification of classes of
subjects from the dataset tested with ANN was achieved with high specificity and accuracy
(see Figures 12 and 13).

One of the trivial artificial neural network is SOM—self‐organizing map, which is mainly used
for data clustering and feature mapping (see Figures 14 and 15).

The quality of a classifier in terms of correct identification of a class is measured using
information from confusion matrix that contains the following:

• The number of data correctly classified as belonging to the class interests: true positive cases
(TP);
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• The number of data correctly classified as not belonging to the class of interest: true negative
cases (TN);

• The number of data misclassified as belonging to the class of interest: false positive cases
(FP);

• The number of data misclassified as not belonging to the class of interest: false negative
cases (FN).

Figure 12. Neural network training regression.

Figure 13. Train the network to fit the input and targets.
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Figure 14. Neural network training self‐organizing map (SOM) Input Planes, epoch 200.

Figure 15. Neural network training Self‐Organizing Map (SOM) Weight Positions, epoch 200.

Based on these values, we calculated the following measures:

Sensitivity = TP/(TP + FN)

Specificity = TN/(TN + FP)
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Precision = TP/(TP + FP)

Recall = TP/(TP + FN)

F = 2 × precision × recall/(precision + recall)

Figure 16. A multilayer perceptron network (MLP) best performance.

The results show that the best performance was obtained using a multilayer perceptron
network (MLP). MLP is a feedforward neural network comprising one or more hidden layers.
Like any neural network, a network with backpropagation is characterized by the connections
between neurons (forming the network architecture), activation of functions used by neurons
and learning algorithm that specifies the procedure used to adjust the weights. Usually, a
backpropagation neural network is a multilayer network comprising three or four layers fully
connected [37].

Each neuron computes its output similar to perceptron. Then, input value is sent to the
activation function. Unlike perceptron, in a backpropagation neural networks, the neurons
have sigmoid‐type activation functions. Derivative function is very easy to calculate and ensure
the output range [0, 1]. Each layer of a MLP neural network performs a specific function. The
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input layer accepts input signals and computational rarely contains neurons that do not
process input patterns. Output layer supports output signals (stimuli coming from the hidden
layer) and lays it out on the network. Detects hidden layer neurons traits and their weight is
hidden patterns of input traits. These characteristics are then used to determine the output
layer to the output pattern.

The backpropagation algorithm is a supervised learning algorithm named generalized delta
algorithm. This algorithm is based on minimizing the difference between the desired output
and actual output by descending gradient method. The gradient tells us how the function
varies in different directions. The idea of the algorithm is finding the minimum error function
in relation to relative weights of connections. The error is given by the difference between the
desired output and the actual output of the network. The most common error function is the
mean square error (Figures 16 and 17).

RMSE is the mean square error and is used to characterize the scattering of the data in relation
to the average. In our case, in all three stages of ANN testing, we obtained RMSE values below
0.5, with 100% identification of classes as shown in Figure 18.

Figure 17. Performance metrics. A multilayer perceptron network (MLP) best classification results (100% for training
data vs. 100% for validation data vs. 100% for testing data).
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Figure 18. Performance metrics.

In medical applications, it is required to use a neuro‐fuzzy hybrid system that can be fitted
with a neural network that presents many advantages such as: flexibility, speed, adaptability.
The structure of a hybrid system is represented in Figure 19:

Figure 19. Hybrid neuro‐fuzzy expert system [37].

The human expert knowledge is translated as symbolic (1) and is used for ANN initialization
(2). The network is trained on a real inputs and outputs system (3). The knowledge obtained
using ANN (4) is processed in a fuzzy manner for the determination of fuzzy rule, which are
finally communicated to the human expert (5) [37]. These hybrid systems are suitable for the
acquisition of knowledge and learning, and they can achieve inclusive process using weighting
of the fuzzy neural network connections. Using a simple learning algorithm, such as backpro‐
pagation, neuro‐fuzzy hybrid systems can identify fuzzy rules and then learn the associated
functions of inferences. In summary, the hybrid system can also learn linguistic rules (fuzzy)
as well as optimizing existing rules.

During generation and validation of expert system rules, we observed a positive correlation
between speech disorders and eating disorders (obesity), so that a higher Body Max Index
(BMI) exacerbated learning and speech difficulties in children. This is consistent with previous
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work demonstrating that risk of being obese in young adulthood was increased if the child
had learning difficulties, scholastic proficiency below the class average, received special
education, or had scholarly difficulties in childhood [38]. Therefore, our future studies will
address the causal relationship between overweight, obesity, and various functions related to
speech disorders and learning abilities during a longer period of time.

6. Conclusions

Each decision technique has specific advantages and drawbacks when it is used in medical
field. Thus, a FES is able to make inferences with approximate data and, more importantly, it
can track the decision‐making process (i.e., the chain of activated rules). However, the rules
must be written and, eventually, modified by human expert only. On the other hand, the
artificial neural networks are the best choice when dealing with a large quantity of data and
wish to obtain the related pattern but unable to provide useful information on how a specific
conclusion is reached.

Due to the complementarity of expert system and artificial neural networks, several attempts
to integrate these techniques have emerged. For example, combining qualitative modeling
(based on fuzzy if‐then rules) with quantitative modelling (used when all we have is chunks
of already classified data) represents a major step forward. The hybrid neuro‐fuzzy expert
system is able to both learn by examples and organize knowledge and meta‐knowledge in the
form of fuzzy rules. For this type of system, we first fuel neural network with symbolic
information and then adapt the raw model using individual examples. At the end of the
process, we are able to extract symbolic information from trained neural network.

To the best of our knowledge, there are few, if any, studies based on the utilization of above‐
mentioned hybrid techniques in speech and language therapy of children. In this chapter, we
have proposed and validated this original approach using Logomon, the first CBST for
Romanian language. We have demonstrated that it is possible to use the equivalent relation
between a fuzzy expert system and an artificial neural network in order to capitalize on the
advantages of both techniques. The results are very encouraging and provide strong impetus
to continue these studies by extending rules database and by optimizing integration between
the two parts of inferential system.
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