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Abstract

The goal of this study is to look at how the interconnection of five North American Great
Lakes affects the relationship between climate indices and mean annual and extreme
daily water levels during the period from 1918 to 2012, and how human activity impacts
the dependence between these two variables. Analysis of correlation revealed the
existence of a negative correlation between water levels in Lakes Superior, Michigan—
Huron and Erie, and the Atlantic Multidecadal Oscillation (AMO) climate index,
although this correlation is not observed at the daily scale for Lake Superior. Water
levels in Lake Ontario are negatively correlated with Pacific Decadal Oscillation (PDO).
The temporal evolution of the dependence between water levels and climate indices is
characterized by breaks interpreted to result from variations in the amount of
precipitation probably linked with an AMO phase change in the Lakes Superior,
Michigan-Huron, and Erie watersheds. In the case of Lake Ontario, such breaks in
dependence are thought to be related to water level regulation in this lake resulting
from the digging of the St. Lawrence Seaway.

Keywords: water levels, climate indices, correlation, copula, Great Lakes

1. Introduction

The North American Great Lakes system is one of the largest bodies of freshwater in the world.
The system holds nearly 23,000 km® of water or about 20% of the World’s freshwater re-
serves [1]. It is a rich and diverse aquatic ecosystem and continues to play a crucial role in the
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social and economic development of interior regions of the United States and Canada. For
these reasons, the Great Lakes are the subject of numerous multidisciplinary studies. From a
hydroclimate standpoint, most of these studies have focused primarily on the following four
elements:

* the variability of hydroclimate variables (water levels, temperature, precipitation, evapo-
ration, etc.) at different time scales (hourly, daily, seasonal, annual and secular) as it relates
to natural and human factors [2-16, 17].

* the potential impacts of climate change on this variability, a topic of growing attention given
the current climate warming [17-24, 25].

* the seasonal and interannual ice dynamics and its impacts on temperature and water levels
in the Great Lakes [26-29, 30].

* the interaction of this water body with regional and/or global climate [31-33].

Few studies have attempted to determine which climate indices affect the interannual
variability of water levels [2, 3, 12, 26, 29, 34], and most of these studies only focused on the
relationship between climate indices and extreme water levels. To fill this gap, the first goal
of the study is to analyze the relationship between climate indices and annual mean and daily
extreme (maximum and minimum) water levels in five North American Great Lakes. Under-
lying this goal is the following hypothesis: because of their interconnected nature, water levels
in the Great Lakes are correlated with each other and, as a result, are correlated with the same
climate indices. In addition, given that some of the Great Lakes are affected to varying degrees
by water level regulation [7, 35, 36], it might be expected that this regulation affects the
dependence between water levels and climate indices over time. The second goal of this paper
is therefore to analyze this change in dependence over time.

2. Methodology

2.1. Location and sources of data

Located almost entirely along the Canada-US border, the North American Great Lakes system
comprises five large lakes (Superior, Michigan, Huron, Erie and Ontario) and a plethora of
smaller ones (Figure 1). These large lakes vary in surface area from 82,367 km? (Superior) to
19,009 km? (Ontario), and in volume from 12,221 km?® (Superior) to 458 km® (Erie Water
residence time ranges from 191 (Superior) to 2.6 years (Erie).

Water level data were taken from the Environment Canada web site (http://www.waterle-
vels.gc.ca/C&A/network_means.html). It is important to note that from a hydraulic stand-
point, Lakes Michigan and Huron form a single system (Michigan-Huron), and their water
levels fluctuate in identical fashion. As a result, these fluctuations are measured at a single
station, on Lake Michigan. For each lake, water level was correlated with the five climate
indices which have been shown to affect climate in North America. These are: Atlantic
Multidecadal Oscillation (AMO), Arctic Oscillation (AO), North Atlantic Oscillation (NAO),
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Figure 1. Location of the North American Great Lakes.

Pacific Decadal Oscillation (PDO), and Southern Oscillation Index (SOI). Climate indexes for
the AMO and PDO were taken from the following website: http://www.cdc.noaa.gov/
ClimateIndices/List, the NAO from http://www.cgd.ucar.edu/cas/jhurrell/indices.data.html,
the AO from http://jisao.washington.edu/data/ao/, and the SOI from http://
www.cgd.ucar.edu./cas/catalog/climind/soi.html. Data for these climate indices (NAO, AO
and SOI) after 2006 were taken from the NOAA website: http://www.esrl.noaa.gov/psd/data/
climateindices/list/. Data for all these indices since 1950 are available on the NOAA website:

http://www.esrl.noaa.gov/psd/data/climateindices/list/.
For each of the five Great Lakes, the following series will be produced:
* A series of annual mean water levels (average of the 12 monthly values) for the period from

1918 to 2012.

* A series of annual daily maximum and minimum water levels consisting of the highest
(maximum) and lowest (minimum) water level values measured each year from 1918 to

2012.
These series will be correlated with time series for five climate indices, including AMO, AO,
NAO, PDO, and SOL For each of these indices, the following three series will be produced:

* A series of annual means (average of the 12 monthly values) of the climate indices.
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* A series of seasonal means in winter (average of monthly values of the 6 months from
October to March) and in summer (average of monthly values of the 6 months from April
to September).

2.2, Statistical analysis

2.2.1. Analysis of correlation

For statistical data analysis, we used the following programs: SAS Version 9.2 32 bits (corre-
lation analysis and canonical correlation analysis), and Matlab Version R2013a (Lombard
analysis). The statistical analysis was carried out in three steps. The first step consisted in
deriving simple coefficients of correlation between water levels in five the Great Lakes in order
to constrain the effect of their interconnected nature on the temporal variability of their water
levels. As a second step, coefficients of correlation were derived between climate indices and
water levels. These two approaches, however, cannot detect potential interactions between the
five climate indices and the temporal variability of water levels. For this reason, canonical
correlation analysis (CCA) [36] was used as a third step. This method allows the simultaneous
analysis of correlation between two groups of variables.

If one wishes to calculate the relation between two groups, one of X variables (X1, X2,..., Xp)
and the other of Y variables (Y1, Y2,..., Yq), one must calculate the canonical variables V (V1,
V2,...,Vp) and (W1, W2,..., Wq), which are linear combinations of the X variables of the first
group (in this case, the climatic indices) and the Y variables of the second group (in this case,
the water levels of the five Great Lakes). Then, the canonical variables V and W are correlated
between themselves, that is to say, V1 is correlated with W1, V2 to W2 and so on, in order to
obtain the canonical correlation coefficients. After that, the canonical variables V and W are
correlated with the variables X and Y, so as to obtain what are called structure coefficients. In
fact, these coefficients measure the link (the correlation) between the canonical variables (V
and W) and the original variables of groups X and Y. Thus, if X1 and X2 are correlated, for
example, to V1, Y1 is correlated with W1. Y1 is therefore correlated with the original variables
X1 and X2, since the canonical variables V1 and W1 are correlated. The main purpose of CCA
is to maximize the correlations between the two groups of variables.

2.2.2. The copula method

To test the second hypothesis that underlies the study, the copula method will be applied to
the series of water levels in the Great Lakes and the climate indices with which they are
significantly correlated. This method is used to analyze the evolution over time of the de-
pendence between two correlated variables by detecting significant breaks in Kendall’s tau
values. The timing of these breaks will be compared with the timing of construction of man-
made structures carried out over time to regulate water levels in the Great Lakes. We described
this method in some of our previous work [i.e., For example, see 2].
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The dependence in a random vector (X, Y) is contained in its corresponding copula function
C. Specifically, the celebrated theorem of Sklar ensures that there exists a unique
C:[0, 112— [0, 1] such that

P(X<x,Y<y)=C{P(X <x),P(Y<y)}. 1)

Quessy et al. [37] developed a testing procedure to identify a change in the copula (i.e.,
dependence structure) of a bivariate series (X, Y;), ..., (X,, /\Y"> The idea is based on Kendall’s
tau, which is a nonparametric measure of dependence. Let T,.; be Kendall’s tau measured for
the first T observations and %Tﬂ:n be Kendall’s tau for the remaining n — T observations. The
proposed test statistic is

A A

T(n—t)

1<T<n W

M, = max (2)

LT~ AT+l

that is, a maximum weighted difference between the Kendall’s tau. Since M, depends on the
unknown distribution of the observations, the so-called multiplier re-sampling method is used
for the computation of p-values. Specifically, for n sufficiently large (n > 50), this method yields
independent copies M), ..M (") of M,. Then, a valid p-value for the test is given by the
proportion of M s larger than M,,. For more details [i.e., For example, see 37]. Usually, one can
expect that the series X;,..., X,,and Yj,..., Y, are subject to changes in the mean and/or variance
following, for example, the smooth-change model [38]. If such changes are detected, the series
must be stabilized (to remove the shift of the mean and variance) in order to have
(approximately) constant means and variances. Finally, a change in the degree of dependence
between two series is statistically significant when M, >V, where V. is the critical value
derived from observational data. As part of this study, the copula method was applied to
standardized water level and climate index data after removing any break in mean values in
the hydroclimate series.

3. Results

3.1. Simple linear correlation analysis

The values of coefficients of correlation derived between water levels in each of the five Great
Lakes are shown in Table 1, in which it may be seen that those values increase with decreasing
distance between lakes. Thus, the lowest coefficient of correlation values are between Lakes
Superior and Ontario. However, coefficients of correlation between Lakes Superior and
Michigan-Huron, which are adjacent to one another, are lower than those observed between
the other three lakes, which are closer to one another.

29
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Lake Superior Lake Michigan Lake Erie Lake Ontario
Mean annual
water level
Lake Superior 1 0.6231 0.4059 0.3341
Lake Michigan 1 0.8613 0.7164
Lake Erie 1 0.8193
Lake Ontario 1
Annual maximum
water level
Lake Superior 1 0.5673 0.3783 0.3033
Lake Michigan 1 0.8442 0.7055
Lake Erie 1 0.8332
Lake Ontario 1
Annual minimum
water level
Lake Superior 1 0.6081 0.4110 0.2581
Lake Michigan 1 0.8261 0.6621
Lake Erie 1 0.7363
Lake Ontario 1

All coefficients of correlation are statistically significant at the 5% level.

Table 1. Correlation between water levels in the North American Great Lakes.

Annual climatic indices

Winter climatic indices

Summer climatic indices

S M-H E @)
AMO -022 -042 -030 -0.12
AO -0.00  0.07 0.17 0.14
NAO 0.07 0.05 -0.06  -0.04
PDO  0.05 0.03 -0.01  -0.22
SOI -0.05 -0.09 -0.08 0.02

S M-H E @)
-0.19 -042 -033 -0.09
-0.01  0.07 0.15 0.12
0.07 0.16 0.18 0.08
0.02 0.00 -0.06  -0.28
-0.06 -0.10 -0.07  0.05

S M-H E
-0.22 -0.38 -0.31
0.01 0.02 0.08
0.02 -0.12 -0.32
0.07 0.05 0.05
-0.01 -0.04 -0.05

-0.13

0.10

-0.18

-0.16

-0.02

Significant coefficient of correlation values at the 5% level are shown in bold.

Table 2. Coefficients of correlation calculated between the five climate indices and annual mean water levels (1918-

2012).
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As far as the relationship between climate indices and annual mean water levels is concerned,
Table 2 and Figure 2 shows that AMO is negatively correlated with water levels in Lakes
Superior, Michigan-Huron, and Erie, with water levels in Lake Michigan—-Huron showing
better correlation with this climate index than water levels in the other two lakes. Annual mean
water levels in Lake Ontario are negatively correlated with PDO (Figure 3), the same type of
relationship being observed for both maximum (Table 3) and minimum (Table 4) daily water
levels. Aside from PDO, daily extreme water levels in Lake Erie are also negatively correlated
with the NAO summer indices. However, daily extreme (maximum and minimum) water
levels in Lake Superior are not significantly correlated with any climate index.
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Figure 2. Comparison of the temporal variability of AMO mean annual indices (black curve) and mean annual water
levels (standardized values) in Lakes Superior (red curve), Michigan-Huron (blue curve) and Erie (green curve) (1918-
2012).
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Figure 3. Comparison of the temporal variability of PDO mean annual indices (black curve) and mean annual water
levels (standardized values) in Lake Ontario (red curve) (1918-2012).
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Annual climatic indices Winter climatic indices Summer climatic indices

S M-H E @) S M-H E @) S M-H E (@)

AMO -0.14 -039 -023 -010 -015 -040 -0.27 -0.12 0.04 0.08 0.10 0.14

AO -0.09  0.09 0.12 0.08 -0.12  0.07 0.11 0.04 0.04 0.08 0.10 0.14
NAO 0.05 0.10 -0.03  0.01 0.04 0.19 0.20 0.13 0.03 -0.09 -0.29 -0.14
PDO  0.03 -0.01 -0.07 -0.26  0.02 -0.03 -0.11 -0.29 0.03 0.00 -0.02 -0.21

SOI -0.15 -0.05 -0.02 -0.00 -011 -0.34 -024 -0.08 -0.10 -0.01 0.02 0.01

Significant coefficient of correlation values at the 5% level is shown in bold.

Table 3. Coefficients of correlation calculated between the five climate indices and maximum daily water levels (1918-
2012).

Annual climatic indices Winter climatic indices Summer climatic indices

S M-H E @) S M-H E @) S M-H E (@)

AMO -0.11 -0.41 -0.31 -0.12 -019 -045 035 -0.10 -0.11 -0.41 -0.31 -0.12

AO 0.11 0.07 0.07 0.08 0.01 0.10 0.12 0.07 0.11 0.07 0.07 0.08

NAO 0.09 -0.06 -031 -020 0.09 0.20 0.14 0.08 0.09 -0.06 -0.31 -0.20

PDO 0.13 0.07 0.01 -0.22  0.12 0.04 -0.07 -0.28 0.13 0.07 0.01 -0.22

SOI -0.07 -0.02 -0.01 -0.03 -0.12 -013 -0.11 -0.07 -0.07 -0.02 -0.01 -0.03

Significant coefficient of correlation values at the 5% level is shown in bold.

Table 4. Coefficients of correlation calculated between the five climate indices and minimum daily water levels (1918-
2012).

3.2. Canonical analysis of correlation (CCA)

This analysis did not yield conclusive result. As an example, CCA results applied to annual
mean water levels and annual mean climate indices are presented in Tables 5 and 6. From
Table 5, it can be seen that the coefficient of canonical correlation between the first two axes
is relatively low (0.633). CCA could not significantly maximize the coefficient of correlation
values. Thus, the derived value of 0.633 is only slightly higher that the highest simple corre-
lation coefficient of 0.425 (see Table 2). In addition, only the first two canonical axes are
statistically significant at the 5% level. As far as coefficients of structure are concerned
(Table 6), values of coefficients of structure related to water levels in the lakes are all lower
than 0.600 on the first canonical axis. Thus, this axis shows little correlation with water levels
in the lakes. The same is true for climate indices on the second canonical axis. As the last two
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canonical axes are not statistically significant, it is difficult to interpret their coefficients of
structure.

Canonical roots R F p-values
CC1 0.6330 3.81 <0.0001
cC2 0.4211 211 0.0171
CC3 0.2832 1.24 0.2872
CC4 0.0156 0.9997 0.9894

R = canonical coefficient of correlation.

Table 5. Canonical correlation analysis statistics.

Variables W1 W2 W3 W4 \%! V2 V3 \
Lake Superior -0.370 0.003 0258  0.893

Lake Michigan-Huron -0.587 0.263  0.725 0.245

Lake Erie -0.293  0.682 0.655 0.142

Lake Ontario 0.133 0346 0914 0.164

AMO 0.750 -0.195  -0.606  -0.033
AO 0.070 0.471 0.238 0.837
NAO -0.195  -0.418  0.105 0.879
PDO -0.470  0.200 -0.829 0.204
SOI 0.257 -0.157  0.093 -0.058

Table 6. Correlation between the annual mean water levels and canonical roots (W), and correlation between climatic
indices and canonical roots (V).

3.3. Analysis of the dependence between water levels and climate indices using copulas

It is important to point out that the copula method was only applied for climate indices that
are significantly correlated with water levels. Results obtained using this method are presented
in Table 7, from which it may be seen that the dependence between the two climate indices
(AMO and PDO) and water levels in the five Great Lakes, aside from annual mean water levels
in Lake Ontario, shows a sharp break (Figures 4-6). In other words, the relationship between
the two variables changed significantly over time.

As far as the timing of this change in dependence is concerned, Table 7 shows that it is nearly
synchronous for Lakes Michigan-Huron and Erie, having occurred in the late 1960s and early
1970s. In Lake Ontario, these breaks occurred in the late 1950s. Finally, for Lake Superior, the
break in mean water levels took place during the first half of the 1950s. In all cases, the value
of Kendall’s tau decreases after the break.

33
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Lakes Indices M, V., p-value Year

Mean annual water levels

Lake Superior AMO 1.0614 0.9389 0.020 1954
Lake Michigan AMO 1.2809 0.8337 0.001 1966
Lake Erie AMO 1.3728 0.8204 0.000 1968
Lake Ontario PDO 0.857 0.904 0.075 1960

Annual daily maximum water levels

Lake Superior - 1 - A _

Lake Michigan AMO 0.9715 0.8972 0.0270 1968
Lake Erie AMO 1.1435 0.9293 0.010 1972
Lake Ontario PDO 0.994 0.8865 0.023 1959

Annual daily minimum water levels

Lake Superior - - - - _

Lake Michigan AMO 1.1311 0.8636 0.000 1968
Lake Erie AMO 1.3756 0.9205 0.000 1968
Lake Ontario PDO 1.1311 0.9040 0.000 1959

p-values < 0.05 are statistically significant at the 5% level.
* Year of break in dependence.

Table 7. Analysis of the relationship between climate indices and water levels using copulas.
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Figure 4. Interannual variability of M, values of mean water levels. The red line represents the maximum value of V..
Lake Superior.



Relationship between Water Levels in the North American Great Lakes and Climate Indices
http://dx.doi.org/10.5772/63383

1.4 T T T T T T T T T

12 B

08 4
06
0.4
02
1 1 1 1 1 1 1 1 1

0
1918 1928 1938 1948 1958 1968 1978 1988 1995 2008
Years

Mn

Figure 5. Interannual variability of M, values of mean water levels. The red line represents the maximum value of V..
Lakes Michigan-Huron.
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Figure 6. Interannual variability of M,, values of mean water levels. The red line represents the maximum value of V..
Lake Erie.

4. Discussion and conclusion

The five North American Great Lakes comprise the largest freshwater aquatic ecosystem in
the world. One of the characteristic features of these water bodies is their interconnected
nature. Simple correlation analysis revealed that the effect of this interconnection on the
temporal variability of water levels is strongly influenced by the distance between any two
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lakes. As this distance increases, the influence of the upstream lake on the temporal variability
of water levels in the downstream lake decreases significantly. Thus, the weakest correlation
between water levels is derived between Lakes Superior and Ontario; the two lakes located
the furthest apart. In contrast, the strongest correlations are observed between adjacent lakes.
This diminishing influence of interconnection with distance between lakes may in part be due
to the dominant influence of local climate conditions in the watershed of each of the Great
Lakes on the temporal variability of water levels [3].

The interconnected nature of the five lakes leads to the postulate that the interannual variability
of their water levels may be correlated with the same climate indices. Analysis of the correlation
between these water levels and five climate indices revealed a negative correlation between
AMO and water levels in Lakes Superior, Michigan—-Huron, and Erie, on one hand, and a
negative correlation between PDO and water levels in Lake Ontario, on the other hand. It is
worth specifying, however, that for Lake Superior, this correlation is only observed at the
annual scale. While this result cannot be used to conclude that the interconnected nature of
the lakes influences the relationship between climate indices and water levels, it does suggest
a possible influence of the effects of water level regulation on this relationship. The two least
regulated of the five lakes (Michigan—-Huron and Erie) are correlated with the same climate
indices at all time scales. Although Lake Superior is adjacent to Lake Michigan-Huron, its
water levels are not correlated with AMO at all scale. And as far as Lake Ontario is concerned,
despite its proximity to Lake Erie, its water levels are correlated to a different climate index,
namely PDO.

The influence of AMO on the temporal variability of hydroclimate variables has been high-
lighted for many regions of North America [39-43, 44]. The sign of this correlation changes
from region to region. For instance, in the Pacific Northwest and Northeastern regions of the
United States, as well as in Florida, this correlation is positive, whereas in the continental region
and the Mississippi River and Great Lakes watersheds, this correlation is negative [41]. Thus,
during a positive phase of AMO, water levels in the Great Lakes tend to increase due to an
increase in precipitation likely resulting from enhanced cyclonic activity in winter. In contrast,
the influence of PDO on the temporal variability of hydroclimate variables has mainly been
detected in the western part of the North American continent [45-49, 50]. In the Great Lakes
watershed, a negative correlation between PDO and amount of snow has been brought to light
[51, 52, 53], with the negative phase of this index being associated with an increase in amount
of snow and, as a result, in water levels in Lake Ontario.

Over the years, the Great Lakes were affected to varying degree by human activity, including
diversion within watersheds; dredging of natural channels connecting the lakes; and regula-
tion of water levels [8, 54, 55]. It is therefore reasonable to expect that these different human
impacts may have affected the dependence between climate indices and water levels in the
lakes. Application of the copula method revealed breaks in this dependence at different scales.
For water levels in Lakes Michigan-Huron and Erie, the three waterbodies least affected by
human activity, breaks in this dependence occurred in the late 1960s and early 1970s. The only
plausible factor that could account for these breaks is changing climate conditions in the
watersheds of these three Great Lakes. Between 1970 and 1990, precipitations increased
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significantly in the Great Lakes watershed [e.g., For example, see 2], coinciding with a change
in phase for AMO, from positive to negative after 1970 [41]. As far as Lake Ontario is concerned,
the breaks in dependence occurred in the late 1950s and may therefore be related to water level
regulation in this lake as a result of the digging of the Great Lakes-5t. Lawrence Seaway System.
Finally, for Lake Superior, the break in dependence occurred in 1954, which is not related to
any significant development project. However, from a hydrological and climate standpoint,
Assani et al. [2] observed an increase in the frequency of relatively low water levels during the
1950s and 1960s, reflecting a trend of decreasing precipitation in the watershed.

In conclusion, the influence of the interconnected nature of the Great Lakes on the temporal
variability of their water levels decreases with increasing distance between individual lakes,
likely as a result of the effect of local climate conditions on this variability. At the annual scale,
however, water levels in four of the five Great Lakes are negatively correlated with AMO, and
only water levels in Lake Ontario, the most downstream of the lakes, are correlated with PDO.
For the first four lakes, the break in dependence between water levels and climate indices was
affected by changes in climate conditions in their watersheds, whereas for Lake Ontario, water
level regulation in its watershed affected this break. This study shows that the influence of
local climate conditions and human activity in the watersheds of the Great Lakes strongly
dampen the effects of interconnection on the temporal variability of water levels in the lakes.
Asaresult, hydroclimate changes affecting one lake do not necessarily propagate to other lakes
located downstream.
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