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Abstract

Astrocytomas are brain tumors from glial cells, and they are classified by the World
Health Organization (WHO) as astrocytoma, grade I or benign; astrocytoma, grade II
or malignant; anaplastic astrocytoma, grade III; and glioblastoma multiforme or grade
IV. The high‐grade gliomas have an incidence of 6.03/100,000. The frequency of GBM is
higher in men than in woman by a 50%. The survival of patients with GBM varied
between 14 and 18 months, and less than 10% patients survive for 5 years. The main
treatments for GBM consist of surgical tumor resection, radiotherapy, and chemother‐
apy. These tumors present different endocrine characteristics, such as expression of
aromatase  enzyme,  estrogen,  progesterone,  as  well  as  testosterone  receptors.  In
addition,  patients  with  GBM produce estradiol  in  high concentrations  when com‐
pared to those with low‐grade astrocytomas. The highest mRNA expression of ERα and
aromatase  in  GBM  patients  had  been  postulated  as  prognostic  biomarkers.  The
aromatase inhibitors had been used in the treatment of breast cancer in postmenopaus‐
al  women  with  satisfactory  results.  At  present  time,  several  research  groups  are
interested in testing these inhibitors for treating GBM.
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1. Introduction

Glioblastoma multiforme (GBM) tumor occurs either as a primary tumor when it is formed
de novo or a secondary tumor when the tumor progresses from grade II or III to grade IV.
GBM is a diffuse and infiltrative tumor with a high mitotic activity, nuclear atypia, pleomor‐
phism,  and  necrosis.  GBM  is  the  most  frequently  occurring  brain  tumor  (12–15%)  and
represents 50–60% of all astrocytomas. There are two variants of glioblastoma: Glioblastoma
of  giant  cells  and gliosarcoma.  GBM affects  the  cerebral  hemispheres,  mostly  the  white
substance of the cerebral hemispheres. GBM primary has a bad prognostic due to its molecu‐
lar heterogeneity. On the basis of its transcriptional subtype, GBM primary is also classified
as neural,  classical,  and mesenchymal as well as proneural for GBM secondary. In GBM
primary occurs the amplification of epidermal growth factor (EGF), and the PTEN gene is
mutated in 45% of GBM primary cases, whereas in GBM secondary, the EGF amplification
does not occur. The chromosome alteration in GBM involves a loss of the chromosome 10. The
treatment for this kind of tumor after a safe surgical process also involves radiotherapy (RT)
and the pharmacological treatment using the alkylating agent Temozolamide (TMZ), and
different combinations of this agent with antitumor drugs such as the Bevacizumab. In spite
of these treatments, there is a short survival period for GBM patients (14–18 months), which
promotes the development of different clinical trials (II or III) to provide the patient a treatment
with a better outcome. These new approaches are based on the molecular aspects of GBM to
make the treatments more individualized.. This chapter describes the main GBM endocrine
and molecular characteristics now known and makes a proposal on future treatments for GBM
patients on the basis of these molecular characteristics.

2. Epidemiology

The incidence can change by age; in adults, for example, gliomas are the most frequent primary
central nervous system tumors recurring in 70% of the patients. The average age of patients
with GBM primary is 62 years, while for secondary GBM patients, it is approximately 45 years.
The ethnicity and geographical localization are also of great importance in their epidemiology
[1]. These tumors represent about 31% of newly diagnosed tumors in the United States and
81% of malignant tumors of the brain. The incidence of brain cancer in Europe is of 5.5/100,000
individuals, and the minor incidence is in sub‐Saharan Africa with 0.8/100,000 individuals [2].
High‐grade gliomas, anaplastic astrocytoma (AA) and GBM, have an incidence of 6.03/100,000
[3,4]. It has been shown that the incidence of GBM with respect to gender and ethnicity was
different. The white people had the highest incidence of 2.5/100,000, Latin white people
1.8/100,000, and black people 1.5/100,000 [5].

3. Molecular characteristics of GBM

The current molecular characterization of GBM has allowed different classifications of the
tumor subtypes and revealed intracellular pathways that might contribute to the development
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of new and effective therapeutic targets. The new molecular classification can distinguish
individual somatic mutations within the same tumor grade, since tumors are highly variable
from patient to patient [6,7]. Thus, using molecular markers facilitate study of heterogeneity
of glioma, and subsequently its diagnosis and treatment.

Intensive molecular analyses have revealed a variety of deregulated genetic pathways
involved in the DNA damage and repair, apoptosis, cell migration, angiogenesis, and in the
cell cycle. Molecular analyses show that they arise from different genomic alterations, which
may influence the response to therapy. The Cancer Genome Atlas (TCGA) Research Network
(2008) has established a comprehensive catalog of genomic abnormalities driving tumor
genesis, thus subclassifying glioblastoma into at least four molecular subtypes, featuring
distinct genetic, epigenetic, and transcriptional alterations [6,8]. Tumor variants are classified
based on somatic mutations as: isocitrate dehydrogenase (IDH) and Tumor Protein (TP53).
Glioblastoma is also classified based on it´s transcriptional signature as: classical,
mesenchymal, neural or proneural. Classification is also given by variations in the number
of gene copies, by mutations in Epidermal Growth Factor Receptor (EGFR) or by DNA
hypermethylation of promotor-associated CpG islands [9].

The majority of glioblastoma cases are primary brain tumors that grow rapidly without
major clinical or histological evidence of a less malignant precursor lesion. These tumors
mainly affect the elderly and are genetically characterized by loss of heterozygosity (LOH)
on 10q, EGFR amplification, p16INK4a deletion, and fosfatidilinositol‐3,4,5‐trisfosfato 3‐
fosfatasa (PTEN) mutations [10,11]. Secondary glioblastoma tumors develop through
progression from low‐grade diffuse astrocytoma or AA and are pronounced in younger
patients [12]. The disruption of tumor‐suppressor gene TP53 is implicated in the progression
of many types of human malignancies; adult glioblastoma patients with TP53 mutation may
have a more severe consequence than those without TP53 mutations [10]. It has also been
shown that TP53 mutations, but not p53 expression, correlate with a more aggressive form
of the disease. Studies have also reported that glioblastoma with TP53 mutations are more
frequent in women than in men, and may occur in younger patients [13]. In addition, some
studies suggest that TP53 mutations may occur in patients of any age group. In contrast,
EGFR amplification preferentially occurs in older patients. Thus, multiple genes are involved
in the initiation of the disease, and variability occurs in different age and sex groups in the
progression of GBM. It is of interest that after careful analysis of age and disease progression,
no significant difference in survival was observed in patients with primary and secondary
glioblastoma. During the progression of glioblastoma, additional mutations and genetic
alterations accumulate, which may alter disease severity and patient survival.

GBM primary and secondary can also differ significantly, depending on their pattern of
promoter methylation and in the expression of profiles at the RNA and protein levels. LOH
on 10q is shown to be most frequent in both primary and secondary glioblastomas [14]. TP53
mutations are detected early in the pathway, and frequent genetic alterations can lead to
secondary glioblastoma. In 77 Japanese patients with GBM primary, 22% had TP53
mutations, 21% PTEN mutations, 32% EGFR amplification, 42% p16 INK4a homozygous
deletion, and 69% LOH on chromosome 10q in those patients [15]. The frequencies of these
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genetic alterations at the population level were similar to those reported in Europe. This
study noted a positive association between EGFR amplification and p16 INK4a deletion.

4. Glioblastoma multiforme risk factors

GBM is the most aggressive form of malignant glioma. Several syndromes are associated with
the increased incidence of GBM, such as Lynch syndrome, Li–Fraumeni syndrome, melano‐
ma–neural system tumor syndrome, Ollier disease, and Maffucci syndrome [16]. A small
proportion (5–10%) of patients has a family history of glioma. Genes too exist that are involved
in gliomagenesis and participate in glioma growth, such as telomerase reverse transcriptase
(TERT) [17], EGFR [18,19], coiled‐coil domain containing protein 26 (CCDC26) [20],Cyclin‐
dependent Kinase inhibitor 2B [17], TP53 [21,22,23], and the regulator of telomere elongation
helicase 1 (RTEL1) [24,25].

5. Endocrine characteristics of GBM

5.1. Estrogen receptors

GBM exhibits different endocrine characteristics. GBM expresses high levels of estrogen
receptor alpha (mRNA ERα) and low levels of estrogen receptor beta (ERß); expression of
mRNA ERα is positively correlated to the survival of GBM patients and could be used as a
prognostic factor [26]. In contrast, the low expression of ERß in GBM has been related to a
worse prognosis for survival and could be used as a biomarker for prognosis too [27,28].
Furthermore, activation of the signaling pathways induced by ERβ suppresses glioma growth
in a model in vivo [29].

The coactivator family of estrogen receptors (SRC) is composed of three members, SRC‐1, SRC‐
2, and SRC‐3 [30,31]. SRC‐1 increases the transcriptional activity of ER [32,33]; it also partici‐
pates in the tumor progression and survival of several lines of human cancer [34,35]. SRC‐2 is
localized in different regions of the brain and mediates a variety of steroids‐dependent
functions [36,37]. SRC‐3 is overexpressed in different types of cancer (breast, ovary, prostate,
stomach, endometrium, esophagus, and pancreas) [38,39,40,41]. In astrocytoma cell lines,
SRC1 and SRC‐3 have been detected [42]. 17‐�/i> estradiol induces the growth of several cell
lines of human astrocytoma through the ERα, and its interaction with SRC‐1 and SRC3 suggests
that ERα has an important role in the growth of astrocytoma [43].

5.2. Progesterone receptors in GBM

Progesterone receptors (PRs) are expressed in 100% of high‐grade astrocytomas. The
predominant isoform expression of PR in GBM is PRB. In astrocytomas, the molecular
mechanisms involved in the differential expression of PR isoforms are unknown. It is
important to know what PR isoform is expressed in the brain tumor, because progesterone
can exert different cell functions depending on the expression pattern of PR isoforms [44,45].
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In several cell contexts, human PRB functions as a transcriptional activator of progesterone‐
responsive genes, whereas PRA acts a repressor of transcriptional steroid hormone receptors
inclusive PRB [46]; PR expression assessed by immunohistochemistry directly correlates with
the histological grades of astrocytomas; these results suggest that PR‐positive tumors possess
a high proliferative potential [47]. However, no conclusive data exists about the PR as a
marker of prognosis.

Progesterone significantly decreases GBM tumor growth and promotes the survival time in
approximately 60% of mice. Synergistic effects of progesterone and Temozolomide (TMZ)
have been observed in the glioblastoma cell lines U87MG and U118MG. A significant
decrease in PCNA (a marker of cell proliferation) expression in both U87MG and U118 cell
lines was observed by the effect of progesterone alone (80 μM) or by the combination of 80
μM progesterone and 100 μM TMZ, when compared to control, and this has a significantly
statistic outcome than that with TMZ alone. Cell survival was reduced in 58%, with the
combined treatment of progesterone and TMZ (P 80 μM + TMZ 100 μM after) when
compared to that with MTZ alone. Further, progesterone inhibited O‐6‐methylguanine‐
DNA‐methyltransferase (MGMT) expression as well as the EGFR/PI3K/AkT/mTOR signaling
pathway, which is highly active in GBM. Progesterone + TMZ also inhibited the cell
migration, suggesting that the combination therapy could contain the spread of tumor in
vivo [48].

5.3. Androgen receptor in GBM

The androgen receptor (AR) is present in astrocytomas of low and high grades, with a higher
expression in AA compared to astrocytomas grade I, II, and GBM. AR expression no affect the
survival time of GBM patients [49,50] described a higher expression of AR in GBM tumors in
women and men compared to periphery normal brain tissue.

5.4. Aromatase

Aromatase is an enzyme encoded by CYP19 gene localized in chromosome 15q 21.2. It
converts androgens in estrogens; this enzyme is expressed mainly in ovary, testis, placenta,
brain, lung, stomach, and adipose tissue [51]. Aromatase is composed of 503 amino acids
and is the major source for estrogen production in postmenopausal women. The aromatase
works in three steps; first, the C19 methyl group of androgenic substrate is oxidized to formic
acid in concomitant aromatization of ring A to the characteristic phenolic ring A of estrogen
[52].

Aromatase expression in GBM tumor is negatively correlated to the survival of GBM patients
and has been proposed as a possible prognosis biomarker for astrocytomas [29].

17–ß estradiol levels in GBM tumor are highest, compared to low‐grade astrocytomas (I, II) or
astrocytoma anaplastic (grade III). The concentration of 17–ß estradiol in GBM seems to be
directly involved in the tumor growth.

Novel Endocrine Targets for GBM Therapy
http://dx.doi.org/10.5772/62878

71



6. GBM treatment

GBM tumors show a large number of aberrations with a pronounced mitotic activity, neoan‐
giogenesis, and necrosis. Its proliferative rate is three to five times more than the proliferative
rate in AA [53].

On the basis of a recent GBM classification as proneural, neural, classical, and mesenchymal,
diverse types of treatments must be created to make a molecular personalized therapy [6]
(Table 1). Performing molecular assays is complex, as their cost may be an obstacle for a routine
use.

Treatment Overall survival
(OS)

Progression‐free
survival (PFS)

Side effects Author

TMZ/RT 14.6 months 6.9 months Myelosuppression Stupp (2005)

RT 12.1 months 5.0 months Skin reactions, cardiac complications Stupp (2005)

Bev/TMZ /RT 20.5 months 10.7 months Myelosuppression, arterial
thromboembolism,
gastrointestinal perforation

Gilbert (2014)
Chinot (2014)

Bev 15.7 10.6 Arterial thromboembolism, arterial
gastrointestinal perforation

Cilengitide/RT26.3 months 13.5 months Stupp (2014)

Nimotuz
umab/RT

22.3 months 7.7 months Headache, nausea, vomiting, anemia,
myalgia

Westphal (2015)

Nimustine 28.4 months 18.9 months Chest pain and cianosis peribucal Kim (2011)

Enzastaurin 17.1 months 9 months Lymphopenia Wick (2013)

Tipifarnib 80.3 weeks 18.1 weeks Headache, nausea, vomiting Ducassou (2013)

Everolimus 13.9 months 11.3 months Anemia, higher levels of
cholesterol in
the blood, low
phosphorus

Hainsworth (2012)

Table 1. Effects on survival of different treatments for GBM patients and their side effects.

The standard treatment for GBM patients includes brain radiation, a maximal surgery
and .chemotherapy with the alkylating agent TMZ.

A larger number of new drugs and virus‐based therapy are being evaluated in phase II and
III trials as well.

In a phase III trial including recently diagnosed GBM patients, the median overall survival
(OS) for GBM patients was 14.6 months with chemotherapy and RT, and 12.1 months with RT
alone with a median follow‐up of 28 months [63].
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In phase III of another study, 978 patients received standard radiation and TMZ with or
without Bevacizumab, an angiogenesis inhibitor used at 10 mg/kg, every 2 weeks with a
median follow‐up of 20.5 months. The OS between bevacizumab group and placebo group
was no different, and side effects such as hypertension, thromboembolic events, intestinal
perforation, and neutropenia were more common in the bevacizumab group. The progression‐
free survival (PFS) was significantly improved in the experimental arm (10.7 vs 7.3 months, P
= 0.007) [64]. In another phase (III) trial with 458 patients, newly diagnosed GBM received
radiation and TMZ with or without bevacizumab (10 mg/kg each for 2 weeks and TMZ for six
cycles). With bevacizumab monotherapy (15 mg/kg), the median of PFS was of 10.6 months in
the bevacizumab group as compared to 6.2 months in the placebo group.

6.1. Aromatase inhibitors (AIs)

The conversion of androstenedione and testosterone to estrogens can be blocked by the
aromatase inhibitors; these pharmacological agents have a high specific activity to reduce,
importantly, estrogen production. The AIs are classified in two types: I.––steroid inhibitors
and II.––nonsteroid inhibitors; they are reactive species that bind covalently and irreversibly
or noncovalently and reversibly to aromatase, respectively. The latter class interacts with the
heme cofactor by employing its azole moiety. Third generation inhibitors are composed of
triazole derivatives: anastrozole, letrozole, and the steroidal examestane. These inhibitors
provided greater clinical benefits with a robust aromatase inhibition of 98% or more. The
aromatase inhibitors have been successfully used for the treatment of estrogen receptor‐
positive breast cancer in postmenopausal women [65]. Letrozole has a more potent inhibitory
effect on estrogen synthesis than anastrozole [66]. Letrozole has been tested in a GBM model
using Sprague–Dawley rats orthotopically implanted with C6 cells. Imaging analysis employ‐
ing μPET/CT showed an important reduction in the volume of tumor (>75%) after 8 days of
letrozole treatment (4 mg/kg/day) [67].

The AIs, namely 3b‐hydroxyandrost‐4‐en‐17‐one (1), androst‐4‐en‐17‐one (12), 4a,5a‐epoxy
androstan‐17‐one (13a), and 5a‐androst‐2‐en‐17‐one (16), induced an antiproliferative effect on
MCF7 breast cancer cells, and this effect was due to a cell cycle arrest and cell death by apoptosis
[68]. Table 1 shows different treatments for GBM and their effect on OS. It also exhibits the
progression‐free survival, with the side effects observed in these studies.

6.2. Hormone release growth hormone (GHRH) inhibitors

GHRH inhibitors had been used for the treatment of various cancers or disorders that express
growth hormone (GH) or GHRH production. GHRH antagonists suppress GH or insulin‐like
growth factor (IGF‐1) in transgenic mice overexpressing the GHRH gene; GHRH antagonists
can inhibit the rat pituitary tumor cells overexpressing the GHRH receptors (p‐GHRH‐R).
These antagonists also inhibit GH secretion [70]. There is evidence that GHRH antagonists are
well tolerated in humans; however, more phase I–III clinical trials are necessary to probe the
efficiency of these antagonists [71]. GHRH antagonists inhibit cancers that depend on IGF‐1
as a growth factor [72–74]. GHRH antagonists can also inhibit various autocrine factors such
as GHRH, GH, or VEGF by binding to the tumoral GHRH receptors, resulting in a tumor
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growth suppression [75,76]. In addition, GHRH antagonists could provoke tumor cell death
by active cell pathways producing apoptosis [77,78].

The presence of the GHRH‐R variant SV1 differs from the pGHRH by a short segment of the
extracellular ligand‐binding domain of the receptor protein in normal tissue and in various
neoplastic tumors, lymphomas, small‐cell lung carcinomas, pancreatic cancer, glioblastomas,
and prostate cancer [79–81]. In several experimentally formed tumors, GHRH antagonist
inhibits the growth and metastasis of cells expressing these receptor types. This inhibition
occurs by binding to the full length of the GHRH‐R or SV1 [79,80,82]. Kovácks et al., 2010
observed a strong GH release inhibition by the JV‐1‐63, reducing tumor growth (46%) of
DBTRG‐05 glioblastomas. Their experiments were conducted on nude mice. JV‐1‐63 antago‐
nists caused an upregulation of mRNA expression of pGHRHR and downregulation of SV1
expression in vitro [82].

The use of aromatase and GHRH inhibitors could have a clinical use in patients with GBM
once adequate phase II or III clinical trials are made.
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