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Abstract

Unmanned helicopters (UHs) develop quickly because of their ability to hover and
low speed flight. Facing different work conditions, UHs require the ability to safely
operate under both external environment constraints, such as obstacles, and their own
dynamic  limits,  especially  after  faults  occurrence.  To  guarantee  the  postfault  UH
system  safety  and  maximum  ability,  a  self‐healing  control  (SHC)  framework  is
presented in this chapter which is composed of fault detection and diagnosis (FDD),
fault‐tolerant control  (FTC),  trajectory (re‐)planning,  and evaluation strategy.  More
specifically, actuator faults and saturation constraints are considered at the same time.
Because of the existence of actuator constraints, usable actuator efficiency would be
reduced after actuator fault occurrence. Thus, the performance of the postfault UH
system should be evaluated to judge whether the original trajectory and reference is
reachable, and the SHC would plan a new trajectory to guarantee the safety of the
postfault system under environment constraints. At last, the effectiveness of proposed
SHC framework is illustrated by numerical simulations.

Keywords: fault detection and diagnosis, fault‐tolerant control, invariant set, self‐
healing control framework, trajectory (re‐)planning

1. Introduction

Safe  operation  and  reliability  are  important  performances  of  unmanned  aerial  vehicles
(UAVs). Unmanned helicopters (UHs) as a kind of UAVs develop quickly because of their
ability to hover and low speed flight. Nevertheless, traditional control and planning strategies
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cannot guarantee their safety and reliability in the face of malfunctions such as sensor faults,
actuator faults, and component faults. Furthermore, taking physical limits such as actuator
constraints and state constraints into account, the situation would be more serious. In order
to ensure the reliability and safety of UHs, fault detection and diagnosis (FDD) and fault‐
tolerant control (FTC) approaches become focus of research and many related research results
have been presented [1]. However, physical limits are not well considered in conventional
FTC approaches which may affect their efficiency. On the other hand, besides UH's dynam‐
ic  limits,  external  environment  constraints,  such  as  obstacles,  also  affect  UH's  safety.
However,  traditional  planning  methods  cannot  consider  environment  constraints  and
vehicles’ limits at the same time which makes these methods helpless in the face of faults. In
this chapter, a self‐healing control (SHC) framework is proposed against actuator faults and
constraints of single‐rotor UHs under external environment constraints.  The SHC frame‐
work is shown in Figure 1 which involves FDD module, reconfigurable controller, trajecto‐
ry (re‐)planning module, and evaluator module.

Figure 1. SHC framework.

The tasks of the above modules are as follows:

1. FDD module: Estimate the actuator healthy coefficient (AHC) [2] in real time. AHCs can
indicate healthy conditions of actuators and actuator fault information is the basis of
controller reconfiguration.

2. Reconfigurable controller: This module realizes the same functions as conventional FTC
approaches and considers actuator constraints at the same time. After fault occurrence,
the fault‐free controller will be configured as a postfault controller according to AHCs
provided by FDD module to guarantee the stability of the postfault UH system.

3. Trajectory (re‐)planning module: Compute realizable trajectory based on desired path and
UH dynamic model under environment constraints. This module calculates a feasible
trajectory under both fault‐free and postfault conditions. Furthermore, controller
references are computed directly in this module which can be used by reconfigurable
controller.
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4. Evaluator module: Evaluate system performance of UHs according to AHCs, UH dynamic
model, and controller and trajectory information. If the original controller and trajectory
are not feasible, this module will ask related modules to reconfigure controller and replan
trajectory.

The remaining part of this chapter is organized as follows: single‐rotor UH and AHC models
are simply introduced in Section 2; Section 3 investigates FDD approach against actuator faults
based on extended Kalman filter (EKF) and linear neural network (LNN). In Section 4, the
postfault controller is designed to guarantee the stability of UH system under both actuator
faults and constraints; Section 5 presents invariant‐set based planning (ISBP) approach that
can compute controller reference according to desired path and UH dynamic model. Evalua‐
tion strategy is introduced in Section 6 and numerical simulations are shown in Section 7.
Finally, Section 8 summarizes the chapter with conclusions.

2. Model of UH and AHCs

2.1. UH model

The 6‐DOF dynamics of UH is given by the following Newton–Euler equations:
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where V b= u v w  is the velocity vector, ωb= p q r  is the angular velocity vector, Fb is the
aerodynamic force vector, Fg  is the gravity force vector, Ib is the moment of inertia matrix, Mb

is the aerodynamic moment vector, and m is the UH mass.

Aerodynamic forces and moments can be calculated by
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where δlon, δlat, δcol, and δped are the longitude, latitude, main rotor collective pitch, and tail rotor
collective pitch control inputs, respectively. ωr  is control input of main rotor rotating speed.
Typically, f f  and f m are nonlinear functions and their details can be found in [3, 4].

Note that δlon, δlat, δcol are the nominal control inputs and they do not represent the actual
actuator outputs. The relationship between the nominal and actual inputs is determined by
the structure of swashplate [5] and their values can be converted to each other.
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In order to guarantee the accuracy of AHC estimation, nonlinear model is used to design FDD
approach. However, the above nonlinear model is too complex to design EKF filter so that a
simplified nonlinear discrete‐time model is used [6]:

( ) ( ( 1), ( 1)) ( 1)
( ) ( ( )) ( )
x k f x k u k k
y k h x k k

w
n

= - - + -ì
í = +î

(1)

where x∈R n is the system state vector, y∈R p is the system output vector, u∈R m is the system
control input vector, ω and ν are the process noise and measurement noise that are assumed
to be Gaussian white noise with zero mean and uncorrelated from each other. Considering
swashplate configuration [5], the system control input vector is u = θl , θr , θb, θt , ωr  where
θl , θr , θb are left, right, back swashplate actuator outputs, and θt =δped  is the tail actuator output.

On the other hand, the linear dynamic model is used to design controller and trajectory
planning which is shown as follows:
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where xh ∈R n = x − xtrim, yh ∈R p = y − ytrim, uh ∈R m=u −utrim, and xtrim, ytrim, utrim are the trim
values. Ah , Bh , and Ch  are all constant matrices.

2.2. AHC model

Suppose v is the control signal given by controller called control variable and u is the actual
actuator output called manipulated variable, their relationship is represented by

( ) ( ) ( )u k v k I u= L + - L

where Λ is a diagonal matrix with Λ =diag(λ1, ..., λm), λi∈ 0, 1 , and ū∈R m is a constant vector.
In addition, λi and ū i are the proportional effectiveness and fault bias of the ith actuator's AHC.
λi =1 and ū i =0 represent that the ith actuator is fault‐free; otherwise, the ith actuator has fault.
Thus, the fault condition of actuators can be represented by AHCs.

3. EKF‐ and LNN‐based FDD approach

Because of the serious nonlinear coupling between all control channels, we assume that an
actuator has fault whereas others are still well, and the actuator for rotate speed control, ωr , is
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always well. Here, the multiplicative fault of an actuator as a parameter that is indicated by
the AHC for this kind of fault is more likely to happen. The following will introduce the
realization of fault diagnosis in the order of fault identification module, fault isolation module,
and fault detection module. In this section, x(k ) is written as xk  for simplicity and x̂k|k−1

represents the pre‐estimation value of xk  based on the information of k −1 step.

3.1. Fault identification module

The task of fault identification is to determine the size of the fault and the fault time after fault
isolation. The size of a fault is indicated by the proportional effectiveness of AHC, so we should
estimate the actual manipulated variable vector u according to state estimations from EKF and
actual control signal v to calculate and obtain the proportional effectiveness.

As shown in Eq. (1), in a typical nonlinear discrete‐time system, the input vector is obtained
from actuators, and the current state vector xk  is calculated based on the state vector of the last
step. The estimations of x̂k|k  and x̂k−1|k−1 can be obtained by EKF [7]. Therefore, the state
equation can be transformed into the equation as follows:

| 1| 1 1| 1( ) (ˆ ˆ ˆ )k k k k k kx M x u N x- - - -= + (3)

For the calculation, processes of forces and torques of the simplified nonlinear model have
been linearized, Eq. (3) is a linear equation set, and the values of M  and N  are connected with
state estimations of the last step only.

Typically, Eq. (3) is an overdetermined linear equation set and could not be solved directly [8].
After knowing which actuator is faulty, many output estimations of this actuator can be
obtained by the faultless manipulated variables of other actuators according to Eq. (3). Multiply
the sample column vectors formed by these estimations by a weight matrix and correct this
result with an offset. Then, the manipulated variable estimation of this faulty actuator can be
obtained.

To obtain the above weight matrices and offsets, consider a linear neuron as a simple LNN,
and its input–output relation is expressed as follows:

( )a f Wp b Wp b= + = +

where a is the output vector, p is the input sample vector, W  is the weight matrix, and b is the
offset. The weight matrices and offsets can be obtained by training. Assume that an actuator
has a fault, and let the output estimations of this actuator be a set of input of the linear neuron.
After simulation, multiple sets of input samples can be obtained, and let the actual manipulated
variable be the target value to train the weight matrix and offset of this actuator. Determine
the weight matrix and offset of every faulty actuator, and make use of them in the online
experience to calculate the estimation of every manipulated variable. The above process is
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closely related to the estimation process of EKF; more certainly, EKF and LNN complete the
joint estimation of system states and AHCs together.

3.2. Fault isolation module

The task of fault isolation is to determine the location and type of the fault after fault detection.
The structure of this module is shown in Figure 2 to record the completion time and pass the
serial number of the faulty actuator to fault identification module.

Four fault identification modules are in parallel in this module, and we assume that there are
different actuator faults in different identification modules. Therefore, every fault identifica‐
tion module can obtain the proportional effectiveness of AHC called isolation AHC. Make use
of the isolation AHC of the ith actuator and let these values of other actuators be both 1 to
calculate the manipulated variables called isolation‐manipulated variables according to
control variable vector v. Based on these variables, we can obtain the system state vector and
define it as xiso. In this way, we define the isolation residual of the ith actuator as follows:

iso est iso estres ( ) ( )T
i x x x x= - -

where xest is state estimation. If the isolation residual of an actuator is less than the isolation
residuals of others, there will be fault in this actuator. For example, if resi is less than other
isolation residuals, the ith actuator can be considered to be faulty.

Figure 2. The structure of fault isolation.
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3.3. Fault detection module

The basis of the above two modules is that the fault is detected quickly and accurately. Known
from the EKF process, the filter obtains the state vector pre‐estimation x̂k|k−1 by the estimations
of the last step and updates x̂k|k−1 by the measurement information to obtain the current
estimation of the state vector x̂k|k . If there is a fault in the actuator, there will be difference
between the pre‐estimations of states and the actual states with fault. However, the estimations
of states would track the actual states after the update. Define a filter residual as follows:

| | 1ˆ ˆk k k k kr x x -= -

Perform the weighted sum of squared residuals (WSSR) operation [9]:

WSSR T
k k kr r= S

where the weight matrix Σ =diag(σ1
2, ..., σn

2) and σi is the standard deviation of the filter residual
of the ith state variable to make the residual that can indicate faults work.

According to the threshold value γ set in advance, the criteria for fault detection are as follows:
if WSSRk >γ, fault; if WSSRk ≤γ, no fault.

4. Reconfigurable controller design

In this section, AHC‐based antiwindup controller design method is introduced which can be
achieved by solving a set of linear matrix inequalities (LMIs). At the same time, the related
invariant‐set‐based safety region is also calculated. The definition of invariant set and the
controller design under actuator constraints are given as follows.

4.1. Invariant set

Considering a linear system

( 1) ( )x k Ax k+ =

the (positively) invariant set can be given by the following definition.

Definition 1 [10]: The set S⊂R n is said invariant for the above system if for all x(0)∈S the
solution x(k )∈S. If x(0)∈S implies x(k )∈S for k >0, then we say that S is positively invariant.

Based on Definition 1, the definition of robustly controlled invariant set for the following
system is provided:
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Definition 2 [10]: The set S⊂R n is said robustly controlled invariant for the above system if
there exists a continuous feedback control law u(k )=Kx(k ), which ensures the existence and
uniqueness of the solution on R + such that S is positively invariant for the closed loop system.

An invariant set S can be constructed by the following theorem.

Theorem 1 [11]: The set Sρ = {x(k)∈R n |V (x(k ))≤ρ} with ΔV (x(k ))≤0 for all x(k )∈Sρ is positively
invariant where V  is a function.

For convenience, ρ is chosen equal to 1 and simplify Sρ as S={V (x(k ))≤1}. Hence, the construc‐
tion of S finds a function V , which implies ΔV (x(k ))≤0 when V (x(k ))≤1. Obviously, if we
assume V (x(k))≥0, V  would be a candidate of the Lyapunov function. More specially, if the
Lyapunov candidate function is in quadratic form such that V (x(k ))= x T (k )Px(k), the invariant
set will be an ellipsoid and this nature will be used later.

4.2. Controller design under actuator constraints

Consider linear discrete UH model, Eq. (2), with actuator constraints:

( 1) ( ) ( ( ))
( ) ( )

h h h h h

h h h

x A x B u
y

k k
k x kC

k s=+ +ì
í =î

Where σ(uh (k )) represents constrained control inputs such that −1≤u(k )≤1 and the saturation
feature can be defined by σ(ui(k ))=sgn(ui(k ))min{1, |ui(k )|}, where sgn(⋅ ) is a sign function and
i =1, ..., m. Then, considering AHC model, the above system can be rewritten as

0( 1) ( ) ( ( ))
( ) ( )h h h

h h h h hfx k A x k B v k
y k C x k

B us+ = + +ì
í =î

Where Bh 0 =BhΛ and Bhf =Bh (I −Λ). In the following discussion, assume the number of λi =0 is
mf , which implies mf  actuators cannot respond to the control signal and m0 =m−mf  is the
number of fault‐free/partial‐fault actuators that can respond to the control signal. In other
words, m0 represents the number of nonzero columns of matrix Bh 0. In this way, the postfault
system with different actuator faults can be represented.

In order to achieve set‐point tracking offset free and compensate actuator saturation, an
integrator with a saturation compensator is introduced as follows:
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( )( 1) ( ) ref ( ) ( ( ))s h h s ce k e k T C x k T E v kj+ = + - -

where e(k ) is the integrator state vector, Ec is the pending compensator matrix,
φ(v(k ))=v(k)−σ(v(k)) is the difference of controller outputs and actuator outputs under
saturation [12], ref∈Ωref = {ref| refTQrref≤1} is a set‐point reference, Qr is a constant matrix, and
Ts is sampling period. Thus, a new open‐loop system with extend state vector

x(k )= xh
T (k )  eT (k) T  can be expressed by

( )
( 1) ( ) ( ) ( ) ( ) ( ( )

 (
)
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Note that, if mf =0, ω(k )= ref, then D = 0 (TsI )T T  will hold.

Based on linear quadratic regulator (LQR) theory, state‐feedback controller v(k )=Kx(k ) can be
calculated. Thus, the closed‐loop postfault system can be expressed by

( 1) ( )
( ) ( )

( ) ( ) ( ( ))cx k Ax k D k B RE
y k

k
C

v
x k

w jì
í =

+ = + - +

î

where A=(Ae + BK ). In order to guarantee the closed‐loop system stability and to track offset‐
free under external input ω(k ) and actuator constraints, the following theorem is proposed. As
a basis, first a lemma is given which defines a set of system states related to actuator saturation.

Lemma 1 ([12]): Define the following polyhedral set with matrix G∈R m0×(n+p):

{ }( ) ( ) ( ) | 1, 1,...,i ix k K G x k i m= - £ =E

where K i and Gi represent the ith row of matrices K  and G. If x(k )∈ℰ, then the relation
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is verified for any positive‐definite matrix T ∈R m0×m0.

Based on this lemma, saturation compensator can be designed in the following theorem.

Theorem 2: Given LQR parameter matrices Qu, Qx, if there exist a symmetric positive‐definite

matrix W ∈R (n+p)×(n+p), matrices X ∈R m0×(n+p), Y ∈R m0×(n+p), Z ∈R p×m0, diagonal positive‐
definite matrices S∈R m0×m0, W r ∈R p×p, and a positive scale η satisfying

, , , , ,
inf

rW X Y Z S W
h

0

1
0, 1,...,

*
i iX Y

I m
W
-é ù

³ =ê ú
ë û

1

2

1

1

0 0
* 2 0 0 0 0 0
* * 0 0 0 0
* * * 0 0

0
* * * * 0 0 0
* * * * * 0 0
* * * * * * 0
* * * * * * *

T T T T

T T T

T

T
r

u

x

W Y WA C X W
S SB Z R

D
W D I

W
I

Q
Q

h

-

-

é ù- -
ê ú- - -ê ú
ê ú-
ê ú

-ê ú <ê ú-ê ú
ê ú-
ê ú-ê ú
ê ú-ë û

where X i, Y i represent the ith row of matrices X , Y  and K =XP , G =YP . Then, the saturation
compensator will be Ec =ZS −1 and the closed‐loop postfault system will be stable if x(k ) inside
the stability domain S= {x(k )| x T (k )Px(k )≤1} with P =W −1. Note that S is defined as the safety
region in this chapter. Ωref  is also achieved with Qr =W r

−1. The proof can be found in [13].

According to Theorem 2, the safety region S is an invariant set which means that if initial states
and steady states of a system are inside the set, the state trajectory from initial states to steady
states will also be inside the set. In this way, a postfault system with a fault‐tolerant controller
can be seen as a new closed‐loop system with the initial state x(kf ), where kf  is instant when
the fault is detected Clearly, a postfault system will be safe if initial state x(kf ) is inside the
safety region S.

On the other hand, the related admissible set of reference Ωref is also achieved by Theorem 2
and it has a closed relationship with the controller. In the next section, the controller design
and the reference design will be composed together.
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5. ISBP approach

This section proposes an ISBP approach that can plan a feasible trajectory based on the desired
path nodes under both external environment constraints and their own dynamic limits [14].
In order to consider environment constraints and dynamic constraints at the same time,
invariant set is used as a bridge to connect the two kinds of constraints because the invariant
set is calculated based on the Lyapunov function that is linked to dynamic model, and on the
other hand, the invariant set has certain geometrical shapes, such as ellipsoid, so that it can
easily be represented in work space with obstacles.

Note that, in this section, we have assumed that the heading of UH is kept to be 0, pitch angle
and roll angle of UH are kept small so that the position of UH in the world coordinate system
can be considered as the integration of velocities in the body coordinate system.

5.1. Reachable set

Considering System (4) with controller v(k )=Kx(k ), the definition of reachable set is given.

Definition 3 [15]: The reachable set Sr  is defined as

{ }( ) ( ) | ( )r rxy k Cx k x k= = ÎS S

ref

( ), ( ), ref satisfy(4),
( ) ( ) ( ) ,

ref , (0) 0, 0

ì ü
ï ï= = ÎWí ý
ï ïÎW = ³î þ

w

rx v

x k k
x k v k Kx k

x k
S

where Ωv = {v(k )| −1≤vi ≤1, i =1, ..., m0}.

5.2. ISBP method

For the convenience of discussion, a 2D work space is used in the following whereas the
proposed ISBP approach can be expanded in 3D condition directly. Consider a preknown
environment as shown in Figure 3, where the initial location is L 0 and the goal location is
L 5. Based on the preknown environment, a lot of path planning approaches can be used to
find a feasible path against external environment constraints such as obstacles. Suppose this
path is represented by a series of nodes such as L 0 ∼ L 5, as shown in Figure 3.

The target of the proposed ISBP approach is to calculate feasible controller reference inputs to
move the UH from the initial location to the goal location based on the feasible path and satisfy
both external environment constraints and UH's limits.
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Figure 3. Two‐dimensional environment and feasible path.

Consider a simple example in the preknown environment as shown in Figure 4(a) where the
initial location is L 0 and the goal location is L 1. Suppose a feasible path is represented by two
nodes L 0 and L 1 and their connection is shown in the same figure.

Clearly, the work space is state space; thus, the location in work space is equality to the state
such as the initial state, which is equal to L0. Thus, an invariant set S can be constructed
according to plant dynamic model (4) under controller v(k )=Kx(k ), which also guarantees
obstacle avoidance. Suppose the invariant set is S0 and the related reachable set is Sr0 as shown
in Figure 4(b). Clearly, because of the existence of constraints such as obstacles and UH's limits,
the invariant set S0 may not contain the goal location L 1 as shown in Figure 4(b). Closely, the
goal location L 1 is also outside the reachable set Sr0, which means L 1 is unreachable under
this condition. Thus, the system states should be continued moving.

Suppose the intersection of reachable set Sr0 and feasible path L 0L 1̄ is c1 as shown in Fig‐
ure 4(b). In order to move state from c1 to L 1, a new invariant set, whose center is c1, is required.
Suppose the state of the new system is x̄(k )= x(k )− xc1, where xc1 is a constant vector whose
position is equal to c1 and other elements are 0. Based on the new system, we can construct the
second invariant set S1 whose center is c1 as shown in Figure 4(c). The related reachable set Sr1

is also shown. Obviously, the goal location L 1 is inside the reachable set Sr1 now, which means
L 1 is reachable under this condition. In this way, we can choose the center of S1, c1, and the
goal location L 1 as a sequence of the controller reference input. Finally, Figure 4(d) shows the
practical trajectory that is obtained by the UH actual operation.
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Figure 4. ISBP in 2D condition.

5.3. Calculation of the invariant set and the reachable set

According to Theorem 2, the invariant set S and the reference set Ωref  are obtained. Assume
the reachable set Sr  defined by Definition 3 is included in the invariant set S such that Sr ⊂S.
Because the reference is bounded such as ref∈Ωref and the integrator can guarantee all
references to be reachable such as y(∞)= ref, the reachable set Sr  can be denoted by
Sr = {ref| refTQrref≤1}. Thus, the invariant set and reachable set neglecting external environ‐
ment constraints are obtained.

However, in order to guarantee controlled plant obstacle avoidance, the state trajectory should
be kept outside all of spheres that represent obstacles. For achieving it, the invariant set S
should not intersect with all of obstacle spheres. Suppose S0 ⊂R n+p is a sphere that is defined
by S0 = {x(k )| x T (k )Q0x(k)≤1}, where Q0 =diag q1, ..., qn+p , qi =1 / dmin

2 , dmin is the distance between
the center of the nearest obstacle and the current system equilibrium point.

According to the above analysis, the following theorem is proposed to calculate the maximum
invariant set S and the reachable set Sr  of system (4) under both external environment
constraints and UH's limits.

Theorem 3: Given η >0, LQR parameter matrices Qu, Qx, symmetric positive‐definite matri‐
ces W0 and R, if there exist a symmetric positive‐definite matrix W ∈R (n+p)×(n+p), matrices
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X ∈R m0×(n+p), Y ∈R m0×(n+p), Z ∈R p×m0, diagonal positive‐definite matrices S∈R m0×m0,
W r ∈R p×p, and a positive scale λ satisfying
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where W0 =Q0
−1, then obstacle avoidance and −1≤v(k )≤1 would be guaranteed, furthermore,

the ellipsoid S= {x(k )| x T (k )Px(k )≤1} is an invariant set with P =W −1 and
Sr = {ref| refTQr ref≤1} is a reachable set with Qr =W r

−1, which satisfies Sr ⊂S.

Clearly, Theorem 2 is included in Theorem 3 because the invariant set is a bridge to connect
environment and UH dynamic constraints. Thus, by the ISBP approach, the controller design
and controller reference calculation are achieved simultaneously when the preknown work
space, the desired path nodes, and the UH dynamic model are given.
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The relationship between the related sets and the obstacles are shown in Figure 5 assuming
that all sets are projected to a 2D plane.

Figure 5. The relationship of related sets.

In other words, based on the calculated invariant set S and the reachable set Sr , a new center
c1 can be computed which is the intersection point of Sr  and the feasible path. The next step is
to calculate the second invariant set and the reachable set whose center is c1 until the last
reachable set covers the final path point.

6. Evaluation strategy

The open‐loop model (2) of UH is unstable and the actuator outputs are limited. Thus, the only
regional stability of UH can be guaranteed and the stability region is determined by the system
structure and actuator constraints [16]. In other words, if the states of UH are inside the stability
region, the UH would be of safety; otherwise, the UH may be in danger. Obviously, after
actuator fault occurrence, actuator efficiency will be reduced. Hence, the safety region of the
postfault system will be different with the fault‐free case as shown in Figure 6(a). Suppose that
the safety region of the fault‐free system with a fault‐free controller is Ωff and the postfault
system with a FTC controller is Ωpf as shown in Figure 6(b); furthermore, the initial state of
the fault‐free system is x0 ∈Ωff and an actuator fault is detected at k f 1. Clearly, the state x(k f 1)
is outside the safety region of the postfault system Ωpf so that the postfault system may be
unstable (as shown by state trajectory x(k f 1)x

′(k f 1)) at last. That is to say, the actuator fault
cannot be compensated. In contrast, suppose that the other fault is detected at k f 2 and
x(k f 2)∈Ωpf is valid, which represents that the fault can be compensated. However, the states
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in steady case are also determined by references such as x f 1 which may be outside the safety
region Ωpf. Obviously, this reference is unreachable and tracking such reference may lead UH
unsafe (as shown by the state trajectory x(k f 2)x

′
f 1). Hence, reference reachability should be

analyzed before system motion and a new reachable reference is necessary. Compared with
x f 1, x f 2 may be more reasonable which is inside Ωpf.

Figure 6. A sample of safety region of fault‐free and postfault system in 2D state space.

According to Theorem 2, the safety region S is an invariant set. Clearly, a postfault system will
be safe if initial states are inside the safety region S f  of the postfault system. In this way, the
initial states of the postfault system can be evaluated. Second, the steady states will be
analyzed. In steady‐state case, actuators are not expected to be saturated so that the remaining
efficiency of actuators can be used for disturbance defence. Hence, the original reference
should be inside the reachable set of the postfault system such as ref∈Srf, where Srf is the
reachable set of the postfault system; otherwise, the original reference ref is not reachable and
tracking the original one may lead UH unsafe. The reason is that the actuator efficiency is
reduced in the postfault system and tracking unreachable reference will lead fault‐free actuator
saturated which implies that UH cannot respond to control signal correctly. Under this
condition, a new optimal reference is required which can be calculated by the trajectory
replanning approach. In other words, if the original reference is not reachable after detecting
the actuator fault, the ISBP approach should be called to calculate new trajectory and controller
reference based on the postfault dynamic model of UH.

7. Numerical simulation

The parameters of nonlinear UH dynamic model used in numerical simulations is obtained
from reference [6]. This model is used as the simulation model in this section. The step size of
this simulation is 0.02s, which is the same as the control period of the real UH flight platform.

Recent Progress in Some Aircraft Technologies128



7.1. FDD simulation

Based on the simplified nonlinear model, the EKF is designed and LNN is used to train weight
matrices and offsets of faulty actuators. The parameters of the EKF filter and the training results
of the left swashplate actuator by LNN are as follows: Q =diag(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
R =2.5×10−5 ⋅diag(40, 40, 40, 1, 1, 1, 1, 1, 1, 1, 1, 1),
W = −0.0095, −0.00015, 0.000073, 0.076, 0.01023, −0.01008 , b=0.03099

where Q and R are covariance matrices of the process noise and the measurement noise,
respectively. Then, we introduce a multiplicative fault on the left swashplate actuator as
follows:

1

1

1 0 20
0.6 20

t
t

l
l
= £ <ì

í = ³î

The fault detection module based on the filter residuals can get the WSSR curve shown in
Figure 7. When no fault occurs, the WSSR curve cannot exceed the threshold.

Figure 7. The curve of filter WSSR under the left servo fault.
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After fault detection, isolation residuals are calculated to isolate this fault. The curves of four
isolation residuals are shown in Figure 8. According to this figure, the isolation residual of the
left swashplate actuator is less than other residuals. That is to say, the left actuator of swash‐
plate is faulty. The fault isolation module cannot provide the right isolation results as soon as
the completion of fault detection because of the vibration caused by the measurement noise.
There may be misdiagnosis of the fault location within a very short time.

Figure 8. Curves of isolation residuals of every actuator under the left servo fault.

The curve of the proportional effectiveness of the left actuator under the fault is shown in
Figure 9. After fault isolation, the isolation module passes the serial number of the faulty
actuator to fault identification module to identify the AHC of this faulty actuator, and the
simulation results indicate the size of this multiplicative fault. Because the weight matrices
and offsets are trained by the LNN under the faults whose AHCs’ parameters are all 0.5 for
the online simulations, there may be error between the identification results and the actual size
of this fault. By the calculation of average, the fault identification result is equal to the actual
fault approximately.

The simulation results show that fault detection and isolation modules could detect and isolate
a fault quickly, and the identification result is accurate enough; moreover, this method is with
good real‐time performance.
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Figure 9. The curve of AHC proportional effectiveness under the left servo fault.

7.2. Controller and trajectory (re‐)planning simulation

A linear UH model (2) with added three‐axis positions is used in this part and related param‐
eters can be found in [13]. The added positions are considered integration of velocities in the
body coordinate. Thus, the system states, control inputs, and outputs are

1 1[ ]
[ ], [ ]

h x y z s s

l r b t r h x y z

x p p p u v w p q r a b
u y p p p

f q y
q q q q w y

=
= =

Assume that the left swashplate actuator has fault at 6.4s with λ1 =0.6, and the LQR parameter
matrices are

diag(0 0 0 0.01 0.01 0.01 3 1 0.02 0 0 0 0.1 0.1 0.001 0.001 0.003 0.01)
diag(1110.50.1)

x

u

Q
Q

=
=

The preknown work space is shown in Figure 10 where the start point is (0,0,0) and the target
point is (20,20,20). The external environment constraint considered here is a sphere obstacle
whose position is (10,10,10) and radius is 1. The feasible path is given by path nodes, such as
(0,0,0), (8,8,13), and (20,20,20), which can guide UH from the start point to the target point with
obstacle avoidance.
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Figure 10. Preknown work space and feasible path.

According to Theorem 3, a series of controllers K , invariant sets S, and reachable sets Sr
satisfying obstacle avoidance and UH dynamic limits can be computed as shown in Fig‐
ure 11 where the green ellipsoids are the reachable sets in 3D and the centers of ellipsoids, blue
stars, are controller references. According to these references, the UH can run from the start
point to the target point and the actual trajectory is shown by the blue curve. Clearly, the
trajectory is kept inside the green ellipsoids so that it is also inside the invariant sets.

Figure 11. Reachable sets and UH actual trajectory in fault‐free condition.
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Compared with fault‐free case as shown in Figure 11, Figure 12 shows the results of the
postfault case without the SHC framework. The actuator fault is detected at 6.4s and the related
state is marked by red points in the figure. According to the postfault dynamic model, a new
reachable set, red ellipsoid, is calculated. It is easy to see that the original reference, black point,
is outside the reachable set of the postfault system which implies that the original reference is
unreachable. Under this condition, if it does nothing, the UH system may be in danger as
shown by the blue curve. The related manipulated variables are shown in Figure 13 where the
blue curves are the actuator outputs and the red dashed lines are the actuator constraints.
Clearly, the actuator outputs are saturated at last which leads the UH system out of order.

Figure 12. Reachable sets and UH actual trajectory in postfault condition without SHC.

Figure 13. Actuator outputs in postfault condition without SHC.
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Figure 14 shows the results of the postfault system with a SHC framework. After fault
detection, Theorem 3 is recalled to calculate the new controllers, invariant sets, and reachable
sets to evaluate the performance and guarantee the postfault UH system to be stable. At last,
the UH can reach the target point with obstacle avoidance as shown by the actual trajectory.

Figure 14. Reachable sets and UH actual trajectory in postfault condition with SHC.

8. Conclusions

In this chapter, a self‐healing control framework is proposed for UH systems. The SHC
framework aims at providing a solution to guarantee UHs safety and maximum ability to
achieve the desired missions under both fault‐free and postfault conditions. The EKF‐ and
LNN‐based FDD approach is used to detect and diagnosis actuator faults modeled by AHCs.
Then, the AHC‐based reconfigurable controller design method is proposed to calculate the
fault‐tolerant controller and the related safety region against both actuator faults and con‐
straints by solving a set of LMIs. Third, the ISBP approach is presented for planning a feasible
trajectory and computing the related controller reference under both external environment
constraints and UH dynamic limits at the same time. After fault occurrence, based on the
calculated safety region and controller reference, the performance of the postfault UH system
can be evaluated, which can provide information whether the fault can be compensated and
the original reference can be reached. If the original reference is not reachable, the ISBP
approach will be recalled to calculate the new trajectory and reference again according to the
postfault dynamic model. Finally, numerical simulations illustrate the effectiveness of the
proposed SHC framework.
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