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Abstract

Functionality  and  performance  of  modern  machines  are  directly  affected  by  the
implementation of real-time control systems. Especially in networked teleoperation
applications,  force  feedback  control  and  networked  control  are  two  of  the  most
important factors,  which determine the performance of the whole system. In force
feedback control, generally it is necessary but difficult and expensive to attach sensors
(force/torque/pressure  sensors)  to  detect  the  environment  information  in  order  to
drive properly the feedback force. In networked control, there always exist inevita‐
ble random time-varying delays and packet dropouts, which may degrade the system
performance and, even worse, cause the system instability. Therefore in this chapter,
a study on a real-time bilateral teleoperation control system (BTCS) over an imperfect
network is discussed. First, current technologies for teleoperation as well as BTCSs
are briefly reviewed. Second, an advanced concept for designing a bilateral teleoper‐
ation networked control (BTNCS) system is proposed, and the working principle is
clearly explained. Third, an approach to develop a force-sensorless feedback control
(FSFC) is proposed to simplify the sensor requirement in designing the BTNCS, while
the  correct  sense  of  interaction  between  the  slave  and  the  environment  can  be
ensured.  Fourth,  a  robust-adaptive  networked  control  (RANC)-based  master
controller is introduced to deal with control of the slave over the network contain‐
ing both time delays and information loss. Case studies are carried out to evaluate
the applicability of the suggested methodology.
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1. Introduction

Teleoperation, which allows a human operator to interact with the environment remotely,
extends humans’ sensing, decision making, and operation beyond direct physical contact. Since
its introduction in the late 1940s, teleoperation systems have been deployed worldwide in
numerous domains ranging from space exploration, underwater operation, and hazardous
assignment to micro-assembly, and minimally invasive surgery.

In common, control schemes for teleoperation systems can be classified as either compliance
control or bilateral control. In the compliance control [1, 2], the contact force sensed by the
slave device is not reflected back to the operator, but is used for the compliance control of the
slave device. On the contrary, in the bilateral control [3–5], the contact force is reflected back
to the operator. The operator is able to achieve physical perception of interactions at the remote
site similar to as directly working at this site. Consequently, it improves the accuracy and safety
in teleoperation. Thus, the bilateral control has drawn a lot of attention.

Figure 1 shows a generic configuration of a bilateral teleoperation system which includes five
components: operator, master, communication network, slave, and environment. The master
is capable of acquiring information about the desired manipulation actions and assigning the
tasks to the slave. It normally consists of an input component, such as a joystick, console, or
tactile device, and a force-reflecting mechanism (FRM) to exert the reflected forces on the
human operator. The slave is a robotic device that takes the place of the human operator to
carry out the required tasks at the remote environment. It is usually equipped with sensors to
acquire information about the task process to feed back to the master.

Figure 1. Generic configuration of a bilateral teleoperation system.

There are two common control architectures of bilateral teleoperation systems: position–
position and position–force architectures. In the first approach, the master position is passed
to the slave device, and the slave position is passed back to the master side. The reflected force
applied to the operator is derived from the position difference between the two devices and,
therefore, this approach is not desirable in cases of free motion. In contrast, the position–force
approach uses directly the force measured at the remote site rather than the position error. In
this architecture, the contact force, sensed by a force/torque sensor mounted on the slave
device, is scaled by a force-reflecting gain (FRG), and this scaled force is reflected back to the
operator via the master device. This method then provides the operator a better perception of
tasks execution at the remote site.

In order to derive sufficiently the FRG, two important tasks are required: first, to detect the
environment and, second, to determine the contact force at the slave site. Many studies have
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been carried out to optimize the FRG [4, 5]. Although the reported algorithms showed some
remarkable results, there remain some drawbacks such as how to determine the FRG appro‐
priately with unknown environments; and especially, it is difficult and expensive to attach
proper sensors (force/torque/pressure sensors) to detect the loading conditions. Additionally,
the use of these kinds of sensors is cost-ineffective and difficult to be installed in practice.
Especially, it is easy to be damaged when the system operates under hazard conditions.
Incorporation of teleoperation and force feedback requires bidirectional information exchange
between the master and slave via the network. In contrast to the advantages such as cost saving,
power consumption, easy implementation, and maintenance, a networked control system
(NCS) leads to two major problems, inevitable random time-varying delays and packet
dropouts because of restrictions imposed by the transmission data rate and channel band‐
width. Due to sensitivity of bilateral teleoperation systems to time delays and packet dropouts,
even a small time delay can destabilize the system [6].

Disregarding the packet loss problem, numerous methods have been proposed [7–9] to
minimize the bad effect of time delay. Herein, the controllers were designed based on the
assumptions that time delay was constant [7], bounded [8], or had a probability distribution
function [9]. Moreover, these assumptions just considered that the time delay in the closed
control loops was less than one sampling period while in practice, it is random and irregular.
To compensate large and uncertain delays, other studies suggested adaptive control schemes
using variable sampling periods, which were based on neural networks (NNs) or prediction
theories [10–12]. Although the performances were improved, there were requirements on
acquiring the real delay data for the training processes, which were not appropriately dis‐
cussed.

To adapt with NCSs compromising not only time delays but also packet dropouts, many
important methodologies, such as state feedback control [13], robust control [14–16], predictive
and model-based predictive control [17, 18], were proposed. By using these techniques, the
NCS performances were remarkably improved over the traditional methods. However in most
studies, time delays and packet dropouts were assumed to be priorly known and bounded to
design the controllers. The sampling period was always fixed in these studies and, subse‐
quently, limited the control performances. Furthermore, computation delay normally at the
master side is also one important factor affecting directly the system performance. Recently,
an advanced robust variable sampling period control approach has been developed for
nonlinear systems containing both the kinds of delays and packet dropouts [19–21]. The
applicability of this method was proved through real-time experiments.

Therefore to fully overcome the above-mentioned problems, a simple and cost-effective real-
time bilateral teleoperation networked control system (BTNCS) is introduced in this chapter.
The advanced concept for designing a bilateral master-slave teleoperation networked control
system is proposed, and the working principle is clearly addressed. Next, an approach to
develop a force-sensorless feedback control (FSFC) is proposed to simplify the sensor require‐
ment in designing the BTNCS while the correct sense of interaction between the slave and the
environment can be ensured. To deal with the networked control of the slave, a robust-adaptive
networked control (RANC)-based master controller is suggested to compensate for the
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problems of time delays and information loss. Case studies are carried out to evaluate the
applicability of the suggested methodology.

2. Bilateral teleoperation networked control system

Figure 2. Proposed architecture of the BTNCS.

Without loss of generality, the architecture of the BTNCS is suggested in Figure 2. The design
for this BTNCS should address the following issues:

• The local master (LM) controller functions as the main control unit of the system to ensure
that the slave manipulator could execute robustly and accurately the tasks given by the
operator via a human interface (HI), disregarding the impacts of networked communication
problems and environments. The local slave (LS) controller is, therefore, an optional design.
It can be just a buffer or a zero-order holder (ZOH) to receive the control input derived by
the LM controller and distribute sequentially to the manipulator.

• There is no force/pressure/torque sensor to be attached at the manipulator end to minimize
the cost and risks. Only an internal sensor, as displacement sensor, is used to monitor the
manipulator trajectory and send back to the LM controller to form a closed control loop.

• The interaction between the manipulator and environment is, therefore, estimated by the
FSFC module at the master side. Here, the FSFC should consist of two parts: first, an
environmental interaction (EI) estimator to detect the environment characteristics as well
as to derive properly a reflecting force required to be applied to a physical device in the HI
module (as a joystick); second, an FRM controller to drive the FRM to generate the desired
reflecting force.

• The FRM is suggested to be constructed using pneumatic rotary actuators. This use brings
some advantages over the traditional design with DC electric motors. Compared with an
electric motor, a pneumatic actuator provides a higher ratio of force-mass, and can produce
larger reflected force without using any reduction mechanism, such as gearbox. In addition,
with the pneumatic solution, the FRM is able to work under safe conditions without damage
from the operator.

• Due to having different control modules and other functions at the master side, computation
delays τ com  need to be taken into account when designing the LM controller.
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• The communication network has unavoidable delays, τ ca and τ sc, and packet dropouts,
represented by “virtual” switches, Sca and Ssc, in the forward and backward channels,
respectively. Sca (Ssc) is opened (or 1) when a packet loss event exits.

The following are attempted to address the two important issues in designing the BTNCS
which are the FSFC and the LM controller.

3. Force-sensorless feedback control

3.1. Design of FSFC

As stated in Section 2, the FSFC compromises the two main modules: EI estimator and FRM
controller. The FRM controller can be selected as a typical feedback controller in which the
reference input is the desired reflecting force sent from the environment classifier and the
feedback signal can be the force/torque/pressure at the physical device of the HI module.

The EI estimator is suggested as in Figure 3. This estimator with two inputs and one output
contains four blocks: Learning Vector Quantitative Neural Network (LVQNN) classifier, slave
dynamics, environment dynamics, and fuzzy-based FRG tuner. Without loss of generative,
the interactive environment can be represented by two factors: damping ce and stiffness ke.
Thus, The LVQNN classifier is firstly designed with two inputs and two outputs to classify
the environment. The two inputs are the command and response from the slave while the two
outputs are predicted values of the environment damping and stiffness, ĉe and k̂ e, respectively.
Next, these predicted values are fed into both the environment dynamics and fuzzy-based FRG
tuner. Synchronously, the slave command is also input to the slave dynamics. The interaction
between the slave dynamics and environment dynamics—loading force—is, therefore,
estimated and denoted as F̂ e. Meanwhile, the fuzzy-based FRG tuner is designed with two
inputs, ĉe and k̂ e, and one output which is value of the FRG. Finally, the desired reflected force,
Fdr, is derived from the estimated loading force and the FRG.

Figure 3. Configuration of the proposed environmental interaction estimator.
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3.2. LVQNN classifier

3.2.1. Learning vector quantitative Neural Network

NN is one of the powerful artificial intelligent techniques that emulates the activity of biolog‐
ical NNs in the human brain. LVQNN is a hybrid network which uses advantages of compet‐
itive learning and bases on Kohonen self-organizing map or Kohonen feature map to form the
classification [22].

Figure 4 shows a generic structure of an LVQNN with four layers: one input layer with m
nodes, first hidden layer named competitive layer with S1 nodes, second hidden layer named
linear layer with S2 nodes, and one output layer with n nodes (in this case, S2 ≡ n).

Figure 4. Structure of the LVQNN.

The core of the LVQNN is based on the nearest-neighbor method by calculating the Euclidean
distance weight function, D, for each node, nj, in the competitive layer as in the following:

( )( ) ( ) ( )( )2
1 1 1

1
, , , 1,..,

m

j
i

n D X W j X i W j i j S
=

= = - =å (1)

where X is the input vector; W1(j,i) is the weight of node jth in the competitive layer corre‐
sponding to element ith of the input vector.

Next, the Euclidean distances are fed into function C which is a competitive transfer function.
This function returns an output vector o1, with 1, where each net input vector has its maximum
value, and 0 elsewhere. This vector is then input to the linear layer to derive an output vector
o2, where each element corresponded to each node of the output layer and computed as

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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where W2(k,j) is the weight of node kth in the linear layer corresponding to element jth of the
competitive output vector; kW(k) is linearized gain of node kth in the linear layer.

In the learning process, the weights of LVQNN are updated by the well-known Kohonen rule,
which is shown in the following equation:

( ) ( ) ( )( )
( ) ( ) ( )( )

1
1 1 1

11
1 1 1

IF:  is classified correctly
, 1,..,

IF:  is classified incorrectly

t t t

t t t

W j W j X W j X
j S

W j W j X W j X

m

m

+

+

ì = + -ï =í
= - -ïî

(3)

where μ is the learning ratio with positive and decreasing with respect to the number of
training iterations (niteration), μ =niteration

−1 .

3.2.2. Design of LVQNN classifier

Here, the LVQNN classifier is designed and implemented into the FSFC to distinguish different
working environments at the slave side in an online manner. To enhance the given task with
the limited number of input information, the input vector of the classifier is constructed as a
vector of current and several historical values of four signals: the slave driving command,
{Xds

(0), Xds
(−1), …, Xds

(−g )}, slave response, {X s
(0), X s

(−1), …, X s
(−p)}, and their derivatives,

{d Xds
(0), d Xds

(−1), …, d Xds
(−h )}and {d X s

(0), d X s
(−1), …, d X s

(−q)}, respectively, while the final outputs
are the environment damping and stiffness, ĉe and k̂ e.

For applications to classify the environment which is varied with both the damping and
stiffness values, the output from the classifier should be the mix of classes with different ratios.
In order to enhance this task, a so-called smooth switching algorithm is proposed here. The
environment class is, therefore, determined by the smooth combination of the current class
detected by the LVQNN (Y) and the previous class using a forgetting factor, λ

( ) ( ) ( ) ( )1 1class t class t Y tl l= ´ - + - ´ (4)

Similarly, the estimated values of the damping coefficient and stiffness are produced by

( ) ( ) ( ) ( )
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k t k k

l l

l l

-

-
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ï
í
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(5)

Additionally, in order to avoid influences of noises on the classification performance, the
forgetting factor is online tuned with respect to the changing speed of the classifier outputs:
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Step 1: Set the initial value for the forgetting factor, λ=0.5; define a small positive threshold,
0<γ1 <γ2, for the classifier output changing speed, vY , which is defined by the number of
sampling periods when Y continuously changes.

Step 2: For each step, check vY and update λ by comparing vY with γ using the following rule:

+ If vY =0, Then λ(t + 1)=λ(t);

+ Else If (vY >γ2), Then λ(t + 1)=λ(t + 1) / 2 and reset vY =0;

+ Else If (vY ≥γ1)& (vY (t)≤γ2), Then λ(t + 1)=λ(t + 1)×2 and reset vY =0;

+ Otherwise, λ(t + 1)=λ(t).

3.2.3. An illustrative example

3.2.3.1. Test rig setup

To evaluate the effectiveness of the LVQNN classifier, an experimental system has been
designed as in Figure 5. One joystick with one Degree of freedom (DOF) is used to generate
driving commands for the slave. An FRM which employs a valve-driven mini pneumatic
rotary actuator and two bias springs is attached to the opposite side of the joystick handle. The
slave employs an asymmetrically pneumatic cylinder as its manipulator. The displacement of
the cylinder rod is sensed by a linear variable displacement transducer (LVDT). The interaction
between the master and slave is enhanced by the communication module which can perform
either wire-by-wire or wireless protocol. To generate environmental conditions for the slave
manipulator, compression springs with different stiffness values are installed in serial with
the cylinder rod. An air compressor is used to supply the pressurized air for both the FRM and
the slave. A compatible PC and a multifunction data acquisition device are employed to
perform the communication between the PC and master. The system specifications are listed
in Table 1.

Figure 5. Design layout for the experimental BMST system.
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Parts Type Component characteristics

Rotary actuator CRB1BW15 90-D Max. torque: 0.9 Nm

Pressure sensors SDE1-D10-G2-W18 Pressure range: 0–10 bar

Pneumatic cylinder CDC-20 Stroke: 100 mm, bore: 20 mm, rod: 8 mm

Servo valves MPYE-5-1/4-010B Control voltage range: 0–10 VDC

LVDT Novotechnik TR100 Measurement range: 0–100 mm

Springs Case 1, Case 2, Case 3 Randomly selected

Table 1. Specifications of the system components.

Input number Number of nodes in the hidden layer

20 25 30 35 40

20 80.35 80.50 81.48 82.17 81.29

24 81.14 81.19 82.26 81.48 82.78

28 80.61 80.03 81.66 81.12 81.69

32 75.34 80.64 85.64 81.00 81.80

36 81.03 81.58 81.93 81.85 80.49

40 79.30 80.98 80.90 80.13 80.22

Goodness of fit [%]

Table 2. Learning success rate of the LVQNN classifier [%].

3.2.3.2. LVQNN classifier training and verification

In order to train the network, the prior task is acquiring the target data. Real-time teleoperation
experiments without force feedback concept were performed on the test rig. Both the three
springs mentioned in Table 1 were used to generate the environmental conditions. For each
condition, a trajectory for the slave manipulator was randomly given by the operator. The slave
information, including the valve driving command and cylinder rod displacement, with
respect to each spring was acquired with a sampling period of 0.02 s.

Next, each of the acquired slave data sets was used to perform the input vector, while the
correspondingly selected spring was used as the target output class (1, 2, or 3). To investigate
performance of the LVQNN classifier with respect to different structures, several trainings
were performed with the selected data set by varying the number of inputs from 20 to 40, and
the number of hidden neurons was changed from 20 to 40. After the training process, the results
(goodness of fit [%]) of the LVQNN are analyzed in Table 2. It shows that the most suitable
LVQNN structure was realized with 32 nodes in the input vector and 30 nodes in the com‐
petitive layer. The learning success rate in this case was highest with 85.64 [%].

Real-time teleoperation experiments were performed in order to investigate the ability of the
LVQNN classifier in practice. Other three experiments with the three loading conditions were
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carried out with the same cylinder trajectories given from the master using an open-loop
control. The classification results were then achieved as displayed in Figure 6–8. The results
imply that the proposed classifier could online detect well the loading conditions and,
therefore, is capable of producing precisely decisions on the environment characteristics.

Figure 6. Real-time classification of the optimized LVQNN with respect to spring case 1.

Figure 7. Real-time classification of the optimized LVQNN with respect to spring case 2.
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Figure 8. Classification performance of the optimized LVQNN with respect to spring case 3.

4. Robust-adaptive networked control

4.1. Problem and RANC design concept

In this section, the RANC approach for a generic system is introduced to support the design
of the LM controller. Consider a discrete-time plant [20, 21]:

1k k k k

k k

x Ax Bu Ed
y Cx
+ = + +ìï

í =ïî
(6)

where xk∈R nis the state vector, uk∈R mis the control input, yk∈R pis the controlled output,

dk∈R d is the environment impact, and A, B, C and E are matrices with appropriate dimensions.

The RANC-based LM controller in Figure 2 is then designed based on the following issues [20,
21]:

• Both the actuators and controller are event-driven.

• The sensors are time-driven with variable sampling period T. For step (k + 1)th, this sampling
period Tk+1 is online optimized depending on the total system time delay τk+1 to make sure:

1 1 1 1

1 1 0

com ca sc
k k k k

k kT
t t t t

t
+ + + +

+ +

ì = + +ï
í

³ >ïî
(7)

• Sets of continuous packet dropouts {pd} are online detected and bounded by p̄k +1:
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( )1 sup ,1 1dkp p d k+ = £ < + (8)

Using the results in references [20, 21], the configuration of an NSC using the proposed RANC
controller is clarified in Figure 9. Herein, the RANC mainly consists of five modules: Time
Delay and Packet Detector (TDPD), Time Delay Predictor (TDP), Variable Sampling Period
Adjuster (VSPA), Quantitative Feedback Theory (QFT), and Robust State Feedback Controller
(RSFC). The TDPD module is firstly used to detect the network problems at the current state.
This information is then sent to the TDP to perform one-step-ahead prediction of system delays
which are the inputs of the VSPA to adjust effectively the sampling period. The two modules,
QFT and RSFC, are employed to construct the so-called hybrid controller to compensate for
the influences of delays and packet dropouts. A smart switch (SSW) is employed to switch the
hybrid controller to QFT or RSFC based on the outputs of the TDPD detector and the TDP
predictor with rule:

• The QFT is selected (SSW = 0) once there is no packet loss and all delay components are less
than their pre-defined threshold values: ( * is ceiling function to return the nearest integer)

, , , ,QFT QFT QFT
com com ca ca sc sc
QFT k k k k kt t t t t t t té ù é ù é ù= = = = "é ùê úê ú ê ú ê ú (9)

• Otherwise, the RSFC is chosen (SSW = 1).

Figure 9. Configuration of networked LM controller using the RANC approach.

4.2. Design of RANC components

4.2.1. Design of VSPA

By using the TDPD and TDP, the sampling period for the coming step (k + 1) is defined as

( )
1 0 0 0 0

1 1 1 10 0 0 0

/ , / 1,2,...

max( , ) max( , ), 0.1 , is initial sampling period

k new T T new

com ca sa
k k k knew p

T T T T k T k T T

T T T T T Tt t t t

+

+ + + +

= = = =é ù é ùê ú ê ú

= + + = >=$ $ $ $ (10)
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where τ̂k +1
com, τ̂k +1

ca and τ̂k +1
sa are the delays estimated by the TDP.

4.2.2. Design of TDPD

To measure accurately time delays and packet dropouts, the TDPD employs a micro-control
unit (MCU) with proper logic. Here, PIC18F4620 MCU from microchip equipped with a 4 MHz
oscillator is suggested to be used [19]. The real-time measurement accuracy of 50μs[19] which
is suitable for this application. For each step kth, the TDPD enhances the following tasks:

• Derive the real working time using the MCU, tk.

• For a command uk sent from the controller to the plant, a time stamp is encapsulated into
this packet to detect the forward delay, τk

ca, and packet dropouts if having, pk
ca.

• For the signals sent from the sensors to the controller, they are combined with time stamps
to detect the delay, τk

sc, and packet dropouts if having, pk
sc.

• The total number of continuous packet dropouts is then determined as:

ca ca sc sc
k k k k kp S p S p= + (11)

• Depend on the time stamps to detect the computation delay at the controller side, τk
com.

4.2.3. Design of TDP

The TDP based on a so-called adaptive gray model with single-variable first-order, AGM (1,1)
to estimate the system delays in the coming step, τ̂k +1

com, τ̂k +1
ca , and τ̂k +1

sa . The AGM (1,1) prediction
procedure is as follows:

Step 1: For an object with a data sequence
{yObject(tO1), yObject(tO2), …, yObject(tOm)} (m≥4), the raw input gray sequence representing for the
object data is derived as

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }0 0 0 0
1 2 1, ,..., ; ; 2,.., 4;raw raw raw raw n k k ky y t y t y t t t t k n-= D = - = ³ (12)

Note: Eq. (12) is obtained from Eq. (14) if condition (13) satisfies; otherwise, it is obtained from
Eq. (15).

( ) [ ]
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us value of 
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( ) ( ) ( )0 ; ; 1,..., ;raw k Object i k Oiy t y t t t k n n m= = = = (14)
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where {Sai, Sbi, Sci, Sdi} (i =1, …, m−1)is a [4 × m – 1] coefficient matrix of the spline function
going through the object data set {(t1, yObject(t1)), …, (tm, yObject(tm))} .

Theorem 1: There always exist two non-negative additive factors, c1 and c2, to convert any raw
sequence (12) to a gray sequence which satisfies both the gray checking conditions.

Proof: The proof of this theorem can be found in reference [19].

Thus from (12), the gray sequence is derived using Theorem 1:

( ) ( ) ( ) ( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( )0 0 0 0 0 0
1 2 1 2, ,..., 0; ; 1,...,n k raw ky y t y t y t y t y t c c k n= > = + + = (16)

Step 2: Use the 1-AGO to obtain a new series y(1) from y(0):

( ) ( ) ( ) ( ) ( )( )1 0
1 21 1

k k
k i k raw i ki i

y t y t t y t c c t
= =

= ´D = + + ´Då å (17)

Step 3: Create the background series z(1) from y(1) by the following general algorithm:
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( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )0 0 0 0
1 1log / / log /k k ns t y t y t y t y t= (21)
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where αaveris the average weight and set as 0.5 [23, 24]; β is a momentum rate within range [0,
1] and tuned by a Lyaponov-based SISO fuzzy mechanism (LFM) in order to guarantee a robust
prediction performance (see the proof of this theory in reference [20])

Step 4: Establish the gray differential equation:

( ) ( ) ( ) ( )0 1
k ky t az t b+ = (22)

( )

( ) ( )
( ) ( )

( ) ( )
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1 0
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a b B B B Y B Y

z t y t

b
-

é ù é ù-
ê ú ê ú
ê ú ê ú-é ù= = = =ê ú ê úë û
ê ú ê ú
ê ú ê ú-ë û ë û

M M M
(23)

Step 5: Setup the AGM (1,1) prediction as follows:

( ) ( ) ( ) ( )( ) ( )( )
( ) ( )
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a
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-

=

+ - D- D
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+ D + DÕ (24)

Step 6: Perform the predicted value of y at step (n + p)th:

( ) ( )
( ) ( )
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( )( )
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a

a a

+
- -

+
=

+ - D- D
= - -

+ D + DÕ (25)

where p is the step size of the grey predictor. In this case, p = 1.

4.2.4. Design of QFT controller

Denotes the transfer functions of the plant and the controller in the NCS as Gp(s) and Gc(s),
respectively. The closed-loop transfer function from input R(s) to output Y(s) including delays
can be expressed as

( ) ( )
( )

( ) ( ) ( )

( ) ( )
NCS

1

com ca s
c p

s
c p

G s G s eY s
T s

R s G s G s e

t t

t

- +

-= =
+

(26)

And the open-loop transfer function is then derived as

( ) ( ) ( )NCS s
c pL s G s G s e t-= (27)
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Next, the procedure to design this robust controller can be expressed as follows [25, 26]:

Step 1: The QFT controller should be designed on how the tracking signal meets the acceptable
variation range with respect to a reference (for each value of ?i of interest)

( ) ( ) ( )NCS NCS NCS
l i i u iT j T j T jw w w£ £ (28)

Step 2: Establish bounds for robust stability of the closed-loop system

( )NCS 1.4, 0T j Mw w£ = ³ (29)

Step 3: A sensitivity function is defined as

( ) ( )( ) 1NCS1 , 0S j L jw w w
-

= + ³ (30)

Establish bounds for noise and disturbance rejection of the closed-loop system

( ) ( ) ( )1
dBmax

1 , 1 0dB , 0D DL j M M Mw w w
-

+ £ > > ³ (31)

Step 4: Define a working frequency range of the NCS.

Step 5: Bases on the nominal plant to design the controller, GQFT(s), with initial poles and zeros.

Step 6: Use the loop-shaping method to refine the controller designed in Step 5. The principle
to guarantee a robust control performance is the loop gain value is always on or above the
boundaries defined by constraints (28)–(31) and, is to the right or on the robustness forbidden
region for any critical frequency within the range defined in Step 4.

Step 7: The controller resulted from Step 6 could ensure that the variation in magnitude of
TNCS(s) (26) is satisfied at the desired constraints. However, it does not guarantee that the
magnitude of TNCS(s) actually lies between the given bounds T l

NCS( jωi) and Tu
NCS( jωi)for the

whole frequency range. Therefore, a pre-filter FQFT(s) is necessary to be designed and placed
in front of the controller to compensate for this problem.

4.2.5. Design of RSFC

The RSFC is designed to deal with the NCS in cases that the delays are greater than the
threshold values defined in Eq. (9), and/or there exists packet dropouts. To simplify the
analysis, it can be assumed that rk = 0 (Figure 9) during the system modeling and RSFC design.
The system discrete form for step (k + 1)th can be expressed through the following three cases:
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Case 1: There is no packet loss in network transmission during both current period and

previous period:

0 0 1
1 1 1k k k k k k k kx A x B u B u Ed+ - -= + + + (32)

where Ak
0 = e AT k , Bk

0 = ∫0
T k−τk

e At Bdt , Bk
1 = ∫T k−τk

T k
e At Bdt .

Case 2: There exists i packet dropouts up to step kth:

0 2
1k k k k i k i kx A x B u Ed+ - -= + + (33)

where Bk
2 = ∫0

T k
e At Bdt .

Case 3: There were pd continuous packet dropouts just passed up to step (k − 1)th:

0 0 1
1 11 dd

k k k k p kk k k px A x B u B u Ed+ - -- -= + + + (34)

Since, the general discrete form of the system can be established as

12
0 0 0

1
1 1

kp
j j

k k k k i kk k k k i k i
j i

x A x B u B u Edd d
+

+ -- -
= =

= + + +åå (35)

where δ lis an activation function:

1, If subsystem isactivated, {0,1,2}
0, Otherwise.

l l l
d

=ì
= í
î

(36)

In case of no delays, the control rule is designed as

k ku Kx= (37)

Then, Eq. (35) can be re-written in the following form:
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1 2
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æ ö
ç ÷= + + +ç ÷
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è ø
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or

1k k k E kX X d+ = F +F (39)

where X k = xk
T xk−1

T ⋯ xk− p̄k +1

T T , Φk =
Ak

* B1k
* ⋯ B( p̄k +1−1)k

* B p̄k +1k
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* 0 0 0 *

1

0 0 , , .T j j
E k ikk k k k i k i

j

E A A B K B K Bd d- -
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Theorem 2: For given constants ξi
j >0, if there exist positive definite matrices Pi

* >0, K1 >0, K2 >0,

i∈ 0, 1, …, p̄k +1 , j = {0, 1, 2} such that following inequalities:

2 * * *
1 2

* * * * *
1 2 1 1

0
T T T

i i A B
T T

A B i

P K K

K K K K P

x -é ùF + F
ê ú >
ê úF +F + -ë û

(40)

hold, then the NCS (39) is exponentially stable with a positive decay rate by using the RSFC

control gain derived by

RSFC 2 1
TK K K -= (41)

with K1
* =diag {K1} , K2

* =diag {K2} , KRSFC
* =diag {KRSFC}

1 1 1 1

2 2
0 0 0

1 1
1 1

0 0
, .

0
0 0

k k k k

j j j j
k k k k p k p k p k pA B j j

A B B B
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d d d
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é ùé ù
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ê úë û

å åL L

Proof: The proof of this theorem can be found in reference [20].
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4.3. An illustrative example

4.3.1. Networked control system setup

To validate the RANC applicability, a simple networked control system was set up based on
the configuration in Figure 9. Here, the main controller was built in an experimental PC
equipped with the MCU (presented in Section 4.2.2) The network module includes one coor‐
dinator and one router employed the ZigBee protocol [19]. The multifunction card was used
to perform the communications with the TDPD module and the network. The control objec‐
tive is speed tracking control of a servomotor system via the setup network. Here, the servo‐
motor system was RE-max series manufactured by Maxon Corporation. The transfer
function from the input to output of this system can be expressed as [20]

( ) 2

32300
0.001 20.93 493.4pG s

s s
=

+ +
(42)

To evaluate the capability of the proposed RANC, a comparative study of the RANC with
three existing approaches, a QFT-based robust controller (QFTRC), a static state feedback
controller (SSFC), and a hybrid QFT–SSFC as shown in Table 3, has been investigated. To
make control challenges, disturbance loads and computation delays were randomly generat‐
ed. Here, the loads were created by putting the system into a varied magnetic field which
affected on the motor shaft. Meanwhile, an arbitrary matrix-based complex calculating pro‐
cedure representing a complex application was added to the controller at the PC side.

Control
method

Main control modules Functions

QFT SFC SSW-based
TDPD–TDP

VSPA
based TDP

Delay
compensation

Packet loss compensation

Fixed
gain

Dynamic
gain

QFTRC √ √

SSFC √ √ √

QFT–SSFC √ √ √ √ √

RANC √ √ √ √ √ √

Table 3. Specifications of the compared controllers.

Based on Section 4.2.4, QFT delay bounds were defined as
τ̄QFT

com =0.02s, τ̄QFT
ca =0.03, τ̄QFT

sc =0.03and, the QFT controller was designed as
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( )

( ) ( )

2

8 3 2

30.5387 56684.6 3328880
10 0.002852 180.2 1260000
426.65 400

QFT

QFT

s sG s
s s s

F s s

-

+ +
=

+ + +
= +

(43)

Based on Section 4.2.5 and by setting the initial bounds for the total delay and packet dropouts
as: τ̄0 =0.1s > τ̄QFT , p̄0 =2; the initial RSFC gain was computed as KRSFC

0 = 0.3796 0.2642 .

The initial sampling period of the RANC was selected as 10 ms, while that of the other
controllers must be fixed to 0.15 s to cover all the delays.

4.3.2. Real-time experiments

In this section, real-time speed tracking of a servomotor system over the setup network has
been investigated in which the reference speed was selected as 10 rad/s. The experiments using
the comparative controllers were carried out and, consequently, the results were displaced in
Figure 10. An analysis on the control performances using four evaluation criteria, PO (percent
overshoot), ST (settling time), SSE (steady state error) and MSE (mean square error), is then
performed as demonstrated in Table 4.

Controller Step responses

PO [%] ST [s] SSE [%] MSE [rad/s]2

QFTRC 2.6 1.0 13.9 1.23

SSFC 8.67 2.1 6.18 1.87

QFT–SSFC 2.07 1.35 5.88 1.35

RANC 0.2 0.8 1.58 0.63

Table 4. Comparison of NCS performances using different controllers.

Figure 10. Step speed performances using different controllers.
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From Figure 10 and Table 4, it is clear that the worst-case performance was with the QFTRC.
It is because the QFTRC was designed for an NCS in which the delays are bounded by
constraint (9) and there is no packet dropout. Hence when facing with the networked servo‐
motor including both the large delays and packet dropouts, the controller could not guarantee
the robust tracking (SSE was 13.9%). In case of using the SSFC for which the control gain was
designed for the worst network conditions (large delays and highest number of continuous
packet dropouts), SSE was remarkably reduced to 6.18%. However due to this fixed control
gain use, the system response was much slower than that of the QFTRC. Additionally, due to
lack of disturbance rejection capability, the SSFC could not ensure a smooth tracking (PO =
8.67% and ST = 2.1s). The QFT-–SSFC, by taking advantages of both the QFT and SSFC, could
improve the tracking result. Nonetheless, the QFT–SSFC with fixed control gains and fixed
sampling period restricted the system adaptability to the sharp variations of network problems
and disturbances (SSE was slightly reduced to 5.88%).

The best tracking result was achieved by using the RANC (see Figure 10 and Table 4). It comes
as no surprise because the RANC possesses all the advantages of the QFT and state feedback
designs and, the high adaptability to the system changes by using the adaptive control gains
and adaptive sampling period. Figure 11 demonstrates the delay and packet dropout detection
and prediction results of the TDPD and TDP modules, respectively. During the operation,
these were supported by the VSPA and hybrid QFT–RSFC modules to regulate properly the
sampling period and control gains.

Figure 11. Step speed case: performances of TDPD and TDP.

5. Conclusions

In summary, an advanced bilateral teleoperation NCS has been introduced. In addition, the
two important issues in designing the BTNCS system, FSFC and RANC, have been clearly
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addressed. The LVQNN-based FSFC shows the safe and cost-effective solution in controlling
the FRM while the RANC-based LM controller is a feasible choice to drive the slave manipu‐
lator over the network with delay and packet loss problems.

The effectiveness of the LVQNN classifier as well as the RANC controller has been confirmed
through the two case studies and analysis. One of our future research topics would be the full
design of the proposed BTNCS to investigate the applicability of this method in a practical
application such as remote construction equipment.
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