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Abstract

The  present  chapter  addresses  the  problems  of  gas  turbine  gas  path  diagnostics
solved using artificial neural networks. As a very complex and expensive mechanical
system, a gas turbine should be effectively monitored and diagnosed. Being universal
and  powerful  approximation  and  classification  techniques,  neural  networks  have
become  widespread  in  gas  turbine  health  monitoring  over  the  past  few  years.
Applications  of  such  networks  as  a  multilayer  perceptron,  radial  basis  network,
probabilistic neural network, and support vector network were reported. However,
there is a lack of manuals that summarize neural network applications for gas turbine
diagnosis.

A monitoring system comprises many elements, and many factors influence the final
diagnostic  accuracy.  The  present  chapter  generalizes  our  investigations  that  are
devoted  to  the  enhancement  of  this  system by  choosing  the  best  option  for  each
element.  In  these  investigations,  a  diagnostic  process  is  simulated on the  basis  of
neural networks, and we focus on reaching the highest accuracy by choosing the best
network and its optimal tuning to the issue to solve. Thus, helping with enhancement
of a whole monitoring system, neural networks themselves are objects of investigation
and optimization. As a result of the conducted investigations, the chapter provides
the  recommendations  on  choosing  and  tailoring  the  network  for  a  particular
diagnostic task.

Keywords: gas turbines, gas path diagnosis, fault classification, pattern recognition,
artificial neural networks

1. Introduction

As complex and expensive mechanical systems, gas turbine engines benefit a lot from the
application of advanced diagnostic technologies, and the use of monitoring systems has
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become a standard practice. To perform effective analysis, there are different diagnostic
approaches that cover all gas turbine subsystems. The diagnostic algorithms based on
measured gas path variables are considered as principal and pretty complex. These variables
(air and gas pressures and temperatures, rotation speeds, fuel consumption, etc.) carry
valuable information about an engine’s health condition and allow to detect and identify
different engine abrupt faults and deterioration mechanisms (for instance, foreign object
damage, fouling, erosion, tip ribs, and seal wear). Malfunctions of measurement and control
systems can be diagnosed as well. Thousands of technical publications devoting to the gas path
diagnosis can be found. They can be arranged according to input information and mathemat‐
ical models applied.

Although advancement of instrumentation and computer science has enabled extensive field
data collection, the data with gas turbine faults are still infrequent because real faults rarely
appear. Some intensive and practically permanent deterioration mechanisms, for example,
compressor fouling, allow their describing on the basis of real data. However, to describe the
variety of all possible faults, mathematical models are widely used. These models and the
diagnostic methods that use them fall into two main categories: physics‐based and data‐driven.

A thermodynamic engine model is a representative physics‐based model. This nonlinear
model is based on thermodynamic relations between gas path variables. It also employs mass,
energy, and momentum conservation laws. Such a sophisticated model has been used in gas
turbine diagnostics since the work of Saravanamuttoo H.I.H. (see, e.g., [1]). The model allows
to simulate the gas path variables for an engine baseline (healthy engine performance) and for
different faults embedded into the model through special internal coefficients called fault
parameters. Applying system identification methods to the thermodynamic model, an inverse
problem is solved: Unknown fault parameters are estimated using measured gas path
variables. During the identification, such parameters are found that minimize the difference
between the model variables and the measured ones. Besides the better model accuracy, the
simplification of the diagnosing process is reached because the fault parameter estimates
contain information of current engine health. The diagnostic algorithms based on the model
identification constitute one of two main approaches in gas turbine diagnostics (see, for
instance, [1–4]).

The second approach uses a pattern recognition theory. Since model inaccuracy and measure‐
ment errors impede a correct diagnosis, gas path fault localization can be characterized as a
challenging recognition issue. Numerous applications of recognition tools in gas path diag‐
nostics are known, for instance, genetic algorithms [5], correspondence and discrimination
analysis [6], k‐nearest neighbor [7], and Bayesian approach [8]. However, the most widespread
techniques are artificial neural networks (ANNs). The ANNs applications are not limited by
the fault recognition, they are also applied or can be applied at other diagnostic stages: feature
extraction, fault detection, and fault prediction.

At the feature extraction stage, differences (a.k.a. deviations) between actual gas path meas‐
urements and an engine baseline are determined because they are by far better indicators of
engine health than the measurements themselves are. To build the necessary baseline model,
the multilayer perceptron (MLP), also called a back‐propagation network, is usually em‐
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ployed [9, 10]. To filter noise, an auto‐associative configuration of the perceptron is sometimes
applied to the measurements [11].

At the fault localization stage, fault classes can be presented by sets of the deviations (patterns)
induced by the corresponding faults. Such a pattern‐based classification allows to apply the
ANNs as recognition techniques, and multiple applications of the MLP (see, e.g., [4, 5]) as well
as the radial basis network (RBN) [5], the probabilistic neural network (PNN) [12, 13], and
support vector machines (SVM) a.k.a. Support vector network (SVN) [7, 12] were reported. In
spite of many publications on gas turbine fault recognition, comparative studies, which allow
to choose the best technique [4, 5, 7, 12], are still insufficient. They do not cover all of the used
techniques and often provide differing recommendations.

The fault detection stage can also be presented as a pattern recognition problem with two
classes to recognize: a class of healthy engines and a class of faulty engines. If the classification
for the fault localization stage is available, it does not seem a challenge to use the patterns of
this classification for building the fault detection classification. However, the studies applying
recognition techniques, in particular the ANNs, for gas turbine fault detection are absent so
far. Instead, the detection problem is solved by tolerance monitoring [14, 15].

The fault prediction stage is less investigated than the previous stages, and only few ANNs
applications are known. Among them, it is worth to mention book [16] analyzing the ways to
predict gas turbine faults and study [17], comparing a recurrent neural network and a
nonlinear auto‐regressive neural network. We can see that in total for all stages, the perceptron
is by far the highest demand network. It is used for filtering the measurements, approximating
the engine baseline, and recognizing the faults.

Thus, a brief observation of the neural networks applied for gas turbine diagnosis has revealed
that the multiple known cases of their use need better generalization and recommendations to
choose the best network. The areas of promising ANNs application were also found. In the
present chapter, we generalize our investigations aimed at the optimization of a total diagnostic
process through the enhancement of each of its elements. On the one hand, the neural networks
help with process realization being its critical elements. On the other hand, the networks
themselves are objects of analysis: For known applications, they are compared to choose the
best network, and one new application is proposed. During the investigations, the rules of
proper network usage have also been established.

The rest of the chapter describes these investigations and is structured as follows: description
of the networks used (Section 2), network‐based diagnostic approach (Section 3), diagnostic
process optimization (Section 4), feature extraction stage optimization (Section 5), fault
detection stage optimization (Section 6), and fault localization stage optimization (Section 7).

2. Artificial neural networks

The four networks mentioned in the introduction have been chosen for investigations: MLP,
RBN, PNN, and SVN. The PNN is a realization of the Parzon Windows and has the important
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property of probabilistic outputs, that is, the gas turbine faults are recognized on the basis of
their confidence probabilities. These probabilities are computed through numerical estimates
of probability density of fault patterns. For the purpose of comparison, a similar recognition
tool, the K‐nearest neighbor (K‐NN) method has been involved into the investigations.
Foundations of the chosen techniques can be found in many books on classification theory, for
example, in [18, 19, 20]. The next subsections include only a brief description of techniques
required to better understand the present chapter.

2.1. Multilayer perceptron

The perceptron can solve either approximation or classification issues. The scheme shown in
Figure 1 illustrates structure and operation of the MLP [18, 19]. We can see that the perceptron
presents a feed‐forward neural network in which no feedback is observed, and all signals go
only from the input to the output.

Figure 1. Multilayer perceptron.

To determine a hidden layer input vector, the product of a weight matrix W1 and a network

input vector (pattern) �  is summed with a bias vector �1. A hidden layer transfer function f1

transforms this vector in an output vector �1. A network output �2 is computed similarly

considering the vector � 1  as an input. In this way, perceptron operation can be expressed by� = �2 = �2 �2�1(�1� + �1) + �2 . When we apply the MLP to classify patterns, elements of

the vector �2 show how close the pattern �  is to the corresponding classes. The nearest class

is chosen as a class to which the pattern belongs, and such classifying can be considered as
deterministic.
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To find unknown matrixes �1 and �2 and vectors �1 and �2, a back‐propagation learning

algorithm distributes a network output error on these unknown quantities. In every learning
iteration (epoch), they vary in the direction of error reduction. The iterations continue unless
the minimum error has been reached. This algorithm requires differentiable transfer functions,
and a sigmoid type is commonly used.

2.2. Radial basis network

Figure 2 illustrates operation of an RBN. It includes two layers: a hidden radial basis layer and
an output linear layer. Operation of radial basis neurons is different from the perceptron
neurons operation [18, 19, 20]. The neuron's input n is formed as the Euclidean norm  of a
difference between a pattern vector �  and a weight vector � , multiplied by a scalar b (bias). In
this way, � = � − � �. Using this input, a radial basis transfer function determines an output� = exp( − �2). Where there is no distance between the vectors, the function has the maxi‐
mum value a=1, and the function decreases when the distance increases. The bias b allows
changing the neuron sensitivity. The output layer transforms the radial basis output � 1 to a

network output � 2. Operation of this layer does not differ from the operation of a perceptron

layer with a linear transfer function. The radial basis layer usually needs more neurons than
a comparable perceptron hidden layer because the radial basis neuron covers a smaller region
compared with the sigmoid neuron.

Figure 2. Radial basis network.

2.3. Probabilistic neural networks

The PNN is a specific variation of radial basis network [18]. It is used to solve classification
problems. Figure 3 presents the scheme of this network and helps to understand its operation.
Like the RBN, the probabilistic neural network has two layers.
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Figure 3. Probabilistic neural network.

The hidden layer is formed and operates just like the same layer of the RBN. It is built from
learning patterns united in a matrix �1. Elements of an output vector � 1 indicate how close

the input pattern is to the learning patterns.

The output or classification layer differs from the RBN output layer. Each class has its output
neuron that sums the radial basis outputs �� corresponding to the class patterns. To this end,

a weight matrix W2 formed by 0‐ and 1‐elements is employed. A vector �2� 1 contains

probabilities of all classes. A transfer function f2 finally chooses the class with the largest
probability. In this way, the probabilistic network classifies input patterns using a probabilistic
measure that is more realistic than the perceptron classifying. The PNN is the most used
realization of a Parzen Windows (PW) [18], a nonparametric method that estimates probability

density in a given point (pattern) �  using the nearby learning patterns.

2.4. k-Nearest neighbors

Like the Parzen Windows (PNNs), the k‐nearest neighbors is a nonparametric technique [18].
For a given class and point (pattern) � , it counts the number k of class patterns in a nearby
region of volume V and estimates the necessary probability density in accordance with a simple
formula

k nρ
V

= (1)

where n stands for a total number of class patterns.

To ensure the convergence of the estimate ρ, we need to satisfy the following requirements
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lim 0 lim lim 0
n n n
 V ;  k ;  k n . 
®¥ ®¥ ®¥
= = ¥ = (2)

To this end, we increase n and can let V be proportional to 1 �.

In contrast to the Parzen Window method that fixes the volume V and looks for the number
k, the K‐nearest neighbor method specifies k and seeks for the sphere of volume V. Since the
PW uses constant window size, it may not capture patterns when the actual density is low. The
density estimate will be equal to zero, and the classification decision confidence will be
underestimated. A solution to this problem is to use the window that depends on learning
data. Using this principle, the K‐NN increases a spherical window individually for each
class until k patterns (nearest neighbors) fall into the window. A sphere radius will change
class by class. The greater the radius is, the lower probability density estimate will be according
to Eq. (1).

2.5. Support vector network

Any hyperplane can be written in the space �� as the set of points �  satisfying:

0
T

p  w b+ =
ur ur

(3)

where �  is a vector perpendicular to the hyperplane and b is the bias. Let us present learning

data of two classes as pattern vectors � � ∈ ��, � = 1, � and their corresponding labels�� ∈ ( − 1, 1), indicating the class to which the pattern �  belongs.

If the learning data are linearly separable, two parallel hyperplanes without points between

them can be built to divide the data. The hyperplanes can be given by ��� �+ � = 1 and��� �+ � = − 1. The margin is defined to be the distance between them and is equal to 2/ �
(Figure 4). Intuitively, it measures how good the separation between the two classes is. The
points divided in this manner satisfy the following constraint:

y ( ) 1
T

i iw  p b+ ³
ur ur

(4)
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Figure 4. SVN: hyperplanes and separation margin.

The objective of the SVN is to find the hyperplanes that produce the maximal margin or
minimum vector �  [19, 20]. In this way, SVN needs to solve the following primal optimization
problem:

1min
2

T
w w 
ur ur

(5)

subject to ��(��� �+ �) ≥ 1, for � = 1,…,�
Introducing the Karush‐Kuhn‐Tucker (KKT) multipliers �� ≥ 0, objective function (5) can be

transformed to:

, 1

1minmax (y ( ) 1)
2

NT T
i i iw b i

w w w  p b
a

a
-

- + -å
ur ur ur ur

(6)

As can be seen, expression (6) is a function of � , b, and α. This function can be transformed
into the dual form:

1 1 1

1min
2

N N NT
i j i j ii j

i j i
L y y p  p

a
a a a

= = =

= -å å å
ur ur

(7)
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subject to α� ≥ 0 and ∑i=1N αiyi = 0 for i = 1,…, N
It can be also expressed as:

1min 1
2

T
TL Q

a
a a a
® ® ®

= - (8)

where Q is the matrix of quadratic coefficients. This expression is minimized now only as a
function of � , and the solution is found by Quadratic Programming.

In SVM classification problems, a complete separation is not always possible, and a flexible
margin is suggested in reference [21] that allows misclassification errors while tries to maxi‐
mize the distance between the nearest fully separable points. The other way to split not
separable classes is to use nonlinear functions as proposed in reference [22]. Among them,
radial basis functions are recommended [23].

SVMs were originally intended for binary models; however, they can now address multi‐class
problems using the One‐Versus‐All and One‐Versus‐One strategies.

A gas turbine diagnostic process using the techniques above described is simulated according
to the following approach.

3. Neural networks-based diagnostic approach

The approach described corresponds to the diagnostic stages of feature extraction and fault
localization and embraces the steps of fault simulation, feature extraction, fault classification
formation, making a recognition decision, and recognition accuracy estimation.

3.1. Fault simulation

Within the scope of this chapter, faults of engine components (compressor, turbine, combustor,
etc.) are simulated by means of a nonlinear gas turbine thermodynamic model

Y ( U, )
® ® ®

Q (9)

The model determines monitored variables Y  as a function of steady‐state operating conditionsU  and engine health parameters Θ = Θ0+ ΔΘ . Each component is presented in the model by
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its performance map. Nominal values Θ0 correspond to a healthy engine, whereas fault

parameters ΔΘ  imitate fault influence by shifting the component maps.

3.2. Feature extraction

Although gas turbine monitored variables are affected by engine deterioration, the influence
of the operating conditions is much more significant. To extract diagnostic information from
raw measured data, a deviation (fault feature) is computed for each monitored variable as a
difference between the actual and baseline values. With the thermodynamic model, the
deviations Zi i=1,m induced by the fault parameters are calculated for all m monitored variables
according to the following expression

Zi = Yi U,Θ0 + ΔΘ − Y0i U,Θ0Y0i U,Θ0 + εi /ai (10)

A random error εi makes the deviation more realistic. A parameter ai normalizes the deviation

errors, resulting that they will be localized within the interval [−1, 1] for all monitored variables.
Such normalization simplifies fault class description.

Deviations of the monitored variables united in an (m×1) deviation vector Z  (feature vector)

form a diagnostic space. Every vector Z  presents a point in this space and is a pattern to be
recognized.

3.3. Fault classification formation

Numerous gas turbine faults are divided into a limited number q of classes �1, �2, ..., ��. In the

present chapter, each class corresponds to varying severity faults of one engine component.
The class is described by component’s fault parameters ΔΘj. Two types of fault classes are

considered. The variation of one fault parameter results in a single fault class, while inde-
pendent variation of two parameters of one gas turbine component allows to form a class of
multiple faults.

To form one class, many patterns are computed by expression (10). The required parametersΔΘj and εi are randomly generated using the uniform and Gaussian distributions correspond-

ingly. To ensure high computational precision, each class is typically composed from 1000
patterns. A learning set Z1 uniting patterns of all classes presents a whole pattern-based fault
classification. Figure 5 illustrates such a classification by presenting four single fault classes in
the diagnostic space of three deviations.
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Figure 5. Pattern-based fault classification.

3.4. Making a fault recognition decision

In addition to the given (observed) pattern Z  and the constructed fault classification Z1, a
classification technique (one of the chosen networks) is an integral part of a whole diagnostic
process. To apply and test the classification techniques, a validation set Z2 is also created in
the same way as set Z1. The difference between the sets consists in other random numbers that
are generated within the same distributions.

3.5. Recognition accuracy estimation

It is of practical interest to know recognition accuracy averaged for each fault class and a whole
engine. To this end, the classification technique is consequently applied to the patterns of set
Z2 producing diagnoses dl. Since true fault classes Dj are also known, probabilities of correct

diagnosis (true positive rates) P(d /j Dj  can be calculated for all classes resulting in a probability

vector P . A mean number P__ of these probabilities characterizes accuracy of engine diagnosis

by the applied technique. In this chapter, the probability P__ is employed as a criterion to compare
the techniques described in Section 2.

4. Optimization of the neural networks-based diagnostic process

The structure and efficiency of a diagnostic algorithm depend on many factors and the options
that can be chosen for each factor. The classification of these factors and options is given in
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Figure 6 , where the factors are shown in the first line. On the basis of accumulated knowledge
and experience, every research center (even a single researcher) chooses an appropriate option
for each factor and develops its own diagnostic algorithm. To be optimal, this algorithm should
take into account all peculiarities of a given engine, its application, and other diagnostic
conditions. Thus, it is not likely that the algorithm be optimal for other engines and applica‐
tions. As a result, every monitoring system needs an appropriate diagnostic algorithm.

Figure 6. Factors that influence structure and efficiency of gas path diagnostic algorithms.

Thus, comparing complete diagnostic algorithms does not seem to be useful. Instead, com‐
paring options for each above factor and choosing the best option are proposed. When options
of one factor are compared, the other factors (comparison conditions) are fixed forming a
comparison case. To draw sound conclusions about the best option, the comparison should be
repeated for many comparison cases. To form these cases, each comparison condition varies
independently according to the theory of the design of experiments. Since every new condition
drastically increases the volume of comparative calculations, the most significant conditions
are considered first.

To perform the comparative calculations, a test procedure based on the above‐described
approach has been developed in Matlab (MathWorks, Inc.). For each compared option, the
procedure executes numerous cycles of gas turbine fault diagnosis by the chosen technique
and finally computes a diagnosis reliability indicator, which is used as a comparison criterion.

Three gas turbine engines (Engine 1, Engine 2, and Engine 3) of different construction and
application have been chosen as test cases. Engine 1 and Engine 2 are free turbine power plants.
Engine 1 is a natural gas compressor driver; it is presented in the investigations by its ther‐
modynamic model and field data recorded. Engine 2 is intended for electricity production and
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is given by field data. Engine 3 is a three‐spool turbofan for a transport aircraft; its thermody‐
namic model is used. The field data called hourly snapshots present filtered and averaged
steady‐state values recorded every hour during about one year of operation of Engine 1 and
Engine 2. Since the data include periods of compressor fouling and points of washing, they
are very suitable for testing diagnostic techniques.

Using the network‐based approach described in Section 3 and the information about the test
case engines, many investigations have been conducted to improve the diagnostic process at
the stages of feature extraction, fault detection, and fault localization. The results achieved for
the feature extraction stage are described in the next section.

5. Feature extraction stage optimization

As stated in Section 3, the deviations are useful diagnostic features. Although the thermody‐
namic model can be used as a baseline model for computing the deviations, it is too complex
for real monitoring systems and has intrinsic inaccuracy. As mentioned in the introduction, to
build a simple and fast data‐driven baseline model, only neural networks, in particular the
MLP, are applied. On the other hand, in the previous studies we successfully used a polynomial
type baseline model. It was therefore decided [24] to verify whether the application of such a
powerful approximator as the MLP instead of polynomials yields higher adequacy of the
baseline model and better quality of the corresponding deviations.

Given a measured value ��* and data‐driven baseline model � 0(� ), the deviation is written as

*
* 0

0

( )

( )

i i
i

i

Y Y U
Y

Y U
d

®

®

-
= (11)

For one monitored variable, a complete second‐order polynomial function of four arguments
(operating conditions) is written as

0 0 1 1 2 2 3 3 4 4 5 1 2 6 1 3 7 1 4
2 2 2 2

8 2 3 9 2 4 10 3 4 11 1 12 2 13 3 14 4

( )Y U a a u a u a u a u a u u a u u a u u

a u u a u u a u u a u a u a u a u

®
= + + + + + + + +

+ + + + + +
(12)

For all m monitored variables and measurements at n operating points, equation (12) is
transformed to a linear system �=�� with matrixes Y (n×m) and V (n×k) formed from these
data, where k=15 is number of coefficients. To enhance coefficient estimates (matrix A), great
volume of input data (n>>k) is involved and the least‐squares method is applied.

As to the perceptron, its typical input is formed by four operating conditions, and the output
consists of seven monitored variables. Hidden layer size determines a network’s capability to
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approximate complex functions and varies in calculations. As a result of MLP tuning, we chose
12 nodes at this layer. Thus, the perceptron structure is written as 4×12×7. Since the MLP has
tan‐sigmoid transfer functions, and the output varies within the interval (−1, 1), all monitored
quantities are normalized.

Many cases of comparison on the simulated and real data of Engines 1 and 2 were analyzed.
The MLP was sometimes more accurate at the learning step. At the validation step, the
deviations computed with the MLP had a little worse accuracy for Engine 1. For Engine 2, the
best MLP validation results are illustrated in Figure 7 . As can be seen here, both polynomial
deviations dTtp and network deviations dTtn reflect the fouling and washing effects equally
well. However, in many other cases the polynomials outperformed. Why does the network
approximate well a learning set and frequently fail on a validation set? The answer seems to
be evident because of an overlearning (overfitting) effect. Due to a greater flexibility, the
network begins to follow data peculiarities induced by measurement errors in the learning set
and describes worse a gas turbine baseline performance for the validation set.

Figure 7. EGT deviations computed on the Engine 2 real data validation set (dTtn—network‐based deviation; dTtp—
polynomial‐based deviation).

Although the MLP as a powerful approximation technique promised better gas turbine
performance description, the results of the comparison have been somewhat surprising. No
manifestations of network superiority were detected. When comparing these techniques, it is
also necessary to take into consideration that an MLP learning procedure is more complex
because it is numerical in contrast to an analytical solution for polynomials. Thus, a polynomial
baseline model can be successfully used in real monitoring systems along with neural
networks. At least, it seems to be true for simple cycle gas turbines with gradually changed
performance, like the turbines considered in this chapter.

6. Fault detection stage optimization

As mentioned in the Introduction, the fault detection is actually based on tolerances (thresh‐
olds). However, it seems reasonable to present it as a pattern recognition problem like we do
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at the fault recognition stage. Classification �1, �2, ..., �� created for the purpose of fault

localization and presented in Figure 5 corresponds to a hypothetical fleet of engines with
different faults of variable severity. To form the classification for fault detection, we can
reasonably accept that the engine fleet and the distributions of faults are the same. Paper [25]
explains how to use patterns of the existing classification �1, �2, ..., �� for two new classes of

healthy and faulty engines. The boundary between these classes corresponds to maximal error
of the normalized deviations and is determined as a sphere of radius R = 1. The patterns, for
which a vector of true deviations (without errors) is situated inside the sphere, form the healthy
engine class; the others create the faulty engine class. It is clear that the patterns (deviation
vectors with noise) of these two classes are partly intersected, resulting in α‐ and β‐errors
during the detection. Figure 8 illustrates the new classification; the intersection is clearly seen.
Two variations of the new classification based on single and multiple original classes have been
prepared.

Figure 8. Patterns‐based classification for monitoring.

Since new patterns‐based classification (learning and testing sets) is ready, we can use any
recognition technique to perform fault detection, and the MLP has been selected once more.
It conserved sigmoid transfer functions and the hidden layer size of 12. Given that a threshold‐
based approach, which classifies pattern vectors according to their length, is traditionally used
in fault detection, the algorithm with a distance measure (r‐criterion) was also developed and
compared with the MLP. Since the consequences of α‐ and β‐errors are quite different (α‐error

is always considered as more dangerous), reduced losses � = ��+ ������ were introduced to
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quantify monitoring effectiveness, where �� and �� are probabilities of α‐ and β‐errors, �� and

�� denote the corresponding losses, and 
����are equal to 10.

Figure 9 shows the plots of the reduced losses versus the radius r. For the MLP the change of
r was simulated by the corresponding change of the boundary radius R during pattern
separation in the learning set. It can be seen that the introduction of an additional threshold
r, which is different from the boundary, reduces monitoring errors for both techniques. The
best results correspond to the minimums of the curves. By comparing them, we can conclude
that the network (MLP) provides better results for single classes, and the techniques are equal
for multiple classes. In general for all comparison cases, the MLP slightly outperforms the r‐
criterion‐based technique. Thus, the perceptron can be successfully applied for real gas turbine
fault detection.

Figure 9. Reduced losses due to monitoring errors versus the threshold radius r.

7. Fault localization stage optimization

To draw sound conclusions about the ANN applicability for gas turbine fault localization, the
comparison of the chosen networks was repeated for many comparison cases formed by
independent variation of the main influencing factors: engines, operating modes, simulated
or real information, and class types. In this way not only the best network is chosen but also
the influence of these factors on diagnosis results is determined helping with the optimization
of a total diagnostic process. For the purpose of correct comparison, the networks were tailored
to a concrete task to solve.
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7.1. Neural network tuning

We started to use ANNs applications and their tuning with the MLP [26]. The numbers of
monitored variables and fault classes unambiguously determine the size of input and output
layers of this network. As to the hidden layer, the number of 12 nodes was estimated as optimal

using the probability P__ as a criterion. To choose a proper back‐propagation algorithm, 12
variations were compared by accuracy and execution time. The resilient back‐propagation
(“rp”‐algorithm) provided the best results and has been chosen. It was also found that 200
batch mode training epochs are sufficient for good learning; however, a learning stop by an
Early Stopping Option may be useful as well.

Figure 10 illustrates other example of the tuning. Averaged probabilities computed for the
PNN are plotted here against spread b, unique PNN tuning parameter. To determine this

probability that has high precision of about ±0.001, calculations of P__ were repeated 100 times
for each spread value, each time with a different seed (quantity that determines a consequence
of random numbers), and an average value was computed. Such computations to find the best
value b were repeated for two operating modes of Engine 1 and for two fault class types. It can
be seen in the figure that the highest values of probability ��� does not depend on operating

mode. These values are b=0.35 for the single fault type and b=0.40 for the multiple one.

Figure 10. Probabilities versus spread parameter.

For all networks, the value 1000 simulated patterns per fault class has been selected as tradeoff

between the required computer resources and the accuracy of the probabilities P__ and ���.

It is worth mentioning that the networks tuning is very time consuming. A tuning time can
occupy up to 80% of a total investigation time, leaving 20% for the calculations related to final
learning and validation of the networks.

7.2. Neural network comparison

The comparison of three tuned networks: MLP, RBN, and PNN, was firstly performed in
reference [27], then the SVN was also evaluated. The variations of comparison conditions
embraced independent changes of two engines, two operating modes, and two classification
variations. The resulting probabilities ��� are given in Table 1. We can see that all networks

are practically equal in accuracy for all comparison cases.
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Paper [28] provides some additional results extending the comparison on the K‐NN technique.
The data given in Table 2 confirm the conclusion about equal performances, now for five
different techniques.

Class type ANN Engine 1 Engine 3

Mode 1 Mode 2 Mode 1 Mode 2

Single MLP

RBN

PNN

SVN

0.8184

0.8186

0.8134

0.8190

0.8059

0.8058

0.8004

0.8064

0.7338

0.7349

0.7287

‐

0.7470

0.7485

0.7456

‐

Multiple MLP

RBN

PNN

SVN

0.8765

0.8783

0.8739

0.8770

0.8686

0.8701

0.8653

0.8698

0.7749

0.7787

0.7730

‐

0.7596

0.7643

0.7617

‐

Table 1. Results of the network comparison (probabilities computed for Engine 1 and Engine 3).

Technique Class type

Single Multiple

PNN

K‐NN

MLP

0.8134

0.8154

0.8193

0.8739

0.8735

0.8765

Table 2. Additional results of the technique comparison (probabilities for Engine 1).

The PNN and K‐NN have probabilistic output, and every pattern recognition decision is
accompanied with a confidence probability. This is an important advantage for gas turbine
diagnosticians and maintenance staff. It can be taken into account for choosing the best

technique when mean diagnosis reliability P__ is equal for all techniques considered. The PNN
and K‐NN are nonparametric techniques that estimate a probability density for each fault class
by counting the patterns that fall into a given volume (window). To accurately estimate the
probability density in a multidimensional diagnostic space, the number 1000 of available
patterns can be insufficient. To assess possible imprecision of the density and confidence
probability estimation by the PNN and K‐NN techniques, a more precise analytical density
estimation (ADE) technique has been proposed and developed [28]. It analytically determines
the density and is employed as a reference to assess imprecision of the PNN and K‐NN. To
verify the newly developed technique, it was firstly compared with the others by the criterion���. The results were reasonably good: the performances of all the techniques remained very

close, but the ADE had the highest probability with the increment of 0.366–0.771 relatively the
others.
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The results of comparison by the estimated confidence probability are illustrated in Figure
11 , when the PNN, K‐NN, and MLP errors are plotted for 100 patterns. One can see that the
bias and scatter for the K‐NN estimates are by far greater. As to the MLP outputs, these non‐
probabilistic quantities look by far more precise than the K‐NN probability estimates and seem
to have the same precision level as the PW‐PNN estimates.

Figure 11. Errors of probability estimation by PW‐PNN, K‐NN, and MPL techniques (Engine 1, first 100 patterns of the
first single fault class).

Table 3 presents the mean estimations errors for the case of the single fault classification. The
table data confirm the above conclusion on the compared techniques: The bias and standard
deviation of the K‐NN errors are by far greater. The table also shows that on average the MLP
outputs are even more exact than the PNN probabilities. It is one more argument to apply the
perceptron in real gas turbine monitoring systems.

Bias σ

PNN K‐NN MLP PW‐PNN K‐NN MLP 

‐0.0444 ‐0.3293 ‐0.0419  0.0845 0.2020 0.0791

Table 3. Mean errors of confidence probability estimation (Engine 1, single fault classification).

7.3. Fault classification extension

In the investigations previously described, only two rigid classifications were maintained: one
formed by single fault classes and the other constituted from multiple fault classes created by
two fault parameters. However, the classification can vary a lot in practice even for the same
engine, and it is difficult to predict what classification variation will be finally used in a real
monitoring system. To verify and additionally compare the networks for different classification
variations, the test procedure was modified for easily creating any new fault classification,
more complex and more realistic than the classifications previously analyzed.
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Twelve classification variations have been prepared and three networks: MLP, RBN, and PNN,
were examined in reference [29]. These classifications have from 4 to 18 gas path and sensor
fault classes, 1 to 4 fault parameters to form each class, positive and negative fault parameter
changes. All the networks operated successfully for all fault classifications. Table 4 shows the
resulting averaged probabilities of correct diagnosis. Analyzing them, one can state that the
differences between the networks within the same classification remain not great (except
variation 6), about 0.015 (1.5%), while the difference between the variations can reach the value
0.10. Thus, these results reaffirm once more the conclusion drawn before that many recognition
techniques may yield the same gas turbine diagnosis accuracy.

Variation MLP RBN PNN

1 0.8172 0.8169 0.8099

2 0.8732 0.8759 0.8720

3 0.8091 0.8072 0.8037

4 0.8490 0.8524 0.8474

5 0.8033 0.8080 0.8036

6 0.6805 0.7319 0.7316

7 0.7362 0.7616 0.7567

8 0.7828 0.7965 0.7910

9 0.9279 0.9280 0.9260

10 0.7909 0.8017 0.7930

11 0.8075 0.7867 0.7775

12 0.8209 0.8184 0.8076

Table 4. Technique comparison for new classification variations (probabilities ���, for Engine 1).

7.4. Real data-based classification

Gas path mathematical models are widely used in building fault classification required for
diagnostics because faults rarely occur during field operation. In that case, model errors are
transmitted to the model‐based classification. Paper [30] looks at the possibility of creating a
mixed fault classification that incorporates both model‐based and data‐driven fault classes.
Such a classification will combine a profound common diagnosis with a higher diagnostic
accuracy for the data‐driven classes. Engine 1 has been chosen as a test case. Its real data with
two periods of compressor fouling were used to form a data‐driven class of the fouling. Figure
12 illustrates simulated (without errors) and real data.
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Figure 12. Simulated and real compressor fouling deviations (Engine 1: M—simulated deviations, F1 and F2—real de‐
viations for the first and second fouling periods).

Different variations of the classification were considered and compared using the MLP. In spite
of irregular distribution of real patterns, the MLP normally operated at the learning and
validation steps. We also found that the perceptron trained on simulated data has 30%
recognition errors when applied to real compressor fouling data. However, the use of mixed
learning data allows to reduce these errors up to 3%. It was shown as well how to form a
representative real fault class, which ensures minimal recognition errors.

Paper [31] presents another way to enhance gas turbine fault classification using real infor‐
mation. Diagnostic algorithms widely use theoretical random number distributions to
simulate measurement errors. Such simulation differs from real diagnosis because the
diagnostic algorithms work with the deviations, which have other error components that differ
from simulated errors by amplitude and distribution. As a result, simulation‐based investi‐
gations might result in too optimistic conclusions on gas turbine diagnosis reliability. To make
error presentation more realistic, it was proposed in reference [31] to extract an error compo‐
nent from real deviations and to integrate it in fault description.

Using simulated and real data of Engine 1, six alternative variations of deviation error were
integrated in the fault classification. Diagnosis was performed by the MLP, and the diagnosis
reliability was estimated for each variation. Despite irregular real error distribution, the MLP
successfully operated for all the variations. Experiments with error representation variations
have shown what can happen when the classification formed with accurate simulated
deviations is applied to classify less accurate real deviations. In that case, the diagnosis
accuracy can fall from � ≈ 92% to � ≈ 54%, but this low diagnostic accuracy can be considerably
elevated by including real errors into the description of fault classes.

The fault classifications with integrated real errors were used in reference [32] to compare three
networks: MLP, RBN, and PNN, one more time. All networks operated well and they differed
in accuracy indicators ��� by less than 1%, thus confirming again the conclusion about equality

of recognition techniques.
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7.5. Different operating conditions

Many known studies show that grouping the data collected at different engine operating
modes for making a single diagnosis (multipoint diagnosis) yields higher diagnostic accuracy
than the accuracy provided by traditional one‐point methods. But it is of a practical interest to
know how significant the accuracy increment is and how it can be explained. The diagnosis of
engines at dynamic modes poses the similar questions. To make one diagnosis, this technique
combines data from successive measurement sections of a transient operation mode and in
this regard looks like multipoint diagnosis.

Paper [33] analyzes the influence of the operating conditions on the diagnostic accuracy by
comparing the one‐point, multipoint, and transient options. The MLP is used as a pattern
recognition technique. In spite of significant increase of the input dimensionality, the percep‐
tron operated well for all options.

The calculations have revealed that the process of network training has peculiarities for
multipoint diagnosis. They are illustrated in Figure 13 , which shows the plots of the perceptron
error versus training epochs for the cases of one‐point and multipoint diagnosis. As can be
seen, the curves of the error function for the training and validation processes almost coincide
for the one‐point option, they slow down along with training epochs, and a total epoch number
300 is relatively large. These are indications of no over‐training effect. The behavior of the
perceptron applied for the multipoint diagnosis is quite different. We can see that the validation
curve falls behind the training curve after the 30th epoch, this gap rapidly increases, and the
training process stops earlier (108 epochs) because of the over‐training phenomenon. We can
conclude that the Early Stopping Option is more required here. The differences indicated above
can be explained by the ratio of input data volume to the unknown perceptron parameter
number. For both cases, the volume of the training set is equal to 7000 patterns, but the numbers
of unknown quantities significantly differ: 144 for the first case and 1540 for the second.
Consequently, in the case of multipoint diagnosis, the trained network is much more flexible
and the over‐training becomes possible. An increase of the reference set volume can improve
the training process; however, this increase is presently limited by the computation time.

Figure 13. Training process (Engine 1, left plot—one‐point diagnosis, right plot—multipoint diagnosis).
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The results of the option comparison (probabilities �) are grouped in Table 5. One can see that
a total growth of diagnosis accuracy due to switching to the multipoint diagnosis and data
joining from different steady states is significant: The diagnosis errors decrease by two to five
times. The diagnosis at transients causes further accuracy growth, but it is not great. It has been
found that this positive effect of the data joining is mainly explained by averaging the input
data and smoothing the random measurement errors.

Option Single fault classification Multiple fault classification

One-point 0.7316 0.7351

Multipoint 0.8915 0.9444

Transient 0.9032 0.9561

Table 5. Comparison of the one-point, multipoint, and transient options (Engine 1).

8. Conclusions

A monitoring system comprises many elements, and many factors influence the final diag-
nostic accuracy. The present chapter has generalized our investigations aimed to enhance this
system by choosing the best option for each element. In every investigation, a diagnostic
process was simulated mainly on the basis of neural networks, and we focused on reaching
the highest accuracy by choosing the best network and its optimal tuning to the issue to solve.
As can be seen, all the examined techniques (MLP, RBN, PNN, SVN, and K-NN) use a pattern-
based classification. Such a classification can be formed from complex classes in which faults
are simulated by the nonlinear thermodynamic model. Moreover, this classification allows its
description by real fault displays that completely exclude a negative effect of model inaccuracy.
Thus, being objects of investigation and optimization, neural networks help with enhancement
of a whole monitoring system. As a result of the conducted investigations, some methods to
elevate diagnostic accuracy were proposed and proven. The chapter also provides the
recommendations on choosing and tailoring the networks for different diagnostic tasks. For
solving many tasks, the utility of the multilayer perceptron has been proven on simulated and
real data.
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