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Abstract

This chapter  proposes a genetic  algorithm (GA)-based approach as an all-purpose
problem-solving method for  optimization problems with uncertainty.  This  chapter
explains the GA-based method and presents details on the computation procedures
involved for solving the three types of inexact optimization problems, which include
the ILP, inexact quadratic programming (IQP) and inexact nonlinear programming
(INLP) optimization problems.

In the three-stage GA-based method for solution of ILP problems, also called GAILP,
the upper and lower bounds of the inexact numbers of coefficients can be calculated
directly without any uncertainty in the coefficients by substituting the initial subopti‐
mal decision variables into the objective function. The GAILP has been extended to solve
the IQP problems and the more complicated INLP problems. The implementation of
these approaches was performed using the Genetic Algorithm Solver of MATLAB.

The proposed GA-based approaches were applied for management of a set of case
scenarios related to municipal solid waste management. A comparison of the results
generated by the proposed GA-based optimization approach with those produced by
the traditional interactive binary analysis method reveals that the proposed approach
has fewer limitations and involves less complex procedures in solving the inexact
optimization problems.

Keywords: genetic algorithms, inexact optimization problem, linear programming,
quadratic programming, nonlinear programming

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



1. Introduction

Linear and nonlinear programming are considered powerful optimization tools suitable for
modeling and solving complex optimization problems in engineering. To handle uncertainty
in real world data, inexact parameters and constraints are combined with various kinds of
optimization techniques. Often a detailed solution of an inexact programming optimization
problem involves a large number of direct comparisons to interactively identify the uncertain
relationships among the objective function and decision variables, whether the problems are
medium-sized or larger-scaled. When these methods are applied to complicated and nonlinear
problems, the number of direct comparisons can become exponential.

The genetic algorithm (GA) method is a suitable optimization approach especially for solving
problems that involve nonsmooth and multimodal search spaces. The GA-based optimization
technique is suitable for solving linear and nonlinear programming optimization problems
with inexact information; and the fields of application include operations research, industrial
engineering and management science.

This chapter is organized as follows. Section 2 presents the background and literature review
of this research. Section 3 discusses the proposed GA-based methods for solving inexact linear
programming (ILP), inexact quadratic programming (IQP) and inexact nonlinear program‐
ming (INLP) problems. Section 4 presents the case study of using GAINLP in the solution of
an INLP problem of solid waste disposal planning. Section 5 is the conclusion.

2. Background and literature review

Economic optimization in the operation programming of solid waste management was first
proposed in the 1960s [1]. Different models of waste management planning have been
developed in the following decades. The primary considerations involved include cost control,
environmental sustainability and waste reutilization. The techniques employed include linear
programming [2–5], mixed integer linear programming [6], multiobjective programming [7–
9], nonlinear programming [10, 11], as well as their hybrids, which involve probability, fuzzy
set and inexact analysis [12–16]. Due to complexity of the nonlinear programming problems
for solid waste management, research works in the area are scant; some exceptions include [17,
18].

The approach of operational programming with inexact analysis often treats the uncertain
parameters as intervals with known lower and upper bounds and unclear distributions. In
real-life problems, while the available information is often inadequate and the distribution
functions are often unknown, it is generally possible to represent the obtained data with inexact
numbers that can be readily used in the inexact programming models. For decision makers, it
is usually more feasible to represent uncertain information as inexact data than to specify
distributions of fuzzy sets or probability functions. Hence, various kinds of inexact program‐
ming such as ILP, IQP, inexact integer programming (IIP), inexact dynamic programming
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(IDP) and inexact multiobjective programming (IMOP) have been developed and are well
discussed [10, 11, 19]. It can be observed from these studies that applications of inexact models
to practical solid waste planning systems are effective. These research reports demonstrated
substantial effort has been developed to traditional binary analysis for ILP and IQP. However,
traditional binary analysis methods for ILP and IQP involve unavoidable simplifications and
assumptions, which often increase the chance for error in the problem-solving process and
adversely affected the quality of the results. Moreover, a more complex model often increases
the chance of error in the solution. It has been observed that more complex models often
produce less optimal results, and studies that focus on INLP problems are scarce. For example,
in [20], the methodology mainly focused on combining endpoint values of the inexact param‐
eters to form a set of deterministic problems, which will only work for particular monotone
functions within a small-scale model. Therefore, a more flexible problem-solving method for
the general inexact optimization problems is desired.

Engineering problems that have traditionally been formulated as IQP or INLP problems often
involve large and uneven search spaces, for which a global optimal solution is often not
required. GA is a suitable optimization tool especially for solving complex and nonlinear
problems, which involve nonsmooth and multimodal search spaces. Therefore, we suggest a
GA-based method as a more effective problem-solving approach than the traditional inexact
programming methods.

For implementation of GA, the Genetic Algorithm Solver of Global Optimization Toolbox
(GASGOT), developed by MATLAB (Trademark of MathWord), has been adopted. GASGOT
implements simulated evolution in the MATLAB environment using both binary and floating
point representations and the ordered base representation. This enables flexible implementa‐
tion of the genetic operators, selection functions, termination functions and evaluation
functions. GASGOT was developed by the Department of Industrial Engineering of North
Carolina State University as a toolbox of MATLAB. Hence, it runs in a MATLAB workspace
and can be easily invoked by other programs.

In this study, the GA linear program solving engine of GASGOT has been adopted for ILP
problems and GA nonlinear program solving engine of GASGOT has been adopted for IQP
and INLP problems.

3. Methodology

3.1. GA-based method for solving ILP problems (GAILP)

A typical ILP problem can be expressed as follows:

1
[ ]n

j jj
Max f c x± ± ±

=
=å (1)
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1

. . , 1,2,
n

ij j i
j

s t a x b i m± ± ±

=

£ = ¼å

0, 1,2, ,jx j n± ³ = ¼

where aij±, bi±, cj± are inexact parameters and xj± is an inexact variable. It is assumed that an
optimal solution exists. For an inexact number g ±∈ g −, g + , g + and g − are the upper and lower
bounds, respectively.

GA has been adopted for solving ILP problem. In this GA approach, the upper and lower
bounds of the inexact numbers of coefficients aij±, bi±, cj± can be determined by substituting the
initial suboptimal decision variables into the objective function. f + and f − can be calculated
directly without any uncertainty in the coefficients. This approach is called the GA-based
method for solving ILP problems, or the GAILP method.

GAILP has been designed to include three stages, which are discussed as follows:

The objective of the first stage is to get an initial suboptimal xjs for the following problem,
which is transformed from the ILP problem defined in Eq. (1):

1

[ ]
n

r s
j j

j

Max f c x±

=

=å (2)

1

. . , 1,2, ,
n

r s r
ij j i

j

s t a x b i m
=

£ = ¼å

0, 1,2, ,jx j n³ = ¼

Where aijr , bir , cjr  are random numbers that satisfy the continuous uniform distribution in the
intervals of aij−, aij+ , bi−, bi+  and cj−, cj+ ,respectively. Then, the problem is solved by the GA
linear program solving engine of GASGOT, which uses the objective function in Eq. (2) as the
positive term of the fitness function and the constraints of Eq. (1) as the negative punishment
terms. Thus, a suboptimal solution f s can be identified and the corresponding decision
variables of xjs are also obtained.

In the second stage, the inexact coefficients of aij±, bi±, cj± will be determined. Let the determined

coefficients corresponding to f + be aij±
+
, bi

±+
, cj

±+ and those corresponding to f − be aij±
−
, bi

±−, cj
±−.

These two sets of coefficients can be obtained using the following method.

Substituting xjs into the formula of Eq. (1) will convert it into Eq. (3).
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1

[ ]
n

s
j j

j

Max f c x± ±

=

=å (3)

1

. . , 1,2, ,
n

s
ij j i

j

s t a x b i m± ±

=

£ = ¼å

To identify the coefficients aij±, bi±, cj± corresponding to f ±, a set of objective functions needs to

be constructed and solved. Since xjs are suboptimal variables, which tend to make the objective

function closer to f +, consider aij±, bi±, cj± as variables, then the objective function of Eq. (4) can

be constructed so as to find cj±
+.

1

[ ]
n

s
j j

j

Max f c x± ±

=

=å (4)

1

. . , 1,2, ,
n

s
ij j i

j

s t a x b i m± ±

=

£ = ¼å

The coefficients cj±
+ are considered to be corresponding to f +.

Meanwhile, the objective function presented in Eq. (5) can be constructed so as to find cj±
−.

1

[ ]
n

s
j j

j

Min f c x± ±

=

=å (5)

1

. . , 1,2, ,
n

s
ij j i

j

s t a x b i m± ±

=

£ = ¼å

There are two kinds of decision schemes for inexact programming problems, which are the
conservative scheme and the optimistic scheme [21]. The former assumes less risk than the
latter, so that for a maximization objective function, planning for the lower bound of an
objective value represents the conservative scheme and planning for the upper bound of an
objective value represents the optimistic scheme. In terms of constraints, the conservative
scheme involves more rigorous or stringent constraints and the optimistic scheme adopts more
tolerant ones.

Thus, the problem of searching for aij±
+
, bi

±+ of the optimistic scheme and corresponding to the

upper bound of the objective value of f + can be represented as follows:

1

( )
n

s
ij j i

j

Max abs a x b± ±

=

-å (6)
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1

. . , 1,2, ,
n

s
ij j i

j

s t a x b i m± ±

=

£ = ¼å

The problem,

1

( )
n

s
ij j i

j

Min abs a x b± ±

=

-å (7)

1

. . , 1,2, ,
n

s
ij j i

j

s t a x b i m± ±

=

£ = ¼å

will give aij±
−
, bi

±− of the conservative scheme, corresponding to the lower bound of the objective

value of f −.

Hence, the values of aij±
+
, bi

±+
, cj

±+ and aij±
−
, bi

±−, cj
±− can be calculated.

In the third stage, the problem represented in Eq. (1) is converted into the following two
subproblems:

For f +,

1

[ ]
n

j j
j

Max f c x
++ ± ±

=

=å (8)

1

. . , 1,2, ,
n

ij j i
j

s t a x b i m
+ +± ± ±

=

£ = ¼å

0, 1,2, ,jx j n± ³ = ¼

For f −,

1

[ ]
n

j j
j

Max f c x
-- ± ±

=

=å (9)

1

. . , 1,2, ,
n

ij j i
j

s t a x b i m
- -± ± ±

=

£ = ¼å

0, 1,2, ,jx j n± ³ = ¼
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This step eliminates the inexact parameters in Eq. (1) and generates instead Eq. (8) and Eq. (9)
as typical linear programming (LP) problems, which can be solved easily.

Generally speaking, the interactive binary algorithm (IBA) proposed in [19, 22] can be used
for solving inexact linear problems reliably and relatively quickly. However, this binary
algorithm has some limitations. One of them, for example, is the limitation that the upper and
lower bounds of an inexact coefficient cannot have different signs. In contrast, the GAILP does
not have this kind of limitation because the GA method does not depend on any assumed
distribution of the inexact parameter. Hence, the GAILP method effectively extends the scope
of problems solvable using the methods of ILP. It is more adaptable for real world applications
of optimization problems with uncertainty.

A sample ILP problem in [22] is as follows,

1 1 2 2Max f c x c x± ± ±= + (10)

11 1 12 2 1. .s t a x a x b± ±+ £

21 1 22 2 2a x a x b± ±+ £

where c1 = [26 , 30], c2 = [− 6, − 5.5], a11 = [8, 10], a12 = [− 14, − 12], b1 = [3.8, 4.2], a21 = [2.4, 2.8], a22

= [3.4, 4], b2 = 6.5

By using the traditional IBA method [22], two submodels are obtained,

1 230 5.5Max f x x+ + -= -

1 2. .8 14 4.2s t x x+ -- £

1 22.4 4 6.5x x+ -+ £

1 20, 0x x+ -³ ³

and

1 226 6.0Max f x x- - += -

1 2. .10 12 3.8s t x x- +- £
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1 22.8 3.4 6.5x x- ++ £

1 20, 0x x- +³ ³

The results were f + =45.78, x1 =1.64, x2 =0.64; f −=30.77, x1 =1.37, x2 =0.79.

By using the GAILP, the results can be calculated with the following objective functions:

1 230 5.5Max f x x+ + += -

1 2. .8 14 4.2s t x x+ +- £

1 22.4 3.4 6.5x x+ ++ £

1 20, 0x x+ +³ ³

and

1 226 6.0Max f x x- - -= -

1 2. .10 12 3.8s t x x- -- £

1 22.8 4 6.5x x- -+ £

1 20, 0x x- -³ ³

The results were f + =48.15, x1 =1.73, x2 =0.69; f −=29.15, x1 =1.29, x2 =0.72.

The GAILP method generates a solution, which is different from that obtained using the IBA
proposed in [22]. A comparison will be discussed as follows:

For the f + optimistic scheme, the GAILP method can generate a result that is guaranteed to
be as close as possible to the upper bound of the constraints. Hence, the maximized value of
the objective function is greater than that produced by the IBA. For the f − conservative scheme,
the GAILP method has a higher probability of satisfying the requirements of the constraints
as close as possible to the lowest limit. Hence, the maximized objective value is smaller.
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Figure 1. Optimistic scheme, f +.

Figure 2. Zoom-in of the optimistic scheme, f +.
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In Figures 1 to 4, the bold lines denote the boundaries of the constraints, which limit the
possible values for x1, x2 to the left lower area. The constraint a11x1

± + a12x2
±≤b1 is shown in these

figures as the grey bold solid lines, which is the same for both the IBA and GAILP methods.
The dark bold dotted lines represent the constraint of a21x1

± + a22x2
±≤b2 given by the IBA and the

dark bold solid lines represent the same constraint given by the proposed GAILP method.

The boundaries, together with the x 1, x 2 axes, enclose the entire area defined by the constraints.
The objective functions f + =30x1

+−5.5x2
+ or f −=26x1

−−6x2
− are groups of parallel lines, as shown

in Figures 1 to 4 by the thin solid and dotted lines. With different values of x1 and x2, these
objective function lines would produce different intercepts on the two axes. These constraints
restrict the objective function lines to cross with the constraints area, so that, at some vertex,
the objective function would reach its extreme (i.e., maximized or minimized) values.

In Figures 1 to 4, the thin dotted lines are given by the IBA and the thin solid lines represent
the objective functions given by the proposed GAILP method. The legends for Figure 1 to 4
are listed in Table 1.

Figure 3. Conservative scheme, f −.

Optimization Algorithms- Methods and Applications128



Figure 4. Zoom-in of the conservative scheme, f −.

The constraint a21x1
± +  a22x2

±≤b2 given by IBA

The constraint a21x1
± +  a22x2

±≤b2 given by GAILP

The constraint a11x1
± + a12x2

±≤b1

Objective function line given by IBA

Objective function line given by GAILP

Table 1. Legends for Figures 1 to 4.

3.2. GA-based method for solving IQP problems (GAIQP)

The GAILP method can be extended to solve the IQP problems or other more complicated
INLP problems.

A typical IQP problem is formulated as follows:

2

1

[ ( ) ]
n

j j j j
j

Max f c x d x± ± ± ± ±

=

= +å (11)
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1

. . , 1,2,
n

ij j i
j

s t a x b i m± ± ±

=

£ = ¼å

0, 1,2, ,jx j n± ³ = ¼

where aij±, bi±, cj±, dj± are inexact parameters and xj± is an inexact variable.

In stage one, to obtain an initial suboptimal xjs from a problem transformed from the IQP
problem:

2

1

[ ( ) ]
n

r r
j j j j

j

Max f c x d x
=

= +å (12)

1

. . , 1,2, ,
n

r r r
ij j j

j

s t a x b i m
=

£ = ¼å

0, 1,2, , .jx j n³ = ¼

where aijr , bir , cjr , djr  are random numbers that satisfy the continuous uniform distribution in

the intervals aij−, aij+ , bi
−, bi

+ , cj
−, cj

+  and dj−, dj+ . Then, a suboptimal solution f s can be

identified, and the corresponding decision variables xjs are also obtained.

In the second stage, substituting xjs into the formula in Eq. (11). To determine the coefficients

aij
±, bi

±, cj
±, dj

± corresponding to f ±

2

1

[ ( ) ]
n

s s
j j j j

j

Max f c x d x± ± ±

=

= +å (13)

1

. . , 1,2, ,
n

s
ij j i

j

s t a x b i m± ±

=

£ = ¼å

and

2

1

[ ( ) ]
n

s s
j j j j

j

Min f c x d x± ± ±

=

= +å (14)

1

. . , 1,2, ,
n

s
ij j i

j

s t a x b i m± ±

=

£ = ¼å

Optimization Algorithms- Methods and Applications130



To determine aj±
+
, bi

±+ of the optimistic scheme and corresponding to the upper limit of the
objective value of f +

1

( )
n

s
ij j i

j

Max abs a x b± ±

=

-å (15)

1

. . , 1,2, ,
n

s
ij j i

j

s t a x b i m± ±

=

£ = ¼å

To obtainaj±
−
, bi

±−,

1

( )
n

s
ij j i

j

Min abs a x b± ±

=

-å (16)

1

. . , 1,2, ,
n

s
ij j i

j

s t a x b i m± ±

=

£ = ¼å

In the third stage, the problem expressed in Eq. (11) has been converted into the following two
subproblems:

For f +,

2

1

[ ( ) ]
n

j j j j
j

Max f c x d x
+ ++ ± ± ± ±

=

= +å (17)

1

. . , 1,2, ,
n

ij j i
j

s t a x b i m
+ +± ± ±

=

£ = ¼å

0, 1,2, ,jx j n± ³ = ¼

For f −,

2

1

[ ( ) ]
n

j j j j
j

Max f c x d x
- -- ± ± ± ±

=

= +å (18)

1

. . , 1,2, ,
n

ij j i
j

s t a x b i m
- -± ± ±

=

£ = ¼å

0, 1,2, ,jx j n± ³ = ¼
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The inexact information has been incorporated in these two subproblems. These two subpro‐
blems, as typical nonlinear programming problems, can be solved by the GA nonlinear
program solving engine of GASGOT.

3.3. GA-based method for solving inexact nonlinear problems (GAINLP)

Quadratic programming problems are specific cases of nonlinear programming problems. Due
to the lack of generally applicable algorithms for handling the nonlinear structure and the
inexact information embedded in the structure, most nonlinear programming problems are
difficult to solve. The IBA method proposed in [11, 22] is not intended for dealing with generic
nonlinear problems. In contrast, the GA-based method can be used as a general problem solver
for this type of problems because there is not much difference for GA between treating the
term of xi2 in quadratic programming problems and the terms xixj or xi0.28 in generic nonlinear
programming problems. GAIQP can be modified to solve generic inexact nonlinear program‐
ming.

In the following, a computation experiment will be conducted to illustrate how the GAINLP
method can handle complicated inexact nonlinear problems. A sample INLP problem is as
follows:

0.3
1 1 2 1 1 2 2 1 2( ) ( )Max f c x c x d x d x x± ± ± ± ± ± ± ± ± ±= - - +

(19)

0.5
11 1 12 2 1. . ( ) ,s t a x a x b± ± ± ± ±+ £

1 2 2 2 ,x a x b± ± ± ±+ £

0, 1,2.jx j± ³ =

where aij±, bi±, cj±, dj± are inexact parameters and xj± is an inexact variable. In this experiment,

1 1 2 2 1 1

2 2 11 11 12 12

1 1 2 2 2 2

[ , ] [16,18]; [ , ] [12,14]; [ , ]

[4,5]; [ , ] [14,15]; [ , ] [4.5,5.5]; [ , ]

[1.8,2.2]; [ , ] [1.8,2.1]; [ , ] [1.8,2.2]; [ , ] [0.9,1.1].

- + - + - +

- + - + - +

- + - + - +

= = =

= = =

= = =

c c c c d d
d d a a a a

b b a a b b

GAINLP has been designed to include the three stages of problem solving.

In stage one, to obtain the initial suboptimal xjs, the random numbers of aijr , bir , cjr , djr  were
selected to transform this INLP problem into a NLP problem, such that aijr , bir , cjr , djr  satisfy the
continuous uniform distribution in the intervals of aij−, aij+ , bi

−, bi
+ , cj

−, cj
+  and dj−, dj+ .

Optimization Algorithms- Methods and Applications132



0.3
1 1 2 1 1 2 2 1 2( ) ( )s r s r s r s r s sMax f c x c x d x d x x= - - + (20)

0.5
11 1 12 2 1. . ( ) ,r s r s rs t a x a x b+ £

1 2 2 2 ,
s r s rx a x b+ £

0, 1,2.s
jx j³ =

Then, the heuristic search algorithm of the GA nonlinear program solving engine of GASGOT

can be used to identify a suboptimal solution f s, and the corresponding decision variable xjs.

The objective function in Eq. (20) was used as the positive term of the fitness function and the
constraints of Eq. (19) adopted as the negative punishment terms. The results are

x1
s =0.346, x2

s =0.171, f s = −2.296.

In stage two, by substituting x1
s, x2

s into Eq. (19), the inexact coefficients of aij±, bi±, cj±, dj± will be

determined. Thex1
s, x2

s obtained in stage one are used to construct two optimization problems

in order to determine the coefficients of aij±
+
, bi

±+
, cj

±+
, dj

±+ and aij±
−
, bi

±−, cj
±−, dj

±−, respectively. The

coefficients from the first group are considered to be corresponding to the optimistic scheme

f +, while those from the second group correspond to the conservative scheme f −. Considering

cj
±, dj

± are variables, the following two objective functions can be constructed:

0.3
1 1 2 1 1 2 2 1 2( ) ( )s s s s sMax f c x c x d x d x x

+ + + ++ ± ± ± ±= - - + (21)

and

0.3
1 1 2 1 1 2 2 1 2( ) ( )s s s s sMin f c x c x d x d x x

- - - -- ± ± ± ±= - - + (22)

1 1. . , [16,18]s t c c
+ -± ± Î

2 2, [12,14]c c
+ -± ± Î

1 1, [4,5]d d
+ -± ± Î
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2 2, [14,15]d d
+ -± ± Î

To determine aij±
+
, bi

±+ of the optimistic scheme corresponding to the upper limit of the objective

value f +, the objective function can be constructed as follows:

0.5
11 1 12 2 1( ( ) )s sMax abs a x a x b± ± ±+ - (23)

0.5
11 1 12 2 1.t. ( )s ss a x a x b± ± ±+ £

and

1 2 2 2( )s sMax abs x a x b± ±+ -

1 2 2 2. . s ss t x a x b± ±+ £

The objective functions to get aij±
−
, bi

±− of the conservative scheme are

0.5
11 1 12 2 1( ( ) )s sMin abs a x a x b± ± ±+ - (24)

0.5
11 1 12 2 1. . ( )s ss t a x a x b± ± ±+ £

and

1 2 2 2( )s sMin abs x a x b± ±+ -

1 2 2 2. . s ss t x a x b± ±+ £

By solving Eqs. (21)–(24), the values of all the inexact coefficients are obtained, i.e.,

a11
±+

=4.5, a12
±+

=1.8, b1
±−=2.1, a2

±+
=1.8, b2

±+
=1.1; a11

±−=5.5, a12
±−=2.2, b1

±−=1.8, a2
±−=2.2, b2

±−=0.9;

c1
±+

=18, c2
±+

=12, d1
±+

=4, d2
±+

=15; c1±
−
=16, c2

±−=14, d1
±−=5, d2

±−=14

In stage three, the objective function presented in Eq. (20) is converted into the following two
subproblems:
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0.3
1 1 2 1 218 12( ) 4 15( )Max f x x x x x+ ± ± ± ± ±= - - +

0.5
1 2. .4.5( ) 1.8 2.1,s t x x± ±+ £

1 21.8 1.1,x x± ±+ £

1 20, 0.x x± ±³ ³

and

0.3
1 1 2 1 216 14( ) 5 14( )Max f x x x x x- ± ± ± ± ±= - - +

0.5
1 2. .5.5( ) 2.2 1.8,s t x x± ±+ £

1 22.2 0.9,x x± ±+ £

1 20, 0.x x± ±³ ³

The inexact parameters in Eq. (20) have been eliminated, and two typical nonlinear optimiza‐
tion problems have been generated instead. The solution of the example (Eq. (19)) is
f ± = −5.5575, −1.72 , x1

± = 0.24727, 0.38496 , and x2
± = 0.1989, 0.2053 .

As demonstrated above, it can be seen that the GAINLP method can generate the optimal result
without any simplification or assumption, and it can be adapted for applications of optimiza‐
tion problems with uncertainty. The next section demonstrates application of this method to
a real world regional waste management problem.

4. Case study

Solid waste management is the process of removing waste materials from the surrounding
environment, which involves the collection, separation, storage, processing, treatment,
transport, recovery and disposal of solid waste. Landfill and incineration are two of the most
commonly used solid waste disposal methods. The objective of a solid waste management
process is to dispose discarded materials in a timely manner so as to prevent the spread of
disease, minimize the likelihood of contamination and reduce their effects on human health
and the environment.
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The economy of scale (ES) is a microeconomics term, and it refers to the advantages that
enterprises obtain due to their size or scale of operation, with the cost per unit of output
generally decreasing as the scale increases and fixed costs are distributed over more units of
output. In a solid waste management system, ES exists within the transportation process [23]
and it can be expressed as a sizing model with a power law [11].

1( / ) m
t re t reC C X X += (25)

where X t(t/d) is a waste flow decision variable; X re (t/d) is a reference waste flow; Ct  ($/t) is
the transportation unit cost due to the ES of waste flowX t  (t/d); Cre ($/t) is a coefficient reflecting
the significance of the ES to the unit cost of waste transported for reference waste flow X re(t/d),
Cre <0; and m is an ES exponent which reflects the unit cost decline with respect to the waste
flow, −1<m<0.

Figure 5. Case study of municipalities and waste management facilities.

The study region includes three municipalities, a waste-to-energy (WTE) facility and a landfill,
as shown in Figure 5. Three time periods are considered; each has an interval of five years.
Over the 15-year planning horizon, an existing landfill and WTE facilities are available to serve
the municipal solid waste (MSW) disposal needs in the region. The landfill has an existing
capacity of 2.05, 2.30 ×106t, and the WTE facility has a capacity of 500, 600 t / d .The WTE
facility generates residues of approximately 30%(on a mass basis) of the incoming waste
streams, and its revenue from energy sale is 15, 25 $ / t combusted.

Optimization Algorithms- Methods and Applications136



Table 2 shows the waste generation rates of the three municipalities and the operating costs
of the two facilities in the three periods.

Time period k=1 k=2 k=3

Waste generation WG jk
±  (t/d)

Municipality 1 (j=1) [260, 340] [310, 390] [360, 440]

Municipality 2 (j=2) [160, 240] [185, 265] [210, 290]

Municipality 3 (j=3) [260, 340] [260, 340] [310, 390]

Operation cost OPik
± ($/t)

Landfill (i=1) [30, 45] [40, 60] [50, 80]

WTE facility (i=2) [55, 75] [60, 85] [65, 95]

Table 2. Data for the waste generation and treatment/disposal.

Taking into consideration the effects of the ES, the INLP model can be formulated as follows:
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where i is the type of waste management facility (i =1, 2, where i =1 for landfill, 2 for WTE); j
is the city, j =1, 2, 3; k  is the time period, ; L k is the length of period k, L 1 = L 2 = L 3 =365∗5 (day);

OPik
± is the operating cost of facility during period k ($/t); REk± is the revenue from WTE during

period k ($/t), RE1
± =RE2

± =RE3
± = 15, 25 ; T E ± is the capacity of WTE (t/d); T L ± is the capacity

of the landfill (t); WG jk
±  is the waste disposal demand in city during period k (t/d); xijk±  is the

waste flow from city j to facility i during period k (t/d).

In this objective function (Eq. (26)), the first term on the right side reflects the transportation
costs in each management period (k=1 to 3) from each city to each waste treatment unit, and
the related operation costs. The second term reflects the cost incurred in transporting the
products from the WTE facility to the landfill, and the operation cost at the landfill. The third
term is the revenue generated from the WTE facility.

The MSW generation rates generally vary between different municipalities and for different
periods, and the costs for the waste transportation and treatment also vary temporally and
spatially. Furthermore, interactions exist between the waste flows and their transportation
costs due to the effects of the ES (Eq. (25)). Table 3 and Table 4 show the parameters related
to the ES, which include the fixed unit transportation cost Are, the reference waste flow X re and
the coefficient Cre  corresponding to X re.

Fixed unit transportation cost ($/t) Reference waste flow (t/d)

k=1 k=2 k=3 k=1 k=2 k=3

City-to-landfill

Are11k

± [14.58, 19.40] [16.04, 21.34] [17.64, 23.48] X re11k

± [220, 250] [240, 280] [260, 320]

Are12k

± [12.65, 16.87] [13.92, 18.56] [15.31, 20.41] X re12k

± [160, 200] [180, 220] [220, 260]

Are13k

± [15.30, 20.49] [16.83, 22.53] [18.52, 24.79] X re13k

± [160, 200] [180, 240] [200, 240]

City-to-WTE

Are21k

± [11.57, 15.42] [12.73, 16.97] [14.00, 18.66] X re21k

± [200, 240] [240, 280] [280, 320]

Are22k

± [12.17, 16.15] [13.39, 17.76] [14.73, 19.54] X re22k

± [120, 170] [150, 190] [180, 220]

Are23k

± [10.60, 14.10] [11.67, 15.51] [12.83, 17.06] X re23k

± [220, 270] [220, 270] [240, 270]

WTE-to-landfill

AreWTE −L Fk

± [5.71, 7.62] [6.28, 8.38] [6.91, 9.33] X reWTE −L Fk

± [170, 200] [200, 260] [240, 270]

Table 3. Fixed unit transportation costs and reference waste flows.
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k=1 k=2 k=3 k=1 k=2 k=3

Cre11k

− −2.7 −3.4 −3.8 Cre21k

− −1.9 −2.6 −3.3

Cre11k

+ −4.1 −5.0 −6.3 Cre21k

+ −3.1 −4.0 −5.0

Cre12k

− −1.7 −2.1 −2.8 Cre22k

− −1.2 −1.7 −2.2

Cre12k

+ −2.8 −3.4 −4.5 Cre22k

+ −2.3 −2.8 −3.6

Cre13k

− −2.1 −2.5 −3.1 Cre23k

− −2.0 −2.2 −2.6

Cre13k

+ −3.4 −4.5 −5.0 Cre23k

+ −3.2 −3.5 −3.9

CreWTE −L Fk

− −0.8 −1.1 −1.4 CreWTE −L Fk

+ −1.3 −1.8 −2.1

Note: The + and – superscript sign of Cre represents the value of Cre relevant to the upper and lower bound of X re
only.

Table 4. Cre ($/t) The economy of scale coefficient corresponding to reference waste flow X re.

Hence, it can be observed that the traditional IBA cannot solve this problem without additional
assumptions or simplifications. The following discussion will explain how traditional methods
solve this problem by simplifying the nonlinear effects of the ES.

(i) Let m =  −1, the effects of the ES are totally ignored. This converts the INLP problem to an
ILP problem, and the GAILP method can solve the problem.

(ii) Assuming−0.2<m< −0.1, it is indicated that the nonlinear relationships in Eq. (26) can be
approximated with grey quadratic functions within a predetermined degree of error. Thus,
the INLP problem is converted into an IQP problem.

The left two columns of Table 5 list the solutions for m =  −1 and −0.2<m< −0.1.

Both of the above simplifications introduce inaccuracy and limitations. When the value of m
deviates away from the predetermined value, this inaccuracy will increase dramatically.

Applying the GAINLP model on the inexact nonlinear programming problem, the optimiza‐
tion problem can be solved directly without additional assumptions for the effects of the ES.
Three different scenarios, (m= −0.1, m= −0.3, and m= −0.5) have been tested, and the solutions
given by the GAINLP model are shown in the right three columns of Table 5.

The above three scenarios assume that the ES exponent is universal in the whole region during
the entire period. However, this is not always necessarily true for practical engineering
problems. More common situations may involve different scale exponents for various
combinations of municipalities and facilities in different periods. Thus, Table 6 illustrates the
solutions for the 4th scenario, which involves different scale exponents.
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Decision variable(t/d) ILP solution IQP solution Other solutions

m=−1 −0.2<m<−0.1 m=−0.1 m=−0.3 m=−0.5

x111
± [210, 290] [250, 290] [203, 292] [100, 221] [35, 88]

x112
± 0 [310, 350] [1, 36] [1, 44] [1, 36]

x113
± [0, 30] [360, 440] [1, 44] [126, 190] [240, 300]

x121
± 0 [0, 30] [1, 43] [60, 141] [144, 240]

x122
± [0, 65] [185, 225] [1, 73] [20, 103] [75, 148]

x123
± [210, 290] [50, 80] [200, 290] [200, 259] [197, 260]

x131
± [0, 30] 0 [1, 37] [90, 190] [225, 312]

x132
± [260, 330] 0 [247, 332] [189, 270] [120, 200]

x133
± [170, 200] 0 [154, 209] [139, 210] [143, 192]

x211
± 50 [10, 50] [35, 58] [120, 167] [220, 307]

x212
± [310, 390] [0, 40] [295, 390] [299, 385] [295, 390]

x213
± [360, 410] 0 [329, 426] [202, 323] [120, 161]

x221
± [160, 240] [160, 210] [147, 240] [55, 145] [1, 30]

x222
± [185, 200] [0, 40] [165, 222] [142, 200] [80, 154]

x223
± 0 [160, 210] [1, 25] [1, 40] [1, 43]

x231
± [260, 310] [260, 340] [230, 320] [122, 164] [12, 40]

x232
± [0, 10] [260, 340] [1, 28] [30, 100] [108, 167]

x233
± [140, 190] [310, 390] [125, 200] [125, 194] [120, 214]

f ±= ($106) [220.2, 507.4] [239.5, 514.1] [209.8, 522.3] [200.5, 519.6] [197.6, 516.8]

Table 5. Solutions obtained by ILP model (m=−1), IQP model (−0.2 <m<−0.1) and m=−0.1, 0.3 and 0.5.

In the 4th scenario, the weight of the transportation cost in the system operation cost varies
according to different Ct  values. The effect becomes significant when waste flow becomes

lower and the hauling distances are substantial. This effect is a nonlinear function of the waste
flow xijk , in which the reference waste flow xre and the ES exponent m are the parameters. This

problem is a complicated nonlinear programming problem, and the GAINLP has been shown
to be adequate for solving this kind of problems. On the other hand, the traditional IBA
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methods will not be able to handle situations like the 4th scenario without additional assump‐
tions and simplification.

Decision variable Solution (t/d) m Decision variable Solution (t/d) m

x111
± [100, 192] −0.15 x211

± [125, 189] −0.1

x112
± [0, 40] −0.2 x212

± [300, 390] −0.15

x113
± [112, 178] −0.35 x213

± [205, 312] −0.15

x121
± [65, 139] −0.2 x221

± [42, 142] −0.45

x122
± [40, 78] −0.3 x222

± [129, 192] −0.3

x123
± [199, 279] −0.3 x223

± [0, 40] −0.1

x131
± [90, 189] −0.25 x231

± [100, 198] −0.3

x132
± [135, 280] −0.25 x232

± [44, 113] −0.45

x133
± [127, 218] −0.3 x233

± [99, 219] −0.4

f ±= 194.7,  500.1  ($106)

Note: for transportation from WTE facility to landfill, m=−0.5.

Table 6. Solutions when m is different for each municipality and each period.

Figure 6. System cost comparisons.

The results also show that when the value of the ES exponent m becomes smaller, from −0.1,
−0.3 to −0.5, for both f positive scheme and f negative scheme, the value of the minimized

Genetic Algorithm-Based Approaches for Solving Inexact Optimization Problems and their Applications for Municipal
Solid Waste Management

http://dx.doi.org/10.5772/62475

141



objective function also becomes smaller. At the same time, the range of the intervals of the
minimized objective function also decreases. This reflects how the ES exponent affects the
overall cost for the entire period. A comparison of the results for the four scenarios is given in
Figure 6.

5. Conclusions

In this chapter, the GA-based methods have been proposed and applied for identifying an all-
purpose optimization solution for the ILP, IQP and INLP problems. These methods are called
GAILP, GAIQP and GAINLP. Compared to these GA-based methods, the traditional problem-
solving method has limitations due to the complexity involved in selecting the upper or lower
bounds of variables and parameters when the subobjective functions are being constructed.
The complexity arises due to the extensive computation and necessary associated assumptions
and simplification. The solution procedures of the proposed GA-based optimization methods
do not involve any such assumption or simplification, and the quality of the result is guaran‐
teed. The GAINLP was applied to a solid waste management optimization problem, and the
result analysis illustrates the practicality and flexibility of the proposed GAINLP method for
solving more complex INLP problems.

GAILP, GAIQP and GAINLP have been implemented in MATLAB, and can be easily extended
to include other nonlinear operation programming software packages so as to enhance the
flexibility and efficiency of the problem-solving process. The GA-based heuristic optimization
approach is flexible and it can be extended to find solutions for various types of operation
programming scenarios that involve nonlinear optimization and inexact information. It can
also be used as an all-purpose algorithm for economic optimizations.
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