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1. Introduction 

Under the pressure of rapid development around the globe, power demand has drastically 
increased during the past decade. To meet this demand, the development of power system 
technology has become increasingly important in order to maintain a reliable and economic 
electric power supply (Lin et al., 1992). One major concern of such development is the 
optimization of power plant maintenance scheduling. Maintenance is aimed at extending 
the lifetime of power generating facilities, or at least extending the mean time to the next 
failure for which repair costs may be significant. In addition, an effective maintenance policy 
can reduce the frequency of service interruptions and the consequences of these 
interruptions (Endrenyi et al., 2001). In other words, having an effective maintenance 
schedule is very important for a power system to operate economically and with high 
reliability.  
Determination of an optimum maintenance schedule is not an easy process. The difficulty lies 
in the high degree of interaction between several subsystems, such as commitment of 
generating units, economical planning and asset management. Often, an iterative negotiation 
is carried out between asset managers, production managers and schedule planners until a 
satisfactory maintenance schedule is obtained. In addition, power plant maintenance 
scheduling is required to be optimized with regard to a number of uncertainties, including 
power demand, forced outage of generating units, hydrological considerations in the case of 
hydropower systems and trading value forecasts in a deregulated electricity market. 
Consequently, the number of potential maintenance schedules is generally extremely large, 
requiring a systematic approach in order to ensure that optimal or near-optimal maintenance 
schedules are obtained within an acceptable timeframe. 
Over the past two decades, many studies have focused on the development of methods for 
optimizing maintenance schedules for power plants. Traditionally, mathematical 
programming approaches have been used, including dynamic programming (Yamayee et 
al., 1983), integer programming (Dopazo & Merrill, 1975), mixed-integer programming 
(Ahmad & Kothari, 2000) and the implicit enumeration algorithm (Escudero et al., 1980). 
More recently, metaheuristics have been favored, including genetic algorithms (GAs) 
(Aldridge et al., 1999), simulated annealing (SA) (Satoh & Nara, 1991) and tabu search (TS) 
(El-Amin et al., 2000). These methods have generally been shown to outperform 
mathematical programming methods and other conventional approaches in terms of the 
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quality of the solutions found, as well as computational efficiency (Aldridge et al., 1999; 
Satoh & Nara, 1991). 
Ant Colony Optimization is a relatively new metaheuristic for combinatorial optimization 
problems that is based on the foraging behavior of ant colonies (Dorigo & Stützle, 2004). 
Compared to other optimization methods, such as GA, ACO has been found to produce 
better solutions in terms of computational efficiency and quality when applied to a number 
of combinatorial optimization problems, such as the Traveling Salesman Problem (TSP) 
(Dorigo & Gambardella, 1997a). Recently, ACO has also been successfully applied to 
scheduling, including the job-shop, flow-shop and resource-constrained project scheduling 
problems (Bauer et al., 1999; Colorni et al., 1994; Merkle et al., 2002; Stützle, 1998).  Recently, a 
formulation that enables ACO to be applied to the power plant maintenance scheduling 
optimization (PPMSO) problem has been introduced by the authors of this chapter (Foong et 
al., 2005). The formulation was tested on a 21-unit case study and shown to  outperform 
other metaheuristic methods previously applied to the same case study (Foong et al., 2005). 
In Foong et al. (Accepted for publication), the formulation was further tested on a simplified 
version of a real hydro PPMSO problem, which was solved again using an improved 
version of the formulation  (Foong et al., 2008). 
The overall aim of this chapter is to formalize the ACO-PPMSO formulation presented in 
Foong et al. (2005) and to extend the testing of the formulation by applying it to three 
additional case studies. In addition, the utility of a local search strategy and a heuristic 
formulation when adopting ACO-PPMSO are examined. In section 2, the general 
formulation of the PPMSO problem is introduced, are the proposed approach for using 
ACO to solve this problem (ACO-PPMSO) is introduced in section 3. The four problem 
instances on which the proposed approach has been tested are described in section 4 and the 
experimental procedures, results and discussion are presented in section 5. In section 6, a 
summary and conclusions are given. 

2. Power Plant Maintenance Scheduling Optimization 

PPMSO is generally considered as a minimization problem (S, f, Ω), where S is the set of all 
maintenance schedules, f is the objective function which assigns an objective function value 

f(s) to each trial maintenance schedule s ∈ S, and  is a set of constraints. Mathematically, 
PPMSO can be defined as the determination of a set of globally optimal maintenance 
schedules S* ⊂ S, such that the objective function is minimized f(s* ∈ S*) f(s ∈ S) (for a 
minimization problem) subject to a set of constraints Ω. Specifically, PPMSO has the 
following characteristics:

• It consists of a finite set of decision points D = {d1, d2,…, dN} comprised of N maintenance 
tasks to be scheduled; 

• Each maintenance task dn ∈ D has a normal (default) duration NormDurn and is carried 
out during a planning horizon Tplan.

Two decision variables need to be defined for each task dn, including: 
1. The start time for the maintenance task, startn, with the associated set of options: 

Tn ,chdur
n

= { t ∈ Tplan; chdurn ∈ Kn: earn ≤ t ≤ latn – chdurn + 1} where the terms in brackets 

denote the set of time periods when maintenance of unit dn may start; earn is the earliest 
time for maintenance task dn to begin; latn is the latest time for maintenance task dn to 
end and chdurn is the chosen maintenance duration for task dn.
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2. The duration of the maintenance task, chdurn, with the associated finite set of decision 
paths: Kn = {0, sn, 2sn, …, NormDurn – sn, NormDurn }, where the terms in brackets denote 
the set of optional maintenance durations for task dn, and sn is the time step considered 
for maintenance duration shortening. 

A trial maintenance schedule, s ∈ S = (start1, chdur1), (start2, chdur2), …, (startN, chdurN) is
comprised of maintenance commencement times, startn, and durations, chdurn, for all N
maintenance tasks that are required to be scheduled. 
Binary variables, which can take on values 0 or 1, are used to represent the state of a task in 
a given time period in the mathematical equations of the PPMSO problem formulation. Xn,t

is set to 1 to indicate that task dn ∈ D is scheduled to be carried out during period t ∈ Tplan.
Otherwise, Xn,t is set to a value of 0, as given by: 

X n,t =
1

0

if task dn  is being maintained in period t

otherwise

 
 
 

 (1) 

In addition, the following sets of variables are defined: 
• Sn,t = {k ∈ Tn ,chdur

n

, chdurn ∈ Kn: t – chdurn + 1 ≤ k ≤ t} is the set of start times k, such that 

if maintenance task dn starts at time k for a duration of chdurn, that task will be in 
progress during time t;

• Dt = {dn: t ∈ Tn } is the set of maintenance tasks that is considered for period t.
Objectives and constraints 
Traditionally, cost minimization and maximization of reliability have been the two 
objectives commonly used when optimizing power plant maintenance schedules. Two 
examples of reliability objectives are evening out the system reserve capacity throughout the 
planning horizon, and maximizing the total reservoir storage water volumes at the end of 
the planning horizon, in the case of a hydropower system. An additional objective 
associated with the more generalized definition of PPMSO is the minimization of the total 
maintenance duration shortened/deferred (Foong et al., 2008). The rationale behind this 
objective is that shortening of maintenance duration (i.e. speeding up the completion of 
maintenance tasks) requires additional personnel and equipment, whereas deferral of 
maintenance tasks might result in unexpected breakdown of generating units, and in both 
events, additional costs are incurred by the power utility operator.  
Constraints specified in PPMSO problems are also power plant specific. The formulation of 
some common constraints include the allowable maintenance window, continuity, load, 
availability of resources, precedence of maintenance tasks, reliability and the minimum 
maintenance duration required, which are presented in Eqs. 2 to 6.  
The timeframes within which individual tasks in the system are required to start and finish 
maintenance form maintenance window constraints, which can be formulated as: 

 earn ≤ startn ≤ latn – chdurn + 1      for all dn ∈ D. (2) 

where startn and chdurn are the start time and maintenance duration, respectively, chosen for 
task dn.
Load constraints (Eq. 3) are usually rigid/hard constraints in PPMSO problems, which 
ensure that feasible maintenance schedules that do not cause demand shortfalls throughout 
the whole planning horizon are obtained: 
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Pn,t
d
n
∈D

− X n ,kPn
k∈S

n ,t
d
n
∈D

t

≥ L t   for all t ∈ T plan . (3) 

where Lt is the anticipated load for period t and Pn is the loss of generating capacity 
associated with maintenance task dn.
Resource constraints are specified in the case where the availability of certain resources, 
such as highly skilled technicians, is limited. In general, resources of all types assigned to 
maintenance tasks should not exceed the associated resource capacity at any time period, as 
given by: 

X n ,kResn,k
r

k∈S
n ,t

≤ ResAvait
r

d
n
∈D

t

  for all t ∈Tplan ,r ∈ R.  (4) 

where Resn ,k
r  is the amount of resource of type r available that is required by task dn at 

period k; ResAvait
r  is the associated capacity of resource of type r available at period t and R

is the set of all resource types. 
Precedence constraints that reflect the relationships between the order of maintenance of 
generating units in a power system are usually specified in PPMSO problems. An example 
of such a constraint is a case where task 2 should not commence before task 1 is completed, 
as given by: 

 start2 > start1 + chdur1 – 1. (5) 

where startn is the start time chosen for task dn.
In the case of maintenance duration shortening, there is usually a practical limit to the extent 
that the duration can be shortened. Due to the different characteristics of maintenance tasks, 
minimum maintenance durations may vary with individual tasks: 

 NormDurn ≥ chdurn ≥ MinDurn, for all dn ∈ D. (6) 

where chdurn is the maintenance duration of task dn; MinDurn is the minimum shortened 
outage duration for task dn; NormDurn is the normal duration of maintenance task dn.

3. ACO for Power Plant Maintenance Scheduling Optimization (ACO-PPMSO) 

Ant Colony Optimization (ACO) is a metaheuristic inspired by the foraging behavior of ant 
colonies (Dorigo & Stützle, 2004). By marking the paths they have followed with pheromone 
trails, ants are able to communicate indirectly and find the shortest distance between their 
nest and a food source when foraging for food. When adapting this search metaphor of ants 
to solve discrete combinatorial optimization problems, artificial ants are considered to 
explore the search space of all possible solutions. The ACO search begins with a random 
solution (possibly biased by heuristic information) within the decision space of the problem. 
As the search progresses over discrete time intervals, ants deposit pheromone on the 
components of promising solutions. In this way, the environment of a decision space is 
iteratively modified and the ACO search is gradually biased towards more desirable regions 
of the search space, where optimal or near-optimal solutions can be found. Readers are 
referred to Dorigo & Stützle (2004) for a detailed discussion of ACO metaheuristics and the 
benchmark combinatorial optimization problems to which ACO has been applied. Due to its 
robustness in solving these problems, ACO has recently been applied to, and obtained some 
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encouraging results for, real-world engineering problems, such as the design of optimal 
water distribution systems (Maier et al., 2003) and in the area of power systems (Gomez et 
al., 2004; Huang, 2001; Kannan et al., 2005; Su et al., 2005). 
As is the case with other metaheuristics, ACO can be linked with existing simulation models 
of power systems, regardless of their complexity, when solving a PPMSO problem. In 
addition, the unique way in which ACO problems are represented by using a graph makes 
ACO inherently suitable for handling various constraints that are commonly encountered in 
PPMSO problems. In this section, the novel formulation that enables ACO to be applied to 
PPMSO problems (herein referred to as ACO-PPMSO) introduced by Foong et al. (2005) is 
formalized.  

3.1 Problem representation 

Before the PPMSO problem can be optimized using ACO, it has to be mapped onto a graph 
shown in Fig. 1, which is expressed in terms of a set of decision points consisting of the N
maintenance tasks that need to be scheduled D = {d1, d2, d3,…, dN}. 

Figure 1. Proposed ACO-PPMSO graph 

In accordance with the formulation introduced, there are three variables that need to be 
defined V = {v1, v2, v3} for each maintenance task: 
• Variable 1, v1: the overall state of the maintenance task under consideration (i.e. if 

maintenance currently being carried out or not), 

• Variable 2, v2: the duration of the maintenance is task, and  
• Variable 3, v3: the commencement time for the maintenance task. 

Notation:
NormDurn: normal duration of maintenance 

task dn.
sn: timestep of duration shortening for task dn.

task dn

normal

defer

shorten

sn

NIL0

Decision variable 
v1,n

Decision variable 
v2,n

Decision variable 
v3,n

.

.

.

.

2 sn

NormDurn - sn

earn

earn+1 

latn- sn +1 
latn- sn

earn

earn+1 

latn- 2sn +1 
latn- 2sn

earn

earn+1 

latn- NormDurn - sn + 1 
latn- NormDurn - sn

NormDurn

earn

earn+1 

latn- NormDurn +1 
latn- NormDurn
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For maintenance task dn, a set of decision paths DPc,n is associated with decision variable vc,n

(where subscript c = 1, 2 or 3) (shown as dashed lines in Fig. 1). For decision variable v1,n,
these correspond to the options of carrying out the maintenance tasks dn at normal duration, 
shortening the maintenance duration and deferring maintenance tasks. For decision variable 
v2,n, these correspond to the optional shortened durations available for the maintenance 
tasks. For decision variable v3,n, these correspond to the optional start times for maintenance 
tasks dn. It should be noted that, as the latest finishing time of maintenance tasks is usually 
fixed, there are different sets of start time decision paths, each corresponding to a 
maintenance duration decision path (Fig. 1). This graph can then be utilized to construct 
trial solutions using the ACO-PPMSO algorithm introduced in section 3.2.2. 

3.2 ACO-PPMSO Algorithm 

The new formulation proposed for power plant maintenance scheduling using Ant Colony 
Optimisation is implemented via an ACO-PPMSO algorithm, represented by the flowchart 
given in Fig. 2. The mechanisms involved in each procedure of the proposed ACO-PPMSO 
algorithm are detailed in sections 3.2.1 to 3.2.6. 

Figure 2. ACO-PPMSO algorithm 

3.2.1 Initialization 

The optimisation process starts by reading details of the power system under consideration 
(eg. generating capacity of each unit, daily system demands, time step for duration 
shortening etc.). In addition, various ACO parameters (eg. initial pheromone trail 
concentrations ( τ 0 ), number of ants, pheromone evaporation rate etc.) need to be defined. 

3.2.6 Termination 
criteria reached?

Finished m ants?

3.2.2 Construction of trial maintenance schedule using Fig. 1

3.2.5 Pheromone updating

YES NO

YES

NO

EXIT
Optimized 
schedule(s) 

recorded 

A
n

t 
=

 A
n

t 
+

 1
 

Iter =
 Iter +

 1 

3.2.4 Local search 
(optional)

3.2.3 Evaluation of the trial 
maintenance schedule 

3.2.1 Initialisation
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3.2.2 Construction of a trial maintenance schedule 

A trial maintenance schedule is constructed using the ACO-PPMSO graph shown in Fig. 1. 
In order to generate one trial maintenance schedule, an ant travels to one of the decision 
points (maintenance tasks) at a time. At each decision point, dn, a three-stage selection 
process that corresponds to the three decision variables, v1,n, v2,n and v3,n, is performed.  
At each stage, the probability that decision path opt is chosen for maintenance of task dn in 
iteration t is given by: 

pn ,opt ( t ) =
τ n,opt ( t )[ ]

α
⋅ ηn ,opt[ ]

β

τ n ,y ( t )[ ]
α

⋅ ηn,y[ ]
β

y∈DP
c ,n

. (7) 

subscripts c = 1, 2 and 3 refer to the three decision variables, v1,n, v2,n and v3,n; τn,opt(t) is the 
pheromone intensity deposited on the decision path opt for task dn in iteration t; ηn,opt is the 
heuristic value of decision path opt for task dn; α and β are the relative importance of 
pheromone intensity and the heuristic, respectively.  
It should be noted that the term opt in Eq. 7 represents the decision path under 
consideration, of all decision paths contained in set DPc,n. When used for stages 1, 2 and 3, 
respectively, the terms opt and DPc,n are substituted with those associated with the decision 
variable considered at the corresponding stage (Table 1). The pheromone level associated 
with a particular decision path (e.g. deferral of a particular maintenance task) is a reflection 
of the quality of the maintenance schedules that have been generated previously that 
contain this particular option. The heuristic associated with a particular decision path is 
related to the likely quality of a solution that contains this option, based on user-defined 
heuristic information. The following paragraphs detail the three-stage selection process for 
decision point (maintenance task) dn, including the adaptations required when using Eq. 7 
for each stage. 

Stage 1 Stage 2 Stage 3 

c 1 2 3 

opt stat ∈ DP1,n dur ∈ DP2,n day ∈ DP3,n,chdur
n

DPc,n
DP1,n={normal, shorten, 

defer}

DP2,n = {0, sn,
2sn,…, 

NormDurn}

DP3,n,chdur
n

= {chdurn ∈ DP2,n: earn,

earn+1,…, latn – chdurn + 1} 

τ n ,opt τ n,stat τ n,dur τ n ,chdur
n
,day

ηn,opt ηn,defer < ηn ,shorten < ηn ,normal ηn ,dur
n

∝ dur ηn,chdur
n
,day = ηn ,chdur

n
,day

Res( )
w

⋅ηn ,chdur
n
,day

Load

Table 1. Adaptations for Eq. 7 in stages 1, 2 and 3 of the selection process

Stage 1: In stage 1, a decision needs to be made whether to perform the maintenance task 
under consideration at normal or shortened duration, or to defer it (decision variable v1,n in 
Fig. 1). In this case, c = 1 and opt = stat ∈ DP1,n={normal, shorten, defer} is the set of decision 
paths associated with decision variable v1,n for task dn. The probability of each of these 



Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 296

options being chosen is a function of the strength of the pheromone trails and heuristic 
value associated with the option (Eq. 7). For the PPMSO problem, the heuristic formulation 
should generally be defined such that normal maintenance durations are preferred over 
duration shortening, and deferral is the least favored option (Eq. 8). However, real costs 
associated with duration shortening and deferral options can be used if the extra costs 
incurred associated with these options are quantifiable and available. The adaptations 
required for Eq. 7 to be used at the stage 1 selection process are summarized in Table 1. It is 
suggested that values of the heuristics should be selected such that: 

ηn,defer < ηn ,shorten < ηn ,normal . (8) 

Stage 2: Once a decision has been made at stage 1, the selection process proceeds to stage 2 
(decision variable v2,n in Fig. 1), where the duration of the maintenance task under 
consideration, dn, is required to be selected from a set of available decision paths DP2,n = {0, 
sn, 2sn, . . . , NormDurn}. The symbols sn and NormDurn denote the time step for maintenance 
duration shortening, and the normal maintenance duration, respectively. For Eq. 7 to be 
used at stage 2, the terms c and opt in the equation are substituted by the values 2 and dur ∈

DP2,n, respectively. It should be noted that if the ‘normal’ or ‘defer’ options were chosen at 
stage 1, the normal duration of the maintenance task, or a duration of 0, respectively, are 
automatically chosen for the task. In the case of duration shortening, a constraint is normally 
specified where each maintenance task has a minimum duration at which the completion of 
the task cannot be further accelerated due to limitations, such as the availability of highly 
specialized technicians. This constraint can be addressed at this stage such that only feasible 
trial maintenance schedules (with regard to this constraint) are constructed (see section 3.3 
for details of such constraint-handling techniques). The pheromone trails and heuristic 
values associated with optional durations are used to determine the probability that these 
durations are chosen. In order to favor longer maintenance durations (i.e. the smallest 
amount of shortening compared with the normal maintenance duration), it is suggested that 
the heuristic value associated with a decision path should be directly proportional to the 
maintenance duration (Eq. 9).  

ηn ,dur ∝ dur . (9) 

The substitutions for the various terms in Eq. 7 when used in stage 2 are summarized in 
Table 1. 
Stage 3: Once a maintenance duration has been selected, the solution construction process 
enters stage 3 (decision variable v3,n in Fig. 1), where a start time for the maintenance task is 

selected from the set of optional start times available DP3,n,chdur
n

= {chdurn ∈ DP2,n: earn,

earn+1,…, latn – chdurn + 1}, given a chosen duration of chdurn. In order to utilize Eq. 7 at 
stage 3, adjustments are made such that c = 3 and opt = day ∈ DP3,n,chdur

n

. It should be noted 

that this stage is skipped if the ‘defer’ option is chosen at stage 1. The probability that a 
particular start day is chosen is a function of the associated pheromone trail and heuristic 
value. The suggested heuristic formulation for selection of the maintenance start day is 
given by Eqs. 10 to 15. 

ηn,chdur
n
,day = ηn ,chdur

n
,day

Res( )
w

⋅ηn ,chdur
n
,day

Load . (10) 
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ηn,chdur
n
,day

Res =

YResV(k)=0 ⋅Rn ,chdur
n
,day ( k )

k∈J
n ,chdurn ,day

(YResV(k)=0 −1) ⋅Rn,chdur
n
,day ( k )

k∈J
n ,chdurn ,day

. (11) 

ηn,chdur
n
,day

Load =

YLoadV(k)=0 ⋅C n,chdur
n
,day ( k )

k∈J
n ,chdurn ,day

(YLoadV(k)=0 −1) ⋅C n ,chdur
n
,day ( k )

k∈J
n ,chdurn ,day

. (12) 

YResV(k)=0 =
1

0

 
 
 

if no violation of resource constraints in time period k

otherwise
 (13) 

YLoadV(k)=0 =
1

0

if no violation of load constraints in time period k

otherwise

 
 
 

 (14) 

w =
1

0

 
 
 

if resource constraints are considered

otherwise
 (15) 

where ηn,chdur
n
,day ( t )  is the heuristic for start time day ∈ DP3,n,chdur

n

for task dn, given a chosen 

duration chdurn,; Rn ,chdur
n
,day ( k )  represents the prospective resources available in reserve in 

time period k if task dn is to commence at start time day and takes chdurn to complete (less 
than 0 in the case of resource deficits); C n ,chdur

n
,day ( k )  is the prospective power generation 

capacity available in reserve in time period k if task dn is to commence at start time day and 
takes chdurn to complete (less than 0 in the case of power generation reserve deficits); 

J n,chdur
n
,day={day ∈ DP3,n,chdur

n

: day  k  day + chdurn – 1} is the set of time periods k such that if 

task dn starts at start time day, that task will be in maintenance during period k.
As mentioned above, the heuristic formulation in Eq. 10 includes a resource-related term, 

ηn,chdur
n
,day

Res , and a load-related term, ηn,chdur
n
day

Load . These two terms are expected to evenly 

distribute maintenance tasks over the entire planning horizon, which potentially maximizes 
the overall reliability of a power system. For PPMSO problem instances that do not consider 
resource constraints, the value of w in Eq. 10 can be set to 0 (Eq. 15). In order to implement 
the heuristic, each ant is provided with a memory matrix on resource reserves and another 
matrix on generation capacity reserves prior to construction of a trial solution. This is 
updated every time a unit maintenance commencement time is added to the partially 
completed schedule. 
The three-stage selection process is then repeated for another maintenance task (decision 
point). A complete maintenance schedule is obtained once all maintenance tasks have been 
considered. 

3.2.3 Evaluation of trial maintenance schedule 

Once a complete trial maintenance schedule, s ∈S, has been constructed by choosing a 
maintenance commencement time and duration at each decision point (i.e. for each 
maintenance task to be scheduled), an ant-cycle has been completed. The trial schedule’s 
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objective function cost (OFC) can then be determined by an evaluation function, which is a 
function of the values of objectives and constraint violations: 

OFC(s)= f obj1( s),obj2( s),...,objZ
T

( s),vio1( s),vio2( s),...,vioC
T

( s)( ). (16) 

where OFC(s) is the objective function cost associated with a trial maintenance schedule, s;
obj1(s) is the value of the first objective; vio1(s) is the degree of violation of the first constraint; 
ZT is the total number of objectives; CT is the total number of  constraints that cannot be 
satisfied during the construction of trial solutions. 
It should be noted that not all constraints specified in a problem are accounted for using Eq. 
16. Maintenance windows, precedence and minimum duration constraints, just to name a 
few, can be satisfied during the construction of a trial solution and would not appear in Eq. 
16. In other words, a complete trial solution would have satisfied these constraints already 
before the evaluation process is carried out. On the other hand, load constraints can only be 
checked upon completion of a complete trial solution and therefore the violations of these 
constraints, if there are any, can only be reflected through penalty terms in the objective 
function (Eq. 16). Detailed categorizations of constraints commonly encountered in PPMSO 
problems, as well as the appropriate methods of handling them, are presented in section 3.3. 
In general, the trial schedule has to be run through a simulation model in order to calculate 
some elements of the objective function and whether certain constraints (those accounted for 
through penalty terms) have been violated.  
After m ants have performed procedures 3.2.2 and 3.2.3, where m (the number of ants) is
predefined in procedure 3.2.1, an iteration cycle has been completed. At this stage, a total of 
m maintenance schedules have been generated for this iteration. It should be noted that all 
ants in an iteration can generate their trial solutions concurrently, as they are working on the 
same set of pheromone trail distributions in decision space. 

3.2.4 Local search 

Recently, local search has been utilized to improve the optimisation ability of ACO. While it 
has been found to result in significant improvements in some applications (den Besten et al.,
2000; Dorigo & Gambardella, 1997b), little success has been obtained in others (Merkle et al.,
2002). Local search has also been found useful for some problems (Foong et al., 2008) where 
the formulation of heuristics is difficult (Dorigo & Stützle, 2004). 
In this formulation, local search is coupled with ACO to solve the PPMSO problem. The 
local search operator proposed in this chapter is called PPMSO-2-opt, which is a 
modification of the 2-opt strategy used when solving the Travelling Salesman Problem (TSP) 
(Stützle et al., 1997), where two edges of connected cities are exchanged. In PPMSO-2-opt, 
‘neighbor maintenance schedules’ are generated by exchanging the maintenance start times 
of a pair of randomly selected tasks of the ‘target maintenance schedule’. It should be noted 
that the maximum number of possible ‘neighbor maintenance schedules’ formed based on a 

‘target maintenance schedule’ ( NC 2 =
N!

2!⋅(N − 2)!
) can be specified as the termination 

criterion of the local search. Otherwise, a smaller number of local solutions can be defined as 
the stopping criterion.  
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3.2.5 Pheromone updating 

Two mechanisms, namely pheromone evaporation and pheromone rewarding, are involved 
in the pheromone updating process. Pheromone evaporation reduces all pheromone trails 
by a factor. In this way, exploration of the search space is encouraged by preventing a rapid 
increase in pheromone on frequently-chosen paths. Pheromone rewarding is performed in a 
way that reinforces good solutions. 
Despite its original inspiration from the foraging behaviour of ant colonies, various ACO 
algorithms have evolved, such as Elitist-Ant System (EAS) (Dorigo (1992); Dorigo et al.
(1996)) and Max-Min Ant System (MMAS) (Stützle & Hoos, 1997; Stützle & Hoos, 2000). 
These algorithms are distinguished from each other in the way pheromone updating is 
performed. In the ACO-PPMSO formulation, pheromone updating is performed on the 
pheromone matrices used for the three-stage selection process. A general pheromone 
updating formulation (regardless of the ACO algorithm adopted) is introduced for this 
purpose:

τ ∗ (t +1) = ρ ⋅τ ∗ ( t ) + Δτ ∗ ( t ) . (17) 

Δτ ∗ ( t )= q =

Q

OFC( supdate )

0

 

 
 

  

if * ∈ supdate

otherwise
s∈Sol

update

 (18) 

where t is the index of iteration; (1 - ρ) is the pheromone evaporation rate; the subscript 
asterisk * of τ∗ denotes the element of the pheromone matrix under consideration ( τ n,opt ,

τ n,dur  and τ n ,dur ,day  for decision variables v1, v2 and v3, respectively); supdate  is any trial 

schedule contained in Solupdate(t), which is the set of trial schedules chosen to be rewarded in 
iteration t; Δτ ∗ ( t )  is the amount of pheromone rewarded to pheromone trail τ ∗  at the end 

of iteration t; OFC( supdate )  is the objective function cost associated with the trial schedule 

supdate  that contains element *; Q is the reward factor (a user-defined parameter).  

As EAS and MMAS are utilized in solving the PPMSO case study systems presented in 
section 4, the following additional specifications are made according to the general 
pheromone updating rules: 
(A) Elitist-Ant System (EAS) 
In EAS, only the least-OFC schedule(s) in every iteration is/are rewarded (Eq. 19). 

Solupdate ( t ) = siter−best ( t ) . (19) 

where siter−best ( t )  is the best maintenance schedule evaluated in iteration t.

(B) Max-Min Ant System (MMAS) 
Similarly to EAS, MMAS only rewards iteration-best trial solution(s) (Eq. 19). Additionally, 
upper and lower bounds are imposed on the pheromone trails in order to prevent 
premature convergence and greater exploration of the solution surface. These bounds are 
given by:  

τ max ( t +1)=
1

1− ρ
⋅

Q

OFC iter−best ( t )
.  (20) 
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τ c,min ( t +1) =
τ max ( t +1)(1− pbest

n
c )

( avgc −1) pbest
n

. (21) 

where nc is the number of decision points for decision variable vc; avgc is the average number 
of decision paths available at each decision point for decision variable vc; subscript c = 1, 2 
and 3 refers to the three decision variables considered in procedure 3.2.2; pbest is the 
probability that the paths of the current iteration-best-solution, siter-best(t), will be selected, 

given that non-iteration best-options have a pheromone level of τmin(t) and all iteration-best 
options have a pheromone level of τmax(t).
The lower and upper bound of pheromone are applied to all decision paths in the search 
space:

τ c,min ( t ) ≤ τ n ,opt ( t ) ≤ τ max ( t ) ; opt ∈ DPc ,n c = 1,2,3 for all t ,n.  (22) 

3.2.6 Termination of run 

Procedures 3.2.2 to 3.2.5 are repeated until the termination criterion of an ACO run is met, 
e.g. either the maximum number of evaluations allowed has been reached or stagnation of 
the objective function cost has occurred. A set of maintenance schedules resulting in the 
minimum OFC is the final outcome of the optimisation run. 

3.3 Constraints Handling 

ACO is an unconstrained optimisation metaheuristic. As constraints are inevitable in 
PPMSO problems, there is a need to find ways of incorporating constraints during 
optimisation. In this research, two different constraint handling techniques are adopted. In 
order to decide which of the two techniques should be used, constraints encountered in 
PPMSO problems have been characterized using the following classification scheme:  
Direct vs. indirect constraints: Constraints can be characterized based on the earliest stage 
at which they can be addressed during optimisation. The maintenance window (Eq. 2), 
precedence (Eq. 5) and minimum maintenance duration (Eq. 6) constraints can be addressed 
when trial solutions are being generated during ant cycles (procedure described in section 
3.2.2). On the other hand, the violation of load (Eq. 3) and resource (Eq. 4) constraints often 
cannot be identified from a partially built trial maintenance schedule. As part of the 
classification scheme introduced in this paper, the former constraints are referred to as 
direct constraints and the latter as indirect constraints.  
Rigid vs. soft constraints: Constraints can also be classified based on their “rigidity”. For 
rigid constraints, such as maintenance windows, minimum maintenance duration, 
precedence and load constraints, even the slightest violations are generally intolerable. On 
the other hand, constraints, such as resource constraints, may be able to be violated to a 
degree specified by decision makers and are therefore referred to as “soft” constraints. 
The two constraint handling techniques used in the ACO-PPMSO formulation and the 
constraint types they are able to accommodate include: 
Graph-based technique: This technique utilizes candidate lists during ant cycles when trial 
solutions are being constructed (Fig. 1). Given a partially built trial schedule, a candidate list 
consists of the optional start times that are available for a maintenance task, such that the 
constraints under consideration are not violated. Direct and some rigid constraints, such as 
the maintenance window, precedence and minimum duration constraints, can be accounted 
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for using this technique. During the construction of a trial maintenance schedule, an ant 
incrementally adds start times to a partially built schedule. By dynamically updating the 
candidate lists of ‘unvisited units’, only start times that would result in solutions that satisfy 
the maintenance window and precedence constraints are considered.  
Penalty-based technique: In ACO-PPMSO, penalty functions, which transform a constrained 
optimisation problem into an unconstrained problem by adding or subtracting a value 
to/from the objective function cost based on the degree of constraint violation (Coello 
Coello, 2002), are used to address indirect or potentially soft constraints, such as the 
availability of personpower to perform the maintenance and load constraints. When dealing 
with soft constraints, penalty factors may be varied to reflect the amount of constraint 
violation that may be tolerated. Penalty costs also have to be used to account for indirect 
constraints, as the degree of constraint violation is not known until a complete trial solution 
has been constructed, as discussed earlier. In such cases, the degree of violation generally 
has to be obtained with the aid of a simulation model. 
The ability to implement direct and some rigid constraints using the graph-based technique 
is one of the attractive features of using ACO for PPMSO. Firstly, by preventing the 
generation of infeasible solutions, the number of simulation model runs required is reduced. 
This is advantageous for real-world PPMSO problems, as the number of times the 
simulation model has to be run is a major source of computational overhead. Moreover, 
there are difficulties associated with the use of penalty-based techniques that remain 
unresolved at the time of writing, in spite of extensive research into this area (Coello Coello, 
2002). For example, hand tuning is required for assigning appropriate penalty factors to 
each constraint and objective term in the objective function. 

4. Problem Instances 

In order to test the utility of the proposed ACO-PPMSO formulation, it is applied to 4 
problem instances, including 21- and 22-unit benchmark case studies from the literature and 
modified versions of these case studies. The 21- and 22-unit case studies have been chosen 
as they enable comparisons to be made with results obtained in previous studies. However, 
as these case studies can be solved without the need for maintenance shortening and 
deferral, modifications to the case studies are introduced in this chapter to test this feature of 
the proposed formulation. Details of the four problem instances are given below. 

4.1 21-unit system 

The first case study considered in this research is the 21-unit power plant maintenance 
problem investigated by Aldridge et al. (1999) and Dahal et al. (1999; , 2000) using a number 
of metaheuristics.  This case study is a modified version of the 21-unit problem introduced 
by Yamayee et al. (1983), and consists of 21 generating facilities, of which 20 units are 
thermal and one is hydropower. Due to space constraints, system details are not presented 
here but can be found in Aldridge et al. (1999). All of the machines are to be scheduled for 
maintenance either in the first or second half of a year’s planning horizon, which results in a 
combinatorial optimisation problem with approximately 5.18 x 1028 total possible solutions. 
The objective of the problem is to even out reserve generation capacity over the planning 
horizon, which can be achieved by minimizing the sum of squares of the reserve (SSR) 
generation capacity in each week. 
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Constraints to be satisfied include: 
1. Maintenance window constraints: The earliest start time and latest finish time of 

maintenance tasks for each machine are detailed in Aldridge et al. (1999). 
2. Resource constraints: A limit of 20 maintenance personpower is available each week. 
3. Demand constraints: A single peak load of 4739 MW has to be met. 
Problem formulation
Mathematically, this optimisation problem can be defined as the determination of 
maintenance schedule(s) such that SSR, which is defined as the sum of square of reserve 
generation capacity within the planning horizon, is minimized: 

Min SSR = Pn
n=1

N
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where Pn is the generating capacity of unit dn; Lt is the anticipated load for period t, subject to
the maintenance window, load and personpower constraints, as given by: 

 earn ≤ startn ≤ latn – NormDurn + 1      for all dn ∈ D. (24)

Xn ,kResn,k ≤ ResAvait
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≥ Lt   for all t ∈ Tplan . (26) 

where earn is the earliest start time for unit dn; latn is the latest start time for unit dn;
NormDurn is the outage duration (week) for unit dn; startn is the maintenance start time for 

unit dn and ResAvait  is the personpower available at period t.

It should be noted that personpower is considered as a type of resource constraint. The 
maintenance window constraints are taken into account by the construction graph-based 
technique (section 3.3), whereas both load and personpower constraints are indirect and are 
therefore taken into account by using penalty-based techniques (section 3.3). 
When applying the ACO-PPMSO formulation to this case study, the heuristic developed as 
part of this research (Eqs. 10 to 15) was used together with pheromone for selection of start 
times when generating trial maintenance schedules. It should be noted that the value of w in 
Eq. 10 was set to 1, as utilization of resource (personpower) constraints is considered in this 
case. Upon completion of a trial maintenance schedule, a simulation model was used to 
calculate the SSR value and any violations of personpower or load constraints associated 
with schedule s. The quality of individual maintenance schedules in this problem is given by 
an objective function cost (OFC), which is a function of the value of SSR and the total 
violation of personpower and load constraints (Eq. 27).  

OFC( s) = SSR( s) ⋅ ManVio tot ( s) + 1( )⋅ LoadVio tot ( s) + 1( ). (27) 

where OFC(s) is the objective function cost ($) associated with schedule s; SSR(s)  is the sum 
of squares of reserve generation capacity (MW2) associated with schedule s; ManViotot(s) is 
the total personpower shortfall (person) associated with schedule s; LoadViotot(s) is the total 
demand shortfall (MW) associated with schedule s.
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The calculation of constraint violations is given in Eqs. 28 to 31. For a trial maintenance 
schedule, the total personpower shortfall associated with schedule s, ManViotot(s), is given 
by summation of the personpower shortage in all periods within the planning horizon: 

ManViotot ( s) = X n,kResn ,k −ResAvait
k∈S

n ,t
d
n
∈D

t
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where TMV is the period where personpower constraints are violated, and is given by: 

TMV = t : X n ,kResn ,k > ResAvait
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The total demand shortfall associated with schedule s, LoadViotot(s), is the summation of 
demand shortfall in all periods within the planning horizon. The calculation of this value 
may be represented by the following equation. 

LoadViotot ( s) = Pn
n
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where TLV is the period where load constraints are violated, and is given by: 

TLV = ( t : Pn
n

− X n,kPn
k∈S

n ,t
d
n
∈D

t

< Lt ) . (31) 

The OFC can be viewed as the virtual cost associated with a maintenance schedule. 

4.2 22-unit system 

The 22-unit power plant maintenance scheduling optimisation problem was first solved by 
Escudero et al. (1980) using an implicit enumeration algorithm and later by El-Amin et al.
(2000) using tabu search. In this problem, each generating unit is required to be scheduled for 
maintenance once within a planning horizon of 52 weeks. Details of the system can be found in 
Escudero et al. (1980). The objective when scheduling for maintenance is to even out reserve 
generation capacity over the planning horizon subject to the following constraints: 
1. The maintenance window constraints specify that all units can be maintained anytime 

within the planning horizon and have to finish maintenance by week 52, except for unit 
10, which can only be taken offline between weeks 6 and 22. 

2. Load constraints require peak demands (see Escudero et al., 1980) to be met.  
3. The reliability constraint requires a minimum reserve of 20% of the peak demand 

throughout the planning horizon.  
4. The two precedence constraints specify that maintenance of units 2 and 5 has to be 

carried out before that of units 3 and 6, respectively.  
5. Units 15 and 16, as well as units 21 and 22, cannot be maintained simultaneously due to 

personpower constraints. 
Problem formulation
In order to even out reserve generation capacity, the formulation used in both Escudero et al.
(1980) and El-Amin et al. (2000) for the 22-unit problem was designed to minimize the 
summed deviation of generation reserve from the average reserve over the entire planning 
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horizon, LVL. Mathematically, the optimisation of this case study can be described as the 
minimization of the sum of the deviation of generation reserve from the average reserve 
over the planning horizon (Eqs. 32 to 34): 

Min LVL = Resavg −Rest
t∈T

plan

 
 
 

  

 
 
 

  
. (32) 

where the generation reserve ( Rest ) and average reserve ( Resavg ) are given by: 

Rest = Pn
n=1

N
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plan

T
. (34) 

where Lt is the anticipated load demand for period t; Pn is the generating capacity of unit dn;
T is the total number of time indices, subject to the following constraints: 

 earn ≤ startn ≤ latn – NormDurn + 1      for all dn ∈ D. (35) 
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X15,k = 0 for k = start16 ,...,start16 +NormDur16 −1[ ]
X16,k = 0 for k = start15 ,...,start15 +NormDur15 −1[ ]
X 21,k = 0 for k = start22 ,...,start22 +NormDur22 −1[ ]
X 22,k = 0 for k = start21 ,...,start21 +NormDur21 −1[ ]
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It is interesting to note that, given the same objective, the objective functiom formulations 
used by Escudero et al. (1980) and El-Amin et al. (2000) are quite different from that of 
Aldridge et al. (1999). 
As there is no resource utilization throughout the planning horizon, there is no need for the 
inclusion of the resources term in the heuristic formulation (Eq. 10) for this case study (thus 
w may be set to 0). The precedence and maintenance window constraints of this system are 
direct and rigid constraints, which can be incorporated by using the graph-based technique, 
whereas the load and reliability constraints need to be taken into account using penalty 
functions. The objective function cost (OFC) used in this case study is a function of the 
reserve generation capacity LVL value and the total violation of load and reliability 
constraints (Eq. 40).  
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OFC( s)= LVL( s) ⋅ LoadResViotot ( s)+1( ). (40) 

where OFC(s) is the objective function cost ($) associated with schedule s; LVL(s) is the level 
of reserve generation capacity (MW) associated with schedule s; LoadResViotot(s) is the total 
demand and reserve shortfall (MW) associated with schedule s.
It should be noted that the inclusion of a load constraint violation term in Eq. 40 is not 
necessary because violation of load constraints would be reflected as violation of reserve 
constraints. The calculation of constraint violations is given by Eqs. 41 and 42. The total load 
and reserve shortfall associated with schedule s, LoadResViotot(s), is the summation of load 
and reserve shortfall in all periods within the planning horizon: 

LoadResViotot ( s)= Pn
n

− X n ,kPn
k∈S

n ,t
d
n
∈D

t

 

 

 
 

 

 

 
 

t∈T
LV

. (41) 

where TLV is the period where load and reserve constraints are violated, and is given by: 

TLV = ( t : Pn
n

− X n,kPn
k∈S

n ,t
d
n
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t

< 1.2Lt ) . (42) 

4.3 Modified 21-unit system 

The 21-unit case study system described in section 4.1 was modified in the following ways 
in order to ensure that maintenance task shortening and/or deferral are required to satisfy 
load constraints: 
1. The original system load (4739MW) is increased by 5% throughout the whole planning 

horizon, and another 5% increment for weeks 15 to 25. 
2. While all maintenance tasks have the option of being deferred, some maintenance tasks 

can be carried out in durations shorter than the original outage duration (shown in 
Table 2). The personpower requirements for shortened durations are also detailed in 
Table 2. 

Unit No., 
n

Optional Outage 
Duration, (weeks) 

Personpower required for each week, 
Resn,wk(wk=1,2,…, NormDurn ) (person) 

5 10, 10, 10, 8, 5 
1

3 15, 14, 14 

2 3 15, 15, 10 

5 3 17, 17, 16 

8 4 13, 13, 13, 6 

8 3, 3, 3, 2, 2, 3, 3, 3 

6 4, 4, 3, 3, 4, 4 

4 6, 5, 5, 6 
9

2 11, 11 

10 2 15, 15 

14 2 20, 20 

20 2 20, 20 

Table 2. Personpower utilization for the modified 21-unit case study system
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Problem formulation
Despite the possibility of shortening and deferral options in this case study, they are 
unfavorable from both an economic and operations point of view. Therefore, the objective 
function used for the original version of this case study (Eq.  27) has been modified to: 

OFC( s) = SSR( s) ⋅ ManVio tot ( s) + 1( )⋅ LoadVio tot ( s) + 1( )⋅(DurCut tot ( s) + 1). (43) 

where OFC(s) is the objective function cost ($) associated with schedule s; SSR(s) is the sum 
of squares of reserve generation capacity (MW2) associated with schedule s; ManViotot(s) is 
the total personpower shortfall (person) associated with schedule s; LoadViotot(s) is the total 
demand shortfall (MW) associated with schedule s; DurCuttot(s) is the total reduction in 
maintenance duration (weeks) due to shortening and deferral associated with schedule s.
While the calculation of total demand shortfall associated with schedule s, LoadViotot(s), total 
personpower shortfall associated with schedule s, ManViotot(s), and the sum of squares of 
reserve generation capacity associated with schedule s, SSR(s), are detailed in section 4.1, the 
value of DurCuttot(s) is given by: 

DurCut tot ( s) = ( NormDurn − chdurn ( s))
n=1

21

. (44) 

where NormDurn is the normal duration of maintenance task dn, and chdurn(s) is the 
maintenance duration (week) of task dn associated with schedule s.
It should be noted that by using Eq. 43 to direct the search during an ACO run, a trial 
maintenance schedule that includes shortened and/or deferred maintenance tasks is being 
assigned a higher OFC, which represent an unfavorable solution to ACO during pheromone 
update. 
As part of the modified case study, the minimum-duration constraints can be addressed 
during the stage-2 selection process when a trial solution is being constructed (section 3.2.2) 
by allowing only optional durations that are greater than the minimum duration for each 
maintenance task. In this way, trial solutions constructed will not violate the minimum 
duration constraints. For example, machine unit 1 that normally requires 7 days to be 
maintained, can be shortened to 5 or 3 days, or be deferred altogether (Table 2). 

4.4 Modified 22-unit system 

The 22-unit case study detailed in section 4.2 was modified as follows in order to ensure that 
maintenance task shortening and/or deferral are required to satisfy load constraints: 
1. The weekly loads for the modified 22-unit case study system are increased by 60%.  
2. Maintenance tasks 1 to 13 are allowed to be performed within the first half of the 

planning horizon, while the remainder of the tasks have to be performed in the second 
half (except for unit 10 as in original case study). 

3. While all maintenance tasks can be deferred, the maintenance tasks listed in Table 3 can 
be shortened to the optional duration(s) specified. 

Unit No., n 1 5 6 8 9 10 11 12 14 15 16 17 18 22

Optional shortened 

durations (weeks)
4, 2 4, 2 2 2 3

10, 8, 6, 

4
2 6, 4 4 3 4 3 3 3 

Table 3. Details of the modified 22-unit system
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Problem formulation
The objective function used for the original 22-unit case study (Eq. 40) has been modified to 
accommodate the options of shortening and deferral, and is given by: 

OFC( s) = LVL( s) ⋅ LoadResVio tot ( s) + 1( )⋅(DurCut tot ( s) + 1) . (45) 

where OFC(s) is the objective function cost ($) associated with schedule s; LVL(s) is the level 
of reserve generation capacity (MW) associated with schedule s; LoadResViotot(s) is the total 
load constraint violation (MW) associated with schedule s; DurCuttot(s) is the total reduction 
in maintenance duration (weeks) due to shortening and deferral associated with schedule s.
The calculation of the total load constraint violation associated with schedule s,
LoadResViotot(s), and the level of reserve generation capacity associated with schedule s,
LVL(s) have been detailed previously in section 4.2, whereas the value of the total duration 
shortened and deferred associated with schedule s, DurCuttot(s), is given by: 

DurCut tot ( s) = ( NormDurn − chdurn ( s))
n=1

22

. (46) 

where NormDurn is the normal duration (weeks) of maintenance task dn, and chdurn(s) is the 
maintenance duration (weeks) of task dn associated with schedule s.

5. Experimental Procedure, Results and Analysis 

5.1 Experimental procedure

Experiments have been conducted on both the original and modified versions of the 21-unit 
and 22-unit case studies to assess the utility of the proposed ACO-PPMSO formulation. 
Particular emphasis was given to assessing the usefulness of the heuristics developed, the 
impact of the local search operator and the overall performance of the proposed ACO-
PPMSO formulation. 
A. Usefulness of heuristic formulation 
The effectiveness of the new heuristic formulations for general PPMSO problems (Eqs. 10 to 
15) introduced in section 3.2.2 was examined by conducting optimisation runs with and 
without the heuristics (the latter was achieved by setting the relative weight of the heuristic, 

β, in Eq. 7 to 0). In addition, the sensitivity of optimisation results to increasing values of 
β was checked. It should be noted that, as a control, the value of α in Eq. 7 was fixed at 1. 
B. Impact of local search operator 
The impact of local search on the performance of the ACO-PPMSO algorithm was also 
investigated, both with and without heuristic. The total number of trial solutions evaluated 
in the ACO runs with local search was identical to those without local search.  
C. Overall performance of ACO-PPMSO 
In order to check the overall utility of the ACO-PPMSO formulation, the results obtained for 
the two original case studies were compared with those obtained using other optimisation 
methods in previous studies and the ability to account for maintenance shortening and 
deferral was assessed on the two modified case studies.  
In order to achieve the objectives outlined above, the testing procedure shown in Fig. 3 was 
implemented separately for each of the four case studies. Items A, B and C mentioned above 
were investigated at Stages A, B and C in the testing procedure, respectively.  
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To minimize the impact the ACO algorithms and parameters used have on the evaluation of 
the effectiveness of the heuristic, local search and overall performance of the ACO-PPMSO 
algorithm, two ACO algorithms, namely Elitist-Ant System and MMAS, and a range of 
parameters (shown in the dashed box in Fig. 3) were used to solve the problem instance 
under consideration. In addition, each run was repeated 50 times with different random 
number seeds in order to minimize the influence of random starting values in the solution 
space on the results obtained and to enable Student’s t-test to be conducted to determine 
whether any differences in the results obtained were significant. In total, 3,024 different 
combinations of parameters, each with 50 different starting random number seeds, were 
evaluated as part of this study. In order to facilitate fair comparisons, the same number of 
evaluations per optimisation run were used as in previous studies that investigated the 21-
unit case problem (30,000 evaluations). In this research, ‘one ACO run’ is defined as the use 
of an ACO algorithm with or without using heuristic information, with or without local 
search and with a defined set of parameters to solve a PPMSO instance. An example of an 
ACO run is the use of EAS to solve the modified 21-unit case study with heuristic 

information and local search and a defined parameter set of m = 200; ρ = 0.9; τ0 = 0.1; Q =
500,000; α = 1, β = 11, repeated for 50 random number seeds. The overall performance of a 
parameter set is then assessed based on the objective function cost (OFC) averaged over the 
50 simulations using different random number seeds. An analysis of the results obtained 
with the testing procedure outlined in Fig. 3 is given in section 5.2. 

Figure 3. Expermental procedure

5.2 Results and analysis 

The experimental results obtained for the original 21- and 22-unit case studies are 
summarized in Tables 4 to 7, while those for the modified case studies are presented in 
Tables 8 to 11. 
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Heu-
ristic

Local 
search

Best OFC
($M)

Average 
OFC ($M)

Worst OFC 
($M)

Std dev. 
($M)

Average 
evaluationsa

Best parameter settings 

{m; ρ; τ0; β}b

14.84 
[8.64%]

140.49 
[928.48%] 

365.13 
[2572.99%]

86.00 28,841 {300; 0.9; 0.01; 0} 

13.68 
[0.15%]

13.71 
[0.37%]

13.85 
[1.39%]

0.03 20,692 {200; 0.9; 0.01; 9} 

13.74 
[0.59%]

51.62 
[277.89%] 

138.80 
[916.11%] 

33.72 25,494 {300; 0.8; 0.1; 0} 

13.66 
[0%]

13.70 
[0.29%]

13.82 
[1.17%]

0.03 22,434 {200; 0.9; 0.01; 9} 

a Number of evaluations to reach the best solution in one run averaged over 50 runs with different random starting positions. 

bm: number of ants; (1- ρ): pheromone evaporation rate; τ0: initial pheromone trail; β: relative weight of heuristic in Eq. 7

Table 4. Results for the 21-unit unit problem instance given by Elitist-Ant System (EAS) 
[deviation from best-known OFC of  $13.66M] 

Heu-
ristic

Local 
search

Best OFC 
($M)

Average 
OFC ($M) 

Worst OFC 
($M)

Std dev. 
($M)

Average 
evaluationsc

Best parameter settings 

{m; ρ; pbest; β}d

13.86 
[1.46%]

16.11 
[17.94%] 

43.35 
[217.35%] 

5.95 16,480 {10; 0.3; 0.2; 0} 

13.66 
[0%]

13.68 
[0.15%]

13.72 
[0.44%]

0.01 13,593 {20; 0.4; 0.35; 5} 

13.80 
[1.02%]

17.90 
[31.04%] 

69.04 
[405.42%] 

10.51 18,089 {50; 0.2; 0.05; 0} 

13.66 
[0%]

13.69 
[0.22%]

13.78 
[0.88%]

0.02 15,867 {50; 0.5; 0.5; 11} 

a Number of evaluations to reach the best solution in one run averaged over 50 runs with different random starting positions. 
dm: number of ants; (1- ρ): pheromone evaporation rate; pbest: refer to Eq. 21; β: relative weight of heuristic in Eq. 7. 

Table 5. Results for the 21-unit unit problem instance given by Max-Min Ant System 
(MMAS) [deviation from best-known OFC of  $13.66M]

Heur-
istic

Local 
search

Best OFC 
($M)

Average 
OFC ($M) 

Worst OFC 
($M)

Std dev. 
($M)

Average 
evaluationsa

Best parameter settings  

{m; ρ; τ0; β}b

63.41 
[21.80%] 

72.27 
[38.82%] 

81.15 
[55.88%] 

4.17 29,294 {200; 0.9; 100; 0} 

58.41 
[12.20%] 

64.31 
[23.53%] 

73.25 
[40.70%] 

3.21 28,384 {300; 0.9; 1; 11} 

58.91 
[13.16%] 

67.03 
[28.76%] 

79.99 
[53.65%] 

4.70 25,858 {300; 0.8; 1; 0} 

55.67 
[6.93%]

60.55 
[16.31%] 

67.97 
[30.56%] 

2.90 26,931 {300; 0.8; 10; 11} 

a Number of evaluations to reach the best solution in one run averaged over 50 runs with different random starting positions. 
bm: number of ants; (1- ρ): pheromone evaporation rate; τ0: initial pheromone trail; β: relative weight of heuristic in Eq. 7. 

Table 6. Results for the 22-unit unit problem instance given by Elitist-Ant System (EAS) 
[deviation from best-known OFC of $52.06]

Heur-
istic

Local 
search

Best OFC 
($M)

Average OFC 
($M)

Worst OFC 
($M)

Std dev. 
($M)

Average 
evaluations

Best parameter settings 

{m; ρ; pbest; β}d

59.91 
[15.08%] 

66.90 
[28.51%] 

76.17 
[46.31%] 

3.67 24,597 {100; 0.9; 0.5; 0} 

55.72 
[7.03%]

62.22 
[19.52%] 

68.65 
[31.87%] 

2.97 28,433 {200; 0.9; 0.2; 11} 

57.64 
[10.72%] 

64.81 
[24.49%] 

76.65 
[47.23%] 

4.27 27,455 {200; 0.8; 0.5; 0} 

54.56 
[4.80%]

59.42 
[14.14%] 

66.56 
[27.85%] 

2.87 24,537 {200; 0.8; 0.35; 11} 

a Number of evaluations to reach the best solution in one run averaged over 50 runs with different random starting positions. 
dm: number of ants; (1- ρ): pheromone evaporation rate; pbest: refer to Eq. 21; β: relative weight of heuristic in Eq. 7. 

Table 7. Results for the 22-unit unit problem instance given by Max-Min Ant System 
(MMAS) [deviation from best-known OFC of $52.06M] 
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Heu-
ristic

Local 
search

Best OFC
($M)

Average 
OFC ($M) 

Worst OFC 
($M)

Std
dev. 
($M)

Average 
DurCuttot

(wks)

Average 
evaluationsa

Best parameter 

settings {m; ρ; τ0; β}b

65.61 
[317.63%]

120.39 
[666.33%] 

209.05 
[1230.68%]

39.16 17.6 27,538 {300; 0.9; 0.01; 0} 

16.15 
[2.80%]

24.42 
[55.44%] 

31.06 
[97.71%] 

5.16 6.4 29,029 {500; 0.9; 0.01; 1} 

68.42 
[335.52%]

135.13 
[760.15%] 

219.07 
[1294.46%]

36.67 19.3 28,784 {300; 0.9; 0.01; 0} 

16.12 
[2.61%]

26.87 
[71.04%] 

41.24 
[162.51%] 

5.17 6.9 28,213 {500; 0.9; 0.01; 1} 

a Number of evaluations to reach the best solution in one run averaged over 50 runs with different random starting positions. 
bm: number of ants; (1- ρ): pheromone evaporation rate; τ0: initial pheromone trail; β: relative weight of heuristic in Eq. 7. 

Table 8. Results for the Modified 21-unit unit problem instance given by Elitist-Ant System 
(EAS) [deviation from best-known OFC of $15.71M] 

Heu-
ristic

Local 
search

Best OFC
($M)

Average 
OFC ($M) 

Worst OFC 
($M)

Std
dev. 
($M)

Average 
DurCuttot

(wks)

Average 
evaluationsc

Best parameter 

settings {m; ρ; pbest; β}d

28.69 
[82.62%] 

61.32 
[290.32%] 

119.15 
[658.43%] 

19.54 11.8 16,934 {20; 0.2; 0.2; 0} 

15.97 
[1.65%]

19.69 
[25.33%] 

29.03 
[84.79%] 

4.02 5.6 18,551 {50; 0.2; 0.05; 1} 

33.64 
[114.13%]

71.67 
[356.21%] 

132.10 
[740.87%] 

24.64 12.6 24,898 {500; 0.1; 0.05; 0} 

15.71 
[0%]

22.04 
[40.29%] 

29.66 
[88.80%] 

4.86 6.1 23,713 {500; 0.7; 0.05; 1} 

a Number of evaluations to reach the best solution in one run averaged over 50 runs with different random starting positions. 
dm: number of ants; (1- ρ): pheromone evaporation rate; pbest: refer to Eq. 21; β: relative weight of heuristic in Eq. 7. 

Table 9. Results for the Modified 21-unit problem instance given by Max-Min Ant System 
(MMAS) [deviation from best-known OFC of $15.71M] 

Heu-
ristic

Local 
search

Best OFC
($)

Average 
OFC ($) 

Worst
OFC ($) 

Std
dev. 
($)

Average 
DurCuttot

(wks)

Average 
evaluationsa

Best parameter settings 

{m; ρ; τ0; β}b

2186.22 
[138.64%]

2797.85 
[205.40%]

4267.31 
[365.80%]

410.33 21.9 27,896 {300; 0.9; 0.01; 0} 

1365.60 
[49.06%] 

1756.34 
[91.72%] 

2153.97 
[135.12%]

175.55 13.8 28,648 {500; 0.9; 0.01; 11} 

2331.92 
[154.54%]

2876.16 
[213.95%]

4357.14 
[375.61%]

501.14 23.2 26,187 {300; 0.9; 0.01; 0} 

1174.10 
[28.16%] 

1724.37 
[88.23%] 

2238.34 
[144.33%]

172.63 13.7 21,718 {300; 0.9; 0.01; 11} 

a Number of evaluations to reach the best solution in one run averaged over 50 runs with different random starting positions. 
bm: number of ants; (1- ρ): pheromone evaporation rate; τ0: initial pheromone trail; β: relative weight of heuristic in Eq. 7. 

Table 10. Results for the Modified 22-unit unit problem instance given by Elitist-Ant System 
(EAS) [deviation from best-known OFC of $916.12]
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Heu-
ristic

Local 
search

Best OFC
($)

Average 
OFC ($) 

Worst
OFC ($) 

Std
dev. 
($)

Average 
DurCuttot

(wks)

Average 
evaluations

Best parameter settings 

{m; ρ; pbest; β}d

1439.33 
[57.11%] 

2076.43 
[126.65%]

3998.67 
[336.78%]

440.16 15.6 26,219 {300; 0.6; 0.2; 0} 

1008.13 
[10.04%] 

1489.54 
[62.59%] 

2017.44 
[120.22%]

280.45 12.1 23,329 {20; 0.3; 0.35; 11} 

1614.39 
[76.22%] 

2068.8 
[125.82%]

3936.71 
[329.72%]

425.87 15.0 20,767 {20; 0.3; 0.2; 0} 

1001.12 
[9.28%]

1513.86 
[65.25%] 

2084.59 
[127.55%]

306.26 12.4 21,347 {50; 0.1; 0.35; 11} 

a Number of evaluations to reach the best solution in one run averaged over 50 runs with different random starting positions. 
dm: number of ants; (1- ρ): pheromone evaporation rate; pbest: refer to Eq. 21; β: relative weight of heuristic in Eq. 7. 

Table 11. Results for the Modified 22-unit unit problem instance given by Max-Min Ant 
System (MMAS)   [deviation from best-known OFC of $916.12]

Stage A: Impact of heuristic 
Overall, the new heuristic formulation for applying ACO to PPMSO problems significantly 
improved the results obtained for all four case studies, with and without the use of a local 
search operator and for both ACO algorithms (using a Student’s t-test at a 95% significance 
level). It can be seen that when the heuristic was used, not only were the average OFCs 
improved, but the standard deviations of the OFCs were also significantly smaller for all 
case studies (Tables 4 to 11), indicating that use of the new heuristic formulation enables 
good solutions to be found consistently.  
In order to gain a better understanding of the searching behavior of the ACO algorithms in 
solving each of the four case studies with and without heuristic, the optimisation process of 
the ACO runs was examined. The investigation is facilitated by utilizing the following terms 
to describe a given ACO-PPMSO run:   

• Objective function values (SSR, LVL and DurCuttot) associated with iteration-best 
schedules (referred to as IB-SSR, IB-LVL and IB-DurCuttot hereafter) 

• Violation of various constraints (demand and personpower shortfall) associated with 
iteration-best schedules (referred to as IB-LoadViotot, IB-ManViotot and IB-LoadResViotot

hereafter)
The optimization process of only one ACO-PPMSO run for the modified 21-unit case system 
is used for discussion purposes (Fig. 4). Figs. 4a and 4b compare the behaviour of the ACO-
PPMSO in solving the case system with and without heuristic. Overall, the ACO-PPMSO 
algorithm is found to explore the problem search space effectively by minimizing the 
objective function values (SSR, LVL and DurCuttot) for the four case studies investigated. 
This is illustrated by the decreasing trends of the IB-SSR and IB-DurCuttot curves in Figs. 4a 
and 4b. 
For all case studies, it is found that when the heuristic is used, the IB-SSR and IB-LVL 
obtained during the early stages of the optimisation runs were substantially lower (compare 
IB-SSR curves in Figs. 4a and 4b). In addition, it is observed that during the early stages of 
the ACO runs, fewer trial solutions that violated constraints were constructed when the 
heuristic was utilized (lower IB-LoadViotot, IB-ManViotot and IB-LoadResViotot). It is also 
found that the improvement in OFCs obtained when the heuristic is used for the modified 
21- and 22-unit case studies is partly attributed to a significant reduction in duration 
shortened. This is clearly shown in the comparison between Figs. 4a and 4b by the fact that 
the IB-DurCuttot curve is consistently lower throughout an ACO run when the heuristic 
formulation is used.  
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‡ Parameter settings used shown in the first row, last column of Table 9 (random number seed = 655) 
‡‡ Parameter settings used shown in the second row, last column of Table 9 (random number seed = 655) 
IB-SSR: Sum of squares of reserve associated with iteration-best schedules;  
IB-DurCuttot: Total reduction in outage duration due to shortening and deferral associated with iteration-best 
schedules

Figure 4. Modified 21-unit case system - Comparison of the SSR- and total duration 
shortened values associated with iteration-best schedules during optimisation run (Best-
known SSR = 2.62 x 106 MW2 with 5-week deferral) 
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In view of the experimental results, the heuristic formulation is useful for ACO-PPMSO in 
three ways. Firstly, as the distribution of pheromone intensity within the search space of a 
problem is uniform at the beginning of an ACO run (assuming a single initial pheromone 
value is used), the optimisation process initially resembles a random search. During this 
period, the heuristic formulation can guide the algorithm to search in regions where feasible 
solutions are located with a higher probability. In this way, the number of infeasible 
solutions being constructed and rewarded with pheromone can be reduced. Secondly, even 
if a heuristic is not essential for constructing feasible/near feasible trial solutions (as is the 
case when the PPMSO problem is not highly constrained), the heuristic can assist with 
constructing trial solutions that consist of fewer overlapping tasks. In this way, the 
generation capacities throughout the planning horizon associated with trial maintenance 
schedules being constructed are more evenly distributed, which is one of the common 
objectives of PPMSO problems. Thirdly, when shortening and deferral options are allowed, 
use of the heuristic increases the probabilities that longer outage durations are chosen 
throughout an entire ACO run. This is particularly useful when shortening and deferral 
options are frequently chosen at random during the early stage of an ACO run. 
In relation to the two ACO algorithms investigated (EAS and MMAS), the results obtained 
indicate that the heuristic has a significant positive impact on both EAS and MMAS. This is 
probably due to the ability of heuristic information to identify regions of the search space 
where high-quality initial solutions lie, reducing the number of low-quality trial solutions 
being reinforced at the beginning of an optimisation run. In addition, the results indicate 
that the ACO-PPMSO heuristic has a bigger positive impact on EAS compared to MMAS. 
EAS tends to stagnate after a number of iterations, which increases the impact of the quality 
of the initial solutions. The importance of the regions where the ants initially search using 
EAS is also highlighted by the relatively larger number of ants found for the best parameter 
settings than those for MMAS (Tables 4, 6, 8 and 10), implying that a search with more ants 
in each iteration (resulting in a smaller number of iterations during an optimisation run, as 
the total number of function evaluations is fixed) works better than one with fewer ants 
(resulting in a larger number of iterations during an optimisation run, as the total number of 
function evaluations is fixed). On the other hand, relatively smaller ant populations are 
found to perform best for MMAS (Tables 5, 7, 9 and 11), which might be attributed to the 
continuous exploration during an MMAS run (Fig. 4b) as a result of the lower and upper 
bound for pheromone values. It is interesting to observe that despite the expected overall 
downward trends throughout an optimisation run, the IB-SSR and IB-LVL curves spike 
occasionally throughout a run when a small population of ants is used (Fig. 4b). This 
phenomenon is found to be caused by the choice of non-best solutions after a short 
convergence (stagnation in OFC), which altered the distribution of pheromone over the 
problem search space. It should be noted that the possibility of having an iteration-best 
solution that is not the best-so-far solution is higher when a smaller population of ants is used. 
B. Impact of local search 
The optimisation results obtained by coupling the PPMSO-2-opt local search operator with the 
ACO algorithms investigated (Stage B of the testing procedure in Fig. 3) are tabulated in Tables 4 
to 11. The unpaired Student’s t-test was used to check the significance of the impact of the local 
search operator in solving the four case studies with and without heuristic (Tables 12 and 13).  
Overall, the impact of the PPMSO-2-opt local search operator ranges from being 
insignificant, to significantly improving or degrading the performance of the ACO 
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algorithm investigated. While having a positive impact on solving the original 22-unit case 
study, regardless of which of the two ACO algorithms was used, the PPMSO-2-opt local 
search operator was found to improve only the performance of EAS when the heuristic was 
not used for solving the original 21-unit case study. As for the modified case studies, the 
performance of ACO in solving the modified 21-unit case study was reduced significantly 
when the PPMSO-2-opt local search operator was adopted, while the impact of the local 
search was not significant when applied to the modified 22-unit case study. 

21-unit system 22-unit system Modified 21-unit system Modified 22-unit system 

Heuristic EAS MMAS EAS MMAS EAS MMAS EAS MMAS 

+ NIL + +  NIL NIL 

NIL NIL + +  NIL NIL 

Notation: 
+: Significant positive impact; : Significant negative impact; NIL: Insignificant impact.

Table 12. Impact of PPMSO-2-opt local search operator with and without heuristic 

From the results of the Stage B testing, it is interesting to observe that despite the similarity 
in the number of generating units for the 21- and 22-unit case study systems, the impact of 
the PPMSO-2-opt local search algorithm on the optimisation results of these case studies was 
quite different, which is likely to be caused by the difference in the problem characteristics 
of the two systems.  
In order to better understand the results obtained, a series of tests were conducted to 
investigate the mechanism of PPMSO-2-opt in detail. The satisfaction of constraints 
associated with iteration-best solutions (target solutions) used for the local search operation 
and the % of infeasible local solutions generated when using MMAS were examined. It 
should be noted that the results were obtained using the proposed heuristic formulation. 
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using MMAS) 
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It can be seen that for the original 21-unit case study (Fig. 5), a large number of infeasible 
local solutions were generated by PPMSO-2-opt in every iteration, even with feasible 
iteration-best solutions (target maintenance schedules). A local solution generated by simply 
exchanging the maintenance start time of two randomly chosen generating units without 
any guidelines is likely to result in infeasible solutions in such a highly constrained search 
space. As a result, PPMSO-2-opt seems to have an insignificant or even detrimental impact 
when coupled with ACO for solving the aforementioned case studies. This is particularly 
evident for the modified 21-unit case study, where as many as 50% to 80% of the local 
solutions generated by PPMSO-2-opt in every iteration are infeasible with regard to both 
load and personpower constraints, which is responsible for the significant decrease in ACO 
performance. These results suggest that the PPMSO-2-opt local search operator is not well 
suited to problems with highly constrained search spaces.  
On the other hand, the local solutions generated by PPMSO-2-opt in solving the original 22-
unit case study are all feasible, as the iteration-best solutions are also feasible.  In fact, this is 
the only case study for which PPMSO-2-opt is found to be effective in improving the 
optimisation ability of ACO. Compared to the other three case systems, the original 22-unit 
case system is less constrained. Therefore, the results obtained indicate that PPMSO-2-opt
can be useful for solving problems that are not highly constrained. 
C. Overall performance of ACO-PPMSO 
Original 21-unit and 22-unit case studies
By using the ACO-PPMSO algorithm, a new best-known objective value has been found for 
both the original 21-unit case study (SSR = 13.66 x 106 MW2) and the original 22-unit case 
study (LVL = 52.06 MW). 
A comparison of the results obtained by ACO-PPMSO with those obtained by various 
metaheuristics in other studies for the 21-unit case study, including those by Aldridge et al.
(1999), who used a simple genetic algorithm (GA), a generational  GA (GNGA) and a steady 
state GA (SSGA), and Dahal et al. (2000), who applied Simulated Annealing (SA) and an 
Inoculated GA to this problem, is shown in Fig. 6. As mentioned previously, the number of 
evaluations (trial solutions) allowed in the ACO runs and those of the other metaheuristics 
was identical. In particular, the best and average results of the metaheuristics were 
compared. While the best and average results given by the simple GA, SSGA, GNGA, 
inoculated GA and SA were obtained by 10 runs with different starting positions (Aldridge
et al., 1999; Dahal et al., 1999; Dahal et al., 2000), those of EAS and MMAS were obtained 
using 50 runs.  
It can be seen that the EAS and MMAS algorithms have outperformed the algorithms that 
have been applied to this case study previously. It should be noted that a new best-found 
solution (SSR = 13.66 x 106 MW2) for the 21-unit case study has been found by EAS and 
MMAS using the new ACO-PPMSO formulation. In addition, it can be seen that the 
differences between the average and best results of the ACO algorithms are much smaller 
than those for other metaheuristics (Fig. 6), which indicates a consistent performance of the 
ACO-PPMSO formulation.  
Among the metaheuristics previously used for solving the 21-unit case study, the inoculated 
GA, where the initial population is generated using a heuristic that ranks the generating 
units in order of decreasing capacity, was found to perform best in terms of the average 
results obtained. This highlights the potential benefit of a heuristic in solving PPMSO 
problems.
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Figure 6. Comparison between results obtained using other optimisation methods (Aldridge 
et al., 1999; Dahal et al., 1999; Dahal et al., 2000) and the ACO algorithms 

As mentioned previously, a new best-found solution (SSR = 13.66 x 106 MW2) has been 
found by the ACO-PPMSO formulation proposed in this chapter. An examination of the 
solutions obtained for the 21-unit case study found that different maintenance schedules are 
associated with the new best-found SSR solution. In other words, there is more than one 
optimal solution in the problem search space. 
In Fig. 7, the reserve level across the planning horizon associated with the best-known 
schedule found by ACO-PPMSO for the original 22-unit case study is compared with those 
obtained by implicit enumeration (Escudero et al., 1980) and tabu search (El-Amin et al.,
2000). It can be seen that the reserve level given by the ACO schedule is more evenly spread 
out (summed deviation of generation reserve from the average reserve, LVL = 52.06 MW) 
than those obtained with implicit enumeration (LVL = 118.81 MW) and tabu search (LVL = 
256.93 MW). It should be noted that due to insufficient information about the optimum 
solution in El-Amin et al. (2000), the LVL value of tabu search shown in Fig. 7 was calculated 
using the best available published information. 
Modified 21-unit and 22-unit case studies
As the modified versions of the 21- and 22-unit case studies have been introduced in this 
chapter to test the developed ACO-PPMSO formulation, there are no previous results 
available for comparison purposes. As can be seen in Tables 7 to 10, the optimized 
maintenance schedules of both the modified 21- and 22-unit case studies include the 
shortening and/or deferral of maintenance tasks (average duration shortened/deferred > 0). 
The best-found objective function costs (OFCs) found for the modified 21-unit case study is 
$15.71M and $916.12 for the modified 22-unit case study. In the maintenance schedules 
associated with the best-found OFC for the modified 21-unit case study, the maintenance 
tasks for generating units 11 and 21 are deferred, while all other tasks are carried out as 
normal. For the modified 22-unit case study, maintenance tasks for generating units 10, 16 
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and 17 are shortened by 2, 4 and 2 weeks, respectively. It should be noted that all constraints 
are satisfied by the best-found schedules. 
The results for the modified versions of the 21-unit and 22-unit case studies indicate that the 
ACO-PPMSO formulation introduced in this chapter is able to identify maintenance 
schedules that satisfy hard system constraints (eg. system demands) by shortening and 
deferring maintenance tasks. More importantly, the shortening and deferral options were 
only used if necessary, as only a few, but not all, maintenance tasks were 
shortened/deferred. 
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Figure 7. Comparison of reserve levels obtained using ACO, implicit enumeration (Escudero 
et al., 1980) and tabu search (El-Amin et al., 2000)

5. Summary and Conclusions 

In this chapter, a formulation for applying Ant Colony Optimization (ACO) to power plant 
maintenance scheduling optimization (PPMSO) has been developed and successfully tested 
using four case studies (original and modified versions of two benchmark case studies from 
the literature). In particular, the performance of the heuristic formulation developed, the 
two local search algorithms introduced and the overall utility of the ACO-PPMSO 
formulation were investigated. The results obtained have shown that the heuristic 
formulation improves the performance of the ACO-PPMSO algorithm significantly when 
applied to the four case studies investigated. It was found that while the PPMSO-2-opt local 
search operator seems to work well for unconstrained problems, it is not suitable for highly-
constrained PPMSO problems. Lastly, the results obtained by ACO-PPMSO for the two 
original case studies were better than those obtained by other optimisation methods, such as 
various genetic algorithm (GAs) formulations and simulated annealing (SA). For the 21-unit 
and 22-unit case studies, a new optimal solution has been found by the ACO-PPMSO 
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formulation. In addition, the results given by ACO-PPMSO were more consistent compared 
with those obtained using other metaheuristics previously applied to the two benchmark 
case studies. The maintenance schedules found for the modified case studies have also been 
examined and it was found that the ACO-PPMSO formulation is able to meet hard system 
constraints by shortening and deferring maintenance. The results of experiments carried out 
using the original and modified versions of the 21-unit and 22-unit case studies indicate that 
the ACO-PPMSO formulation presented in this chapter has potential for solving real-world 
PPMSO problems.  
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