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Abstract

This book chapter reviews and summarizes the recent progress in the design of spatial‐
based robust adaptive repetitive and iterative learning control. In particular, the collection
of methods aims at rotary systems that are subject to spatially periodic uncertainties and
based on nonlinear control paradigm, e.g., adaptive feedback linearization and adaptive
backstepping. We will elaborate on the design procedure (applicable to generic nth‐
order systems) of each method and the corresponding stability and convergence theorems.

Keywords: rotary system, disturbance rejection, robust adaptive control, repetitive
control, iterative learning control

1. Introduction

Rotary systems play important roles in various industry applications, e.g., packaging, print‐
ing, assembly, fabrication, semiconductor, and robotics. A conspicuous characteristic of such
systems is the utilization of actuators, e.g., electric motor, to control the angular position, velocity,
or  acceleration of  the system load.  Depending on the occasion of  application,  simple or
complicated motion control algorithm may be used. The increasing complexity in architec‐
ture and the high‐performance requirement of recent rotary systems have posed a major
challenge on conceiving and synthesizing a desirable control algorithm.

Nonlinearities and uncertainties are common issues when designing a control algorithm for a
rotary system. Nonlinearities are either intrinsic properties of the system or actuator and sensor
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dynamics being nonlinear. Uncertainties mainly come from structured/unstructured uncer‐
tainties (also known as parametric uncertainty/unmodeled dynamics) and disturbances. For
tackling nonlinearities, conventional techniques, e.g., feedback linearization and backstep‐
ping, are to employ feedback to cancel all or part of the nonlinear terms. On the contrary, design
techniques for conducting disturbance rejection or attenuation in control systems may be
roughly categorized with respect to whether or not the techniques generate the disturbance
by an exosystem. Representative techniques that resort to the exosystem of the disturbance are
internal model design [1,2], which originates from the internal model principle [3], and
observer‐based design [4,5]. Establishing a suitable mathematical description of the disturb‐
ance is an essential step for internal model design techniques. An internal model design for
systems in an extended output feedback form and subject to unknown sinusoidal disturbances
was addressed in [1]. For observer‐based design techniques, an observer is usually employed
to estimate the states of the unknown exosystem. Chen [5] showed that the design of the
observer can be separated from the controller design. For techniques that do not resort to the
exosystem of the disturbance, disturbance observer [6,7] or optimization‐based control
approaches [8,9] have been shown to work well. In [6], integral phase shift and half‐period
integration operator were used together to estimate the periodic disturbances. Another type
of disturbance observers was introduced in [7]. The proposed disturbance observer may
estimate lumped disturbances that comprise unmodeled dynamics and disturbances. How‐
ever, the performance of the disturbance observer is very sensitive to the adaptation rate of
the estimated disturbance components. If the output error of the disturbance observer does
not converge sufficiently fast, instability or performance degradation is inevitable.

With measurement of the system states not available, a common technique is to establish a
state observer that provides estimates of the states. Unlike state observer for linear systems,
no state observer is applicable to general nonlinear systems. Most state observers for nonlinear
systems are suited for systems transformable to a specific representation, e.g., normal form [10]
or adaptive observer form [11]. One class of observers, known as adaptive state observers, are
those having their own update laws adapt the estimated parameters [11,12] or the observer
gain [10] to minimize the observer error, i.e., the error between the real states and the estimated
states. Marine et al. [11] and Vargas and Hemerly [12] presented a state estimator design for
systems subject to bounded disturbances. Bullinger and Allgöwer [10] proposed a high‐gain
observer design for nonlinear systems, which adapts the observer gain instead of the estimated
system parameters. The uncertainties under consideration are nonlinearities of the system.
However, the observer error converges to zero only when persistent excitation exists or the
disturbance magnitude goes to zero. Moreover, the update law for the observer might have
an unexpected interaction with that of the control law. The other type of state observers, e.g.,
K‐filters [13,14] and MT‐filters [15,16], does not estimate the system states directly. Specifically,
the update law for adapting estimated system parameters (which include both observer and
system parameters) is determined from the control law to ensure desired stability and
convergence property.

Temporal‐based motion control algorithms of various class have been in progress lately.
Adaptive control is suited for systems susceptible to uncertain but constant parameters.
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Moreover, repetitive and iterative learning control [17–21] is capable of dealing with systems
affected by periodic disturbances or in need of tracking periodic commands. Lately, adaptive
control has been adopted to adapt the period of the repetitive controller [22,23]. Adaptive and
iterative learning control has consolidated and been studied by researchers (see [17] and
references therein). The integration immediately gains benefits, such as perfect tracking over
finite time, dealing with time‐varying parameters, and nonresetting of initial condition. As
indicated by Chen and Chiu [19] and Chen and Yang [24], most temporal‐based control
algorithms for rotary systems of variable speed do not explore the characteristics of most
uncertainties being spatially periodic. Analyzing and synthesizing such control system in time
domain will mistakenly admit those spatially periodic disturbances/parameters as nonperi‐
odic/time‐varying ones. This often results in a design either with complicated time‐varying
feature or with degraded performance.

Spatial‐based control algorithms have been studied by researchers recently. The initial step is
to reformulate the given system model into the one in spatial domain. Because the reformu‐
lation renders those spatial uncertainties stationary in spatial domain, position‐invariant
control design can be performed to achieve the desired performance regardless of the operating
speed. A spatial‐based repetitive controller synthesizes its kernel (i.e., e−Ls with positive
feedback) and operates in accordance with spatial coordinate, e.g., angular displacement.
Therefore, its ability for spatially periodic disturbances or references rejection/tracking will
not deteriorate as the system operates at variable speed. A regular repetitive controller is
composed of repetitive (i.e., a kernel) and nonrepetitive (e.g., a stabilizing controller) parts.
With the kernel synthesized with respect to spatial coordinate and given a time‐domain
system, designing the nonrepetitive portion that interfaces with the repetitive kernel properly
poses a challenge. For spatially periodic disturbance rejection, Nakano et al. [18] reformulated
a given linear time‐invariant (LTI) system in an angular position domain. The resulting
nonlinear system was linearized around an operating speed. Coprime factorization is then
used to synthesize a stabilizing controller with repetitive kernel for the acquired linear model.
A more sophisticated design based on linearization and robust control was proposed by Chen
et al. [25]. Design approaches for linearized systems are straightforward. However, the overall
system might lack the stability of operating at a variable speed or coping with large velocity
fluctuation. For tracking of spatially periodic references, Mahawan and Luo [26] have vali‐
dated the idea of operating the repetitive kernel in angular domain and the stabilizing
controller in time domain. Doing so does not require reformulation of the open‐loop system.
For experimental verification, however, the approach involves solving an optimization
problem to synchronize the hardware (time) and software (angular position) interruptions. To
further limit the applicability, the mapping between time and angular position has to be known
a priori. The problem formulation made by Nakano and Mahawan assumed the simplest
scenario, i.e., the open‐loop system is LTI without nonlinearity and modeling uncertainty.
Chen and Chiu [19] reported that a class of nonlinear models can be reformulated into a quasi‐
linear parameter varying (quasi‐LPV) system. An LPV gain‐scheduling controller was
synthesized subsequently to address unmodeled dynamics, actuator saturation, and spatially
periodic disturbances. The approach could lead to conservative design if the number of
varying parameters rises, the parametric space is nonconvex, or the modeling uncertainties
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are significant. The restraint and conservatism of modeling uncertainties was relieved by Chen
and Yang [24] by formulating a spatial‐based repetitive control system with the adoption of
adaptive feedback linearization. However, this method is only applicable to systems with
measurement of all states available in real time.

The design of spatial‐based repetitive control has been sophisticated enough to cope with a
class of uncertain nonlinear systems. On the contrary, existing spatial‐based iterative learning
controls [27,28] are still primitive and aim at only linear systems. It is not apparent whether
those methods can be generalized to be applicable for nonlinear and high‐order systems.
Knowing that spatial uncertainties in rotary systems may be tackled as periodic disturbances
or periodic parameters [29–31], treating the uncertainties as disturbances seem to be more
prevalent in literatures.

This book chapter reviews and summarizes the recent progress in the design of spatial‐based
robust adaptive repetitive and iterative learning control. In particular, the collection of
methods aims at rotary systems that are subject to spatially periodic uncertainties and based
on nonlinear control paradigm, e.g., adaptive feedback linearization and adaptive backstep‐
ping. We will elaborate on the design procedure (applicable to generic nth‐order systems) of
each method and the corresponding stability and convergence theorems. The outline of the
chapter is as follows.

Section 2 presents a spatial‐based robust repetitive control design that builds on the design
paradigm of feedback linearization. This design basically evolves from the work of Chen and
Yang [24]. The proposed design resolves the major shortcoming in their design, i.e., which
requires full‐state feedback, by the incorporation of a K‐filter‐type state observer. The system
is allowed to operate at varying speed, and the open‐loop nonlinear time‐invariant (NTI) plant
model identified for controller design is assumed to have both unknown parameters and
unmodeled dynamics. To attain robust stabilization and high‐performance tracking, we
propose a two‐degrees‐of‐freedom control configuration. The controller consists of two
modules, one aiming at robust stabilization and the other tracking performance. One control
module applies adaptive feedback linearization with projected parametric adaptation to
stabilize the system and account for parametric uncertainty. Adaptive control plays the role
of tuning the estimated parameters, which differs from those methods (e.g., [22,23]), where it
was for tuning the period of the repetitive kernel. The other control module comprises a spatial
low‐order and attenuated repetitive controller combined with a loop‐shaping filter and is
integrated with the adaptively controlled system. The overall system may operate in variable
speed and is robust to model uncertainties and capable of rejecting spatially periodic and
nonperiodic disturbances. The stability of the design can be proven under bounded disturb‐
ance and uncertainties.

Section 3 presents another spatial‐based robust repetitive control design that resorts to the
design paradigm of backstepping. This design basically builds on the work of Yang and Chen
[32]. The method has been extended to a category of nonlinear systems (instead of just LTI
systems). Furthermore, the main deficiency of requiring full‐state feedback in Yang and Chen's
design is resolved by incorporating a K‐filter‐type state observer. To achieve robust stabiliza‐
tion and high‐performance tracking, a two‐module control configuration is constructed. One
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of the module using adaptive backstepping with projected parametric adaptation to robustly
stabilize the system. The other module incorporates a spatial‐based low‐order and attenuated
repetitive controller cascaded with a loop‐shaping filter to improve the tracking performance.
The overall system incorporating the state observer can be proven to be stable under bounded
disturbance and system uncertainties.

Section 4 introduces a spatial‐based iterative learning control design that is suited for a generic
class of nonlinear rotary systems with parameters being unknown and spatially periodic.
Fundamentally, this design borrows the feature of parametric adaptation in adaptive control
and integrates it with iterative learning. Note that the theoretical success of the integration is
not immediate because the stability and tracking performance of the overall system is in need
of further justification. Control input and periodic parametric tuning law are specified by
establishing a sensible Lyapunov‐Krasovskii functional (LKF) and rendering its derivative
negative semidefinite. The synthesis of the control input and parametric tuning law and
stability/convergence analysis established for this design is distinct from that in [17]. Moreover,
unlike a typical adaptive control, the proposed periodic parametric tuning law can cope with
unknown parameters of stationary or arbitrarily fast variation.

Section 5 concludes the chapter and points out issues and future research directions relevant
to spatial‐based robust adaptive repetitive and iterative learning control.

2. Spatial‐based output feedback linearization robust adaptive repetitive
control (OFLRARC)

Consider the state‐variable model of an nth‐order single‐input single‐output NTI system with
model uncertainties and output disturbance, i.e.,

( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )
( ) ( ) ( ) ( )

f f f fé ù é ù= + D + + Dë û ë û
= Y + = +

&

1

, , , ,t f t f t g t g

y y

x t f x t f x t g x t g x t u t

y x t d t x t d t
(1)

where x(t)= x1(t) ⋯ xn(t) T , Ψ = 1 0 ⋯ 0 , u(t), and y(t) correspond to the control input
and measured output angular velocity of the system, respectively.

Assumption 2.1

(1) dy(t) is a class of bounded signals with (dominant) spatially periodic and band‐limited (or
nonperiodic) components.

Here, band‐limited disturbances are signals with Fourier transform or power spectral density
being zero above a certain finite frequency. The number of distinctive spatial frequencies and
the spectrum distribution are the only available information of the disturbances.

(2) f t(x(t), ϕf ) and gt(x(t), ϕg) are known vector‐valued functions with unknown but bounded
system parameters, i.e., ϕf = ϕ f 1 ⋯ ϕ fk  and ϕg = ϕg1 ⋯ ϕgl .

Robust Adaptive Repetitive and Iterative Learning Control for Rotary Systems Subject to Spatially Periodic
Uncertainties

http://dx.doi.org/10.5772/63082

103



(3) Δ f t(x(t), ϕf ) and Δgt(x(t), ϕg) represent unmodeled dynamics, which are also assumed to

be bounded.

Consider an alternate variable θ =λ(t), i.e., the angular displacement, instead of time t  as the

independent variable. Because λ(t)= ∫0
t
ω(τ)dτ + λ(0) where ω(t) is the angular velocity, the

following condition

qw = > "( ) 0,   t >0dt
dt

(2)

will ensure that λ(t) is strictly monotonic, so that t =λ −1(θ) exists. Hence, all the time‐domain
variables can be transformed into their counterparts in the θ‐domain, i.e.,

q l q q l q q l q q l q w q w l q- - - - -= = = = =1 1 1 1 1ˆˆ ˆ ˆ ˆ( ) ( ( )),  ( ) ( ( )),  ( ) ( ( )),  ( ) ( ( )),  ( ) ( ( ))x x y y u u d d

where we denote •
^

 as the θ‐domain representation of • . Note that, in practice, (2) can usually
be satisfied for most rotational motion system where the rotary component rotates only in one
direction. Because

q q q w q q q= × = ×ˆ ˆ ˆ( ) ( ) ( ) ( )dx t dt d dt dx d dx d

(1) can be rewritten as

( )( ) ( )( ) ( )( ) ( )( ) ( )

( ) ( )

qw q q f q f q f q f q
q

q q q q q

é ù é ù= + D + + Dë û ë û

= Y + = +1

ˆ( )ˆ ˆ ˆ ˆ ˆ ˆ( ) , , , ,

ˆ ˆˆ ˆ ˆ( ) ( ) ( ) .

t f t f t g t g

y y

dx f x f x g x g x u
d

y x d x d
(3)

Equation (3) is an nonlinear position‐invariant (NPI; as opposed to the definition of time‐
invariant) system with the θ as the independent variable. Note that we define the Laplace

transform of a signal ĝ(θ) in the angular displacement domain as Ĝ(s̃)= ∫0
∞

ĝ(θ)e −s̃θdθ.

This definition will be useful for describing the linear portion of the overall control system.

Drop the θ notation and rewrite (3) in the form

f f w= + + = + = +& ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ,  ( )f g s y yx f x g x u d y h x d d (4)
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where terms involving unstructured uncertainty are merged into d̂ s =Δf (x̂, ϕf ) + Δg(x̂, ϕg)û
with Δf (x̂, ϕf )=Δ f t(x̂, ϕf ) / x̂1, Δg(x̂, ϕg)=Δgt(x̂, ϕf ) / x̂1. In addition, we have

( )f f f f w= = = =1 1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , ) , ( , ) , , ( )f t f g t gf x f x x g x g x x h x x

The state variables have been specified such that the angular velocity ω̂ is equal to x̂1, i.e., the
undisturbed output h (x̂). To proceed, we will adopt the definitions and notations given in [24]
for Lie derivative, relative degree, diffeomorphism.

It can be verified that (4) has the same relative degree in D0 = {x̂∈ℝn | x̂1≠0} as the NTI model
in (1). If (4) has relative degree r , the following nonlinear coordinate transformation can be
defined as

y y -
-

é ù
é ù= = ê úë û ê úë û

L L @ 21
1

1

ˆ
ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ˆ

Tr
n r f

z
z T x x x h x L h x z

where ψ1 to ψn−r  are chosen such that T (x̂) is a diffeomorphism on D0⊂D and

y = £ £ -ˆ( ) 0,  1g iL x i n r

∀ x̂∈D0. With respect to the new coordinates, i.e., ẑ1 and ẑ2, (4) can be transformed into the
so‐called normal form, i.e.,

y -

-
-

=

-
-=

=

= + Y

é ù
é ù ê ú= + + + = +ê úë û ê ú

ë û

& @

&

1

1
1

2 1 2ˆ ˆ( )

1
1 1 11ˆ ˆ( )

ˆ ˆ( )

ˆˆ ˆ ˆ ˆ( ) ( , )

ˆ( ) ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ( ) ,  
ˆ( )

f sox T z

r
fr

c c g f si c yrx T z
g f x T z

z L x d z z

L h x
z A z B L L h x u d y C z d

L L h x

(5)

where d̂ so and d̂ si = d̂ si1 ⋯ d̂ sir
T  come from d̂ s going through the indicated coordinate

transformation. ẑ1 = ẑ11 ⋯ ẑ1r
T ∈ℝr , ẑ2∈ℝn−r , and (Ac, Bc, Cc) is a canonical form represen‐

tation of a chain of r  integrators. The first equation in (5) is the internal dynamics and not
affected by the control û. By setting ẑ1 =0, we obtain ż̂2 =Ψ(0, ẑ2), which is the zero dynamics of
(4) or (5). The system is called minimum phase if the zero dynamics has an asymptotically
stable equilibrium point in the domain of interest. To allow us to present the proposed
algorithm and stability analysis in a simpler context, we will make the following assumptions
for the subsequent derivation.
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Assumption 2.2

(1) f (x̂(θ), ϕf ) and g(x̂(θ), ϕg) are linearly related to those unknown system parameters, i.e.,

( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )q f f q f q q f f q f q= + + = + +1 1 1 1ˆ ˆ ˆ ˆ ˆ ˆ, ... ,  , ...f f fk k g g gl lf x f x f x g x g x g x (6)

(2) (4) is exponentially minimum phase, i.e., the zero dynamics is exponentially stable;

(3) The output disturbance is sufficiently smooth [i.e., ḋ̂ y, ⋯ , d̂ y
(r ) exists];

(4) d̂ si1
(r−1), d̂ si2

(r−2), ⋯ , ḋ̂ sir −1
 exist, i.e., the transformed unstructured uncertainty is sufficiently

smooth; and

(5) The reference command ŷm and its first r  derivates are known and bounded. Moreover, ŷm
(r )

is piecewise continuous.

With Assumption 2, the design of a nonlinear state observer may focus on the external
dynamics of (5), i.e.,

-
-

-
-=

=

é ù
é ù ê ú= + + +ê úë û ê ú

ë û

&
1

1

1
1 1 1ˆ ˆ( )

ˆ ˆ( )

ˆ( ) ˆˆ ˆ ˆ ˆ( )
ˆ( )

r
fr

c c g f sirx T z
g f x T z

L h x
z A z B L L h x u d

L L h x (7)

2.1 State observer design

In this section, we show how to establish a state observer for the transformed NPI system (5).
Because f (x̂) and g(x̂) are assumed to be linearly related to system parameters, L g L f

r−1h (x̂)

and L g L f
r−1h (x̂) can be expressed as

( ) ( )-= Q = Q1ˆ ˆ ˆ ˆ( ) ,  ( )r T r T
f f g f gL h x W x L L h x W x

where W f (x̂) and Wg(x̂) are two nonlinear functions, and

[ ]1 1 1 .f f f f f fé ùQ = = Îë û
l

lL L L L ¡
T T

f fk g gl

where ℓ denotes the number of unknown parameters. Hence, (7) can be rewritten as

( ) ( )é ù= + Q + Q +ë û
&

1 1
ˆˆ ˆ ˆ ˆ ˆT T

c c g f siz A z B W x u W x d (8)
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Equation (8) can be further written in the form

( ) ( )é ù= + + Q + Q +ë û
&

1 0 1 11
ˆˆ ˆ ˆ ˆ ˆ ˆ ,T T

c g f siz A z k z B W x u W x d (9)

where A0 =

−k1

⋮
−kr

I(r−1)×(r−1)

01×(r−1)
 and k̄ = k1 ⋯ kr

T .

By properly choosing k̄ , the matrix A0 can be made Hurwitz. Next, we adopt the following
observer structure:

( ) ( )é ù= + + Q + Që û
&

1 0 1 ˆ ˆ ˆ ˆT T
c g fz A z ky B W y u W y (10)

where z̄1 = z̄11 ⋯ z̄1r
T  is the estimate of ẑ1 and W̄ f ( ŷ) and W̄ g( ŷ) are nonlinear functions

with the same structure as W f (x̂) and Wg(x̂) , except that each entry of x̂ is replaced by ŷ.
Equation (10) can be further expressed as

( )

( ) ( )
- ´ ´

é ù
= + + Q = Îê ú

+ê úë û

l l& ¡
1

1 0 1

0
ˆ ˆ ˆ ˆ ˆ( , ) ( , )

ˆ ˆ
with

ˆ
rT T r

T T
f g

z A z ky F y u F y u
W y W y u

(11)

Define the state estimated error as ε≜ εẑ 11 ⋯ εẑ 1r
T ≜ ẑ1− z̄1. The dynamics of the estimated

error can be obtained by subtracting (10) from (9), i.e.,

( ) ( ) ( ) ( )e e é ù é ù= + D D = - + Q - + Q - +ë û ë û& 0
ˆ ˆˆ ˆ ˆ ˆ ˆ .T T
y c g g c f f siA kd B W x W y u B W x W y d (12)

Here, we further assume that

Assumption 2.3

(9) Wg(x̂)−W̄ g( ŷ) and W f (x̂)−W̄ f ( ŷ) are bounded to ensure the boundness of the estimated
error. To see this, note that the solution of (12) may be viewed as sum of zero input response
εu and zero state response εs, i.e., ε =εu + εs. The zero input response ε̇u = A0εu will decay to zero
exponentially, as A0 is Hurwitz, and the zero state response εs will be bounded due to the
bounded disturbance d̂ y, Wg(x̂)−W̄ g( ŷ), and W f (x̂)−W̄ f ( ŷ).

Equation (10) or (11) cannot be readily implemented due to the unknown parametric vector
Θ, but it motivates the subsequent mathematical manipulation. Define the state estimate as
z̄1≜ξ + Ω T Θ such that ξ = ξ11 ⋯ ξ1r

T ∈ℝr  and Ω T ∈ℝr×ℓ and employ the following two K‐
filters:
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x x= + W = W +& &
0 0ˆ ˆ ˆ,  ( , ) .T T TA ky A F y u (13)

It can be easily verified that (13) is equivalent to (11). Hence, (13) may replace the role of (11)
for providing the state estimate. With Ω T ≜ v1 ⋯ vℓ , the second equation of (13) may be
further decomposed into

s= + =& L l0 , 1,2, ,j j r jv A v e j (14)

where er = 0 ⋯ 0 1 ∈ℝr  and σj =w1 j + w2 jû with w1 j and w2 j are the j th  columns of W̄ f
T ( ŷ)

and W̄ g
T ( ŷ), respectively. Equation (13) is still not applicable due to Θ. However, with the

definition of the state estimated error ε, the state estimate, the first equation of (13), and (14),
we acquire the following relationship that is not available from (11):

e x f e

e x f e

=

=

= + = + +

= + = + +

å
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l
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11 11

1 1

ˆ ˆ11 11 11 ,1 1
1

ˆ ˆ1 1 ,
1

ˆ ˆ,  ... ,  

r r

z j j z r
j

r z r j r j z
j

z z v z

z v
(15)

where • j ,i  denotes the ith row of • j . Equation (15) will be used in the subsequent design.

2.2 Output feedback robust adaptive repetitive control system

In this section, we show how to incorporate the state observer established in the previous
section into an output feedback adaptive repetitive control system. The control configuration
consists of two layers. The first layer is the adaptive feedback linearization, which tackles
system nonlinearity and parametric uncertainty. The second layer is a repetitive control
module of a repetitive controller and a loop‐shaping filter. This layer not only enhances the
ability of the overall system for rejection of disturbance, sensitivity reduction to model
uncertainty, and state estimated error but also improves the robustness of the parametric
adaptation. Although inclusion of the state observer relieves the design of the need of full‐state
feedback, it actually introduces extra dynamics into the system. Hence, the stability of the
resulting system needs to be further justified.

Suppose that (4) has relative degree r. To perform input/output feedback linearization,
differentiate the output ŷ until the control input û appears to obtain

( ) ( ) ( ) ( ) ( )e= + = + = + +& & &
1ˆ11 1 1

ˆ ˆ ˆˆ ˆ ˆ
r

r r r r r
y r y r z yy z d z d z d (16)

Substituting the r th state equation of (10) into (16), we have
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( ) ( ) ( ) ( ) ( )= + + = - + + Q + Q + +& & &
1 1ˆ ˆ1 11
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r r

r r rT T
r z y r r f g z yy z d k z k y W y W y u d ze e (17)

To put the previously developed state observer into use, we substitute the first equation of (15)

into (17) and arrive at

( ) ( ) ( ) ( )

=

æ ö
ç ÷= - + + + Q + Q + +
ç ÷
è ø

å
l

&
1ˆ11 ,1

1

ˆˆ ˆ ˆ ˆ ˆ
r

r rT T
r j j r f g z y

j

y k v k y W y W y u dx f e (18)

Define the estimated parametric vector of Θ as

f f f f f fé ù é ùQ = = Îë û ë û
l

l
% % % % % %% L L L L ¡1 1 1 .

T T

f fk g gl

The control law using the estimated system parameters and states is

( ) ( ) x f
=

æ öæ ö
ç ÷ç ÷= -Q + + - + +

ç ÷ç ÷Q è øè ø
å
l

%%%
% ˆ11 ,1

1

1ˆ ˆ ˆ ˆ ˆ ,
ˆ

T
f r j j r dT R

g j

u W y k v k y v u
W y (19)

where we introduce two designable inputs, ṽ̂d  and ûR
^ . Specify ṽ̂d , the estimate of v̂d , as

a a a- -
-= + - + + - + -&% % & %L( ) ( 1) ( 1)

1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ),r r r
d m m r m r mv y y y y y y y (20)

where ŷm is a prespecified reference trajectory, ỹ̂ (k ) denotes the estimate of ŷ (k ), and αi's are

adjustable parameters. Substituting (19) back into (18) and defining the tracking error

ê≜ ŷ − ŷm, we arrive at the following error equation:

( )

( ) ( )
a a a e

a e a e

-
-

-

-

+ + + + = F + + +

+ + + + +

& &L
& &L

1

11 11

( ) ( 1)
ˆ ˆ1 1

( 1)

ˆ ˆ1 1

ˆˆ ˆ ˆ ˆ ˆ

ˆ ˆ ,

r
rr r T

r r y zR
r

y z r y z

e e e e W u d

d d
(21)

where Φ =Θ − Θ̃ and W  is a function of ξ, v, and Θ̃. If we denote M (s̃)=1 / (s̃r + α1s̃
r−1 + ⋯ + αr),

(21) implies that
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( )

( )

a a

a a e e

-
-

-
-

= F + + + + +

+ + + +

% % % % %L
%

% % %L
11 1

1
ˆ 1 1

1
ˆ ˆ1 1

1 ˆˆ ˆ( ) ( )
( )

.
r

T r r
r yR

r
r z z

E s W U s s s s d
M s

s s s
(22)

Neglecting the details of Φ T W , we can view (21) or (22) as a linear system (with the output
ê) subject to five inputs. We propose adding another control loop between Ê (s̃) and Û R

^ (s̃). This
control loop provides an additional degree‐of‐freedom for reducing the effect of the unstruc‐
tured uncertainty, the state estimated error, and the output disturbance. The tracking error
Ê (s̃) and the control input Û R

^ (s̃) is related by

z w w
x w w=

+ +
= - =

+ +P % %% % % % %
% %

2 2

ˆ 2 2
1

2ˆˆ ˆ ˆ ˆ( ) ( ) ( ) ( ),  ( ) ( )
2

low-order repetitive controller
k

i ni ni
R

i ni nii

s sU s R s C s E s R s
s s (23)

where k is the number of periodic frequencies, ωni is the ith disturbance frequency in rad/rev,
and ξi and ζi are damping ratios with 0<ξi <ζi <1. The gain of R̂(s̃) at those periodic frequencies
may be varied by adjusting the values of ξi and ζi. Furthermore, Ĉ(s̃) is a controller that should
ensure the stability of the overall system. Substitute (23) back into (22), we obtain

( )
( )

a a

a a e e

-
-

-
-

é ù+ = F + + + +ë û
+ + + +

% % % % % % %L

% % %L
11 1

1
1 1

1
ˆ ˆ1 1

ˆˆˆ ˆ1 ( ) ( ) ( ) ( )

r

T r r
r y

r
r z z

M s R s C s E s W s s s d

s s s
(24)

Define

-
é ù+ë û% % % %@

1ˆˆ( ) 1 ( ) ( ) ( ) ,M s M s R s C s (25)

Equation (24) becomes

( )
( )

a a

a a e e

-
-

-
-

é= F + = + + +ë
ù+ + + + û

% % % % %L

% % %L
11 1

1
1 1

1
ˆ ˆ1 1

ˆ ˆ ˆˆ ( ) , ( )

r

T r r
r yM M

r
r z z

e M s W d d M s s s s d

s s s
(26)

where

( ) ( )a a a a e e- -
- -

é ù= + + + + + + + ûë% % % % % % %L L
11 1

1 1
ˆ ˆ1 1 1 1

ˆ ˆ( )
r

r r r
r y r z zMd M s s s s d s s s
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Because ė̂, ë̂, ⋯ , ê(r−1) cannot be measured directly, the so‐called augmented error scheme will
be used. The augmented error is defined as

( )= + F - F% %1ˆ ˆ ( ) ( ) .T Te e M s W M s W (27)

Substituting (26) into (27), we obtain

V= F +1
ˆˆ ,T
Me d (28)

where ς̄ =M̄ (s̃)W . The parametric adaptation law to be used is modified from the normalized
gradient method proposed in [33], i.e.,

r V
V V
r V V
V V

ì > QÎï +ï
ïQ = -F = > QÎ¶ Q >í

+ï
ï £ï
î

%

&% % %&

0

0

0

01
1

1
1 1

1

ˆ ˆˆif and ,
1

ˆ ˆˆ ˆ( ) if , ,  and 0,
1

ˆˆ0 if ,

MT

T
R perpMT

M

e e d w

eP e d w e

e d

(29)

where w is the allowable parametric variation set (compact and convex) with its interior and
boundary denoted by w 0 and ∂w, respectively, d̂ M̄ 0

 is an upper bound for the magnitude of
d̂ M̄ , and ρ is an adjustable adaptation rate that affects the convergence property. If the
magnitude of ê1 is small and dominated by the magnitude of d̂ M̄ , the adaptation law is disabled
to prevent the parameters from being adjusted based on the disturbance. If ê1 is greater than
d̂ M̄  magnitude‐wise, two scenarios need to be considered. If the current estimated parametric
vector locates within the allowable parametric set, regular adaptation law is applied. If the
current estimated parametric vector is on the boundary of the allowable parametric set, the
projected adaptation law is employed to stop the parametric vector from leaving the variation
set.

In the following, we present stability theorem for the proposed spatial‐based OFLRARC
system. The theorem extends the results in the literature [33,34] to take into account the
addition of the repetitive control module. It will be seen that the overall OFLRARC system
will stay stable and the tracking error will be bounded as long as a stable and proper loop‐
shaping filter stabilizes a certain feedback system.

Theorem 2.1 The error equation (28) with the parametric update law (29) leads to Φ∈ L ∞,
Φ̇∈ L 2∩ L ∞, and Φ T ς̄(θ) 2≤γ(1 + ς̄ T L ∞

) for all θ.

Proof: Follow the same steps for proof of Theorem 3.1 in [24].
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Theorem 2.2 Consider an exponentially minimum‐phase nonlinear system with parameter
uncertainty and subject to output disturbance as given by (4), which is augmented with a state
observer (or K‐filters) described by (13) [35]. Specify the control laws as (19), (20), and (23). Let
Assumptions (1) to (9) be satisfied. Assume that ŷm, ẏ̂m, ⋯ ,  ŷm

(r−1) (where r  is the relative
degree) and d̂ M̄  are bounded with an upper bound d̂ M̄ 0

, f , g , h , L hf
k , L g L f h  are Lipschitz

continuous functions, and W  has bounded derivative with respect to ξ , v, and Θ̃. In addition,
assume that a stable and proper controller Ĉ(s̃) is specified such that the feedback system
shown in Figure.1 is stable. Then, the parametric adaptation law given by (29) yields the
bounded tracking error, i.e., | ŷ(θ)− ŷm(θ)| < d̂ M̄ 0

 as θ →∞.

Proof: Follow the same steps for proof of Theorem 3.2 in [24] with some differences.

Figure 1. Repetitive controller and stabilizing compensator.

3.Spatial‐based output feedback backstepping robust adaptive repetitive
control (OFBRARC)

Consider the same NPI model (3), which is transformed from the NTI model (1), under the
same set of assumptions (Assumptions 2.1 and 2.2). The NPI model will be used for the
subsequent design and discussion.

3.1 Nonlinear state observer

Drop the θ notation and note that (3) can be expressed as a standard nonlinear system:

( )x e s= + - + + X + + = - +&& & & & &
1ˆ11 1 01 02 0 1 02 2 01

ˆˆ ˆ,  .T
x yy k v v b a d v k v u (30)
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where terms involving unstructured uncertainty are merged into d̂ s =Δf (x̂, ϕf ) + Δg(x̂, ϕg)û
with

( ) ( )f f
f f

D D
D = D =

1 1

ˆ ˆ( , ) ( , )
ˆ ˆ, , ,

ˆ ˆ
t f t g

f g

f x g x
f x g x

x x

In addition, we have

( )ff
f f w= = = = 1

1 1

ˆˆ ,( , )
ˆ ˆ ˆ ˆ ˆ( , ) , ( , ) , ( )

ˆ ˆ
t gt f

f g

g xf x
f x g x h x x

x x

The state variables have been specified such that the angular velocity ω̂ is equal to x̂1, i.e., the
undisturbed output h (x̂). It is not difficult to verify that (30) has the same relative degree in
D0 = {x̂∈ℝn | x̂1≠0} as the NTI model in (1). If (30) has relative degree r , we can use the same
nonlinear coordinate transformation defined previously. With respect to the new coordinates,
i.e., ẑ1 and ẑ2, (30) can be transformed into the so‐called normal form, i.e., (5). With zero
dynamics being assumed to be asymptotically stable, we may focus on designing a nonlinear
state observer for external dynamics of (5), i.e., (7).

Because f (x̂) and g(x̂) are linearly related to system parameters, L g L f
r−1h (x̂) and L g L f

r−1h (x̂)

can be written as L f
rh (x̂)=Θ T W f (x̂) and L g L f

r−1h (x̂)=Θ T Wg(x̂), where W f (x̂) and Wg(x̂) are

two nonlinear functions, and Θ = ϕ f 1 ⋯ ϕ fk ϕg1 ⋯ ϕgl ⋯ T = ϕ1 ⋯ ϕℓ
T ∈ℝℓ, where

ℓ is the number of unknown parameters. Next, we adopt the following observer structure:
ż̄1 = A0z̄1 + k̄ y + F (y, u)T Θ, where z̄1 = z̄11 ⋯ z̄1r

T  is the estimate of z1 and W̄ f (y) and W̄ g(y)

are nonlinear functions with the same structure as W f (x) and Wg(x), except that each entry of

x is replaced by y. Furthermore, A0 =

−k1

⋮
−kr

I(r−1)×(r−1)

01×(r−1)
, k̄ = k1 ⋯ kr

T , and

F (y, u)T =
0(r−1)×ℓ

W̄ f
T (y) + W̄ g

T (y)u
∈ℝr×ℓ.

By properly choosing k̄ , the matrix A0 can be made Hurwitz. Define the state estimated error

as ε≜ εz11 ⋯ εz1r
T ≜ z1− z̄1. The dynamics of the estimated error can be obtained as

ε̇ = A0ε + Δ, where Δ = − k̄dy + BcΘ
T Wg(x)−W̄ g(y) u + BcΘ

T W f (x)−W̄ f (y) + dsi. To proceed,

the role of the state observer is replaced by z̄1≜ξ + Ω T Θ and the following two K‐filters:

x x= + W = W +& &
0 0,  ( , )T T TA ky A F y u (31)
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such that ξ = ξ11 ⋯ ξ1r
T ∈ℝr  and Ω T ≜ v1 ⋯ vℓ ∈ℝr×ℓ. Decompose the second equation

of (31) into v̇ j = A0vj + erσj, j =1, 2, ⋯ , ℓ, where er = 0 ⋯ 0 1 ∈ℝrand σj =w1 j + w2 ju with w1 j

and w2 j are the j th  columns of W̄ f
T (y) and W̄ g

T (y), respectively. With the definition of the state
estimated error ε, the state estimate z̄1, and (31), we acquire the following set of equations that
will be used in the subsequent design:

e x f e
=

= + = + + =å
l

1 11 1 1 ,
1

,  1,...,
k kk k z k j k j z

j

z z v k r (32)

where • j ,i  denotes the i th row of • j .

3.2 Spatial domain output feedback adaptive control system

To apply adaptive backstepping method, we first rewrite the derivative of output ŷ as

e= + = + + = + + +& & && &
1 12 1ˆ11 12 12

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆy si y z si yy z d z d d z d d (33)

With the second equation in (32), (33) can be written as

e x f w e= + + + = + + Q + + +l l
& &&

12 1 12 1ˆ ˆ12 12 ,2
ˆ ˆ ˆ ˆˆ T

z si y z si yy z d d v d d

where ω̄T = v1,2 ⋯ vℓ−1,2 0 .

In view of designing output feedback backstepping with K‐filters, we need to find a set of K‐
filter parameters, i.e., vℓ,2, ⋯ , v1,2, separated from û by the same number of integrators between
ẑ12 and û. From (31), we see that vℓ,2, ⋯ , v1,2 are all candidates if w2 j are not zero. In the
subsequent derivation, we assume that vℓ,2 is selected. Therefore, the system incorporated the
K‐filters can be represented by

x f w e += + + Q + + + = -

= - = - + +
l l l l

l l l l l

&& &
&L

12 1ˆ12 ,2 , , 1

,1 , ,1 1 2

ˆ ˆˆ ,  
ˆ, 2, , 1,  

T
z si y i i

i r r

y v d d v v
k v i r v k v w w u

(34)

To apply adaptive backstepping to (34), a new set of coordinates will be introduced

a -= - = - =l L1 , 1ˆ ˆ ,  , 2, ,m i i iz y y z v i r (35)
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where ŷm is the prespecified reference output, and αi−1 is the virtual input to be used for
stabilizing each state equation. For simplicity, we define ∂α0 / ∂ ŷ≜ –1 for subsequent deriva‐
tions.

Step 1:i =1With (35), the first state equation in (34) can be expressed as

x f a f w e= + + + Q + + + -l l
& &&

12 1ˆ1 12 2 1
ˆ ˆ ˆT

z si y mz z d d y (36)

Consider a Lyapunov function V1 =(1 / 2)z1
2 and calculate its derivative

( )x f a f w e= = + + + Q + + + -l l
& && &

12 1ˆ1 1 1 1 12 2 1
ˆ ˆ ˆT

z si y mV z z z z d d y (37)

Define the estimates of ϕi as ϕ̃ i and Φ = Φ1 ⋯ Φℓ =Θ − Θ̃, where

Θ̃ = ϕ̃ f 1 ⋯ ϕ̃ fk ϕ̃g1 ⋯ ϕ̃gl ⋯ T = ϕ̃1 ⋯ ϕ̃ℓ
T ∈ℝℓ. Note that Θ is the “true” parameter

vector, whereas Θ̃ is the estimated parameter vector. Design the virtual input α1 as α1 = ᾱ1 / ϕ̃ℓ

and specify

( )a x f w= - - - Q + - - -l
&% % 2 2 2

1 1 12 1 2 1 1 1 1 1 1 1 1
1

1 ˆmz z z z z y c z d z g z
z (38)

where ci, di, gi are variables. Therefore, (37) becomes

( )= - - - + F + + + &&
12 1

2 2 2
ˆ1 1 1 1 1 1 1 1 1

ˆ ˆ
z si yV c z d z g z z d dt e (39)

where τ1 Φ = z1z2Φℓ + α1Φℓ + z1ω̄
T Φ .

Step 2:i =2, ⋯ , r −1With respect to the new set of coordinates (35), the second equation of (34)
can be rewritten as

( )
( )

( ) ( )
( )

aa x f w e

a ax
x

a as

-
+

- -

-
- -

-
= =

é¶
= + - - + + Q + + + +ê ¶ë
¶ ¶

+ + Q
¶ ¶Q

ù¶ ¶ ú+ +
¶ ¶ úû

å å

l l l

l

&&

&%
%

12 1
1

ˆ1 ,1 12 ,2

1 1
0

1
1 1

0 1
1 1

ˆ ˆ
ˆ

ˆ

ˆ
ˆ

Ti
i i i i z si y

i i

i
ji i

j r j mj
j mj j

z z k v v d d
y

A ky

A v e y
v y
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Consider a Lyapunov function V i =∑
j=1

i−1
V j + 1

2 zi
2. Specify

( ) ( )

( ) ( )
( )

a a aa x f w x
x

a a a as

- - -
+

-
- - - -

-
= =

éì ¶ ¶ ¶
= - + + + + Q + + + Qí ê ¶ ¶ ¶Qî ë

üù æ ö æ ö¶ ¶ ¶ ¶ ïú+ + - - -ç ÷ ç ÷ ý
¶ ¶ ¶¶ ú è ø è ø ïû þ

å å

l l l

l

&% % %
%

1 1 1
1 ,1 12 ,2 0

2 21
2 2 21 1 1 1

0 1
1 1

1 ˆ
ˆ

ˆ
ˆ ˆˆ

Ti i i
i i i i i i

i

i
ji i i i

j r j m i i i i i ij
j mj j

z z z k v z v A ky
z y

A v e y c z d z g z
v y yy

The derivative of V i becomes

( )a a a
t e

- -
- - -

= =

æ ö¶ ¶ ¶æ ö æ öç ÷= - + + + F - + +ç ÷ ç ÷ç ÷¶ ¶ ¶è ø è øè ø
å å &&

12 1

2 21 1
1 1 12 2 2

ˆ
1 1

ˆ ˆ
ˆ ˆ ˆ

i i
j j j

i j j j j j j i j z si y
j j

V c z d z g z z d d
y y y

where τiΦ =τ1Φ −∑
j=2

i−1 ∂α j−1
∂ ŷ (zjvℓ,1Φℓ + zjω̄

T Φ).

Step 3:

With respect to the new set of coordinates (35), the third equation of (34) can be written as

( ) ( )

( ) ( )
( )

a a ax f w e x
x

a as

- - -

-
- -

-
= =

é¶ ¶ ¶
= - + + - + + Q + + + + + + Qê ¶ ¶ ¶Që

ù¶ ¶ ú+ +
¶ ¶ úû

å å

l l l l l

l

& &%& %12 1
1 1 1

ˆ,1 1 2 12 ,2 0

1
1 1

0 1
1 1

ˆ ˆˆ ˆ
ˆ

ˆ
ˆ

Tr r r
r r z si y

r
jr r

j r j mj
j mj j

z k v w w u v d d A ky
y

A v e y
v y

The overall Lyapunov function may now be chosen as

e e
-

-

= =

= + + F G F +å å
1

2 1

1 1

1 1 1
2 2 4

r r
T T

r j r
jj j

V V z P
d (40)

where Γ is a symmetric positive definite matrix, i.e., Γ =Γ T >0. With the definition of state

estimated error ε, we can obtain that
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( ) ( )

( ) ( )
( )

( )

a ax f w e x
x

a a as

e e e e

-

- -
=

-
- - -

-
= =

-

=

- + +ì
ï

= + é¶ ¶í- + + Q + + + + +êï ¶ ¶ëî
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,1 1 21

1 1
ˆ12 ,2 01

1
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1

1

ˆ

ˆ ˆ ˆ
ˆ

ˆ
ˆ

1 1
4 4

rr

r j r Tr r
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T T T T
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V V z

v d d A ky
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P P
d d

=
å

1

r

Specify the control input as

( ) ( )

( ) ( )
( )

a a ax f w x
x

a a a as

- - -

-
- - - -

-
= =

éì ¶ ¶ ¶
= - + + + Q + + + Qí ê ¶ ¶ ¶Qî ë

üù æ ö æ ö¶ ¶ ¶ ¶ ïú+ + - - - +ç ÷ ç ÷ ý
¶ ¶ ¶¶ ú è ø è ø ïû þ

å å

l l l l
l

l

&% % %
%

1 1 1
,1 1 12 ,2 0

2

2 21
2 2 21 1 1 1

ˆ0 1
1 1

1ˆ ˆ
ˆ

ˆ ˆ
ˆ ˆˆ

Tr r r
r r r r

r

r
jr r r r

j r j m r r r r r r rj R
j mj j

u z k v z w z v A ky
z w y

A v e y c z d z g z z u
v y yy

(41)

where ûR
^  is an addition input that will be used to target on rejection of uncertainties.

Substituting (41) into V̇ r  and writing τr Φ =τr−1 Φ −
∂αr −1

∂ ŷ (zrvℓ,1Φℓ + zrω̄
T Φ ), we arrive at

( )

( ) ( )

a a
t

a
e e e e e

- - -

=

-

= = =

æ ö¶ ¶æ ö æ öç ÷= - + + + + F G F +ç ÷ ç ÷ç ÷¶ ¶è ø è øè ø
¶

- + + - + D + D
¶

å

å å å

& &

&
12 1

2 2
1 12 2 2 1

ˆ
1

1
ˆ

1 1 1

ˆ
ˆ ˆ

1 1ˆ ˆ
ˆ 4 4

r
j j T

r j j j j j j r r R
j

r r r
j T T T

j z si y
j jj j j

V c z d z g z z u
y y

z d d P P
y d d

(42)

From (42), we may specify the parameter update law to cancel the term (τr + Φ̇T Γ −1)Φ . To
guarantee that the estimated parameters will always lie within allowable region w, a projected
parametric update law will be specified as

t

t t

ì G QÎïQ = í
G QÎ¶ GQ >ïî

%&%
%

0if ,
ˆ( ) if  and 0,

T
r

T
R r r perp

w

P w
(43)

where w is the allowable parametric set. It is compact and convex with its interior and
boundary denoted by w 0 and ∂w, respectively. If the current estimated parametric vector
locates within the allowable parametric set, the regular update law is used. If the current
estimated parametric vector is on the boundary of the allowable parametric set, the projected
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update law denoted by PR(.) is employed to stop the parametric vector from leaving the set.

With (43), add and subtract terms ∑
j=1

r 1
4gj

| d̂ si1
+ ḋ̂ y | 2 to (42), we have
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(44)

The tracking error Z1(s̃) and the control input Û R
^ (s̃) are related by

= -% % % %ˆ 1
ˆˆ ˆ( ) ( ) ( ) ( )RU s R s C s Z s (45)

where we have chosen R̂(s̃) as a low‐order and attenuated‐type internal model filter, i.e.,

z w w
x w w=

+ +
=

+ +P % %%
% %

2 2

2 2
1

2ˆ ( )
2

k
i ni ni

i ni nii

s sR s
s s

(46)

where k is the number of periodic frequencies, ωni is the ith disturbance frequency in rad/rev,
and ξi and ζi are damping ratios satisfying 0<ξi <ζi <1. The gain of R̂(s̃) at those periodic
frequencies can be varied by adjusting the values of ξi and ζi.

Theorem 3.1

Consider the control law of (41) and (45) employed to a nonlinear system with unmodeled
dynamics, parametric uncertainty, and output disturbance given by (30). Suppose that
ŷm, ẏ̂m, ⋯ ,  ŷm

(r ) (where r  is the relative degree) and d̂ y, ḋ̂ y, ⋯ ,  d̂ y
(r ) are known and bounded,

d̂ si1
(r−1), d̂ si2

(r−2), ⋯ , ḋ̂ sir −1
 are sufficiently smooth, f ,  g ,  h ,  L f

rh ,  L g L f
r−1h  are Lipschitz contin‐

uous functions, and at least one column of W̄ ( ŷ) is bounded away from zero. Moreover,
suppose that a loop‐shaping filter Ĉ(s̃) is specified to stabilized the feedback system. Then, the
parametric update law given by (43) yields the bounded tracking error.

Proof: Refer to [36].
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4. Spatial‐based adaptive iterative learning control of nonlinear rotary
systems with spatially periodic parametric variation

Consider an NTI system described by

( ) ( )( ) ( )( ) ( ) ( ) ( )j q j q= + = Y& , , ,  t f c t gx t f x B g x u t y t x t (47)

where

( ) ( ) ( ) [ ] [ ]= é ù Y = =ë ûL L L1 , 0 0 1 , 0 0 1
T T

n cx t x t x t B

y(t) is the system output, u(t) is the control input, and φf (θ)= φ1(θ) ⋯ φp(θ)  and φg(θ) are
system parameters that are periodic with respect to angular position θ (i.e., spatially periodic).
Using the aforementioned change of coordinate, we may transform (47) in the time domain
into

( ) ( ) ( )( ) ( )( ) ( ) ( ) ( )w q q j q j q q q q= + = Y&ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , ,  t f c t gx f x B g x u y x (48)

in the θ‐domain. If ω̂(θ) equals one of the state variables, (48) is an NPI system in the θ‐domain.

Remark 4.1. As mentioned previously, uncertainties for rotary systems may be treated as
periodic disturbances or periodic parameters. Periodic parametric variation is, in fact, a
sensible and practical assumption.

4.1 Definitions and assumptions

In this section, we list and present the definitions and assumptions to be used in the subsequent
sections.

Definition 4.1. (Lie derivative) The Lie derivative is defined as

( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( )
( )

( )
¶ ¶¶

= = = = =
¶ ¶ ¶

0 2, , , ,...f f
f f f f f g f

L h L hhL h x h x L h x f x L h x L L h x f x L L h x g x
x x x

Definition 4.2. (Diffeomorphism) A diffeomorphism is considered as a mapping
T (.) : D⊂R n → R n being continuously differentiable on D and has a continuously differentia‐
ble inverse T −1(.).

Definition 4.3. (Adaptation rate) Instead of constant adaptation rate in regular adaptive
control, a varying adaptation rate will be used. Consider a matrix Γ(θ, φc) defined by
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( ) ( )
q

q j a q q j
b j q

=ì
ïG = < <í
ï £î

0, 0
, , 0

,
c c

c

(49)

where φc is the lowest common multiple of the parametric periods, β =diag{β1 ⋯ βℓ} with

nonzero positive constant βi, and α(θ)=diag{α1(θ) ⋯ αℓ(θ)} with αi(θ) a strictly increasing
function, αi(0)=0, and αi(φc)=βi.

Assumption 4.1. The desired trajectory (or reference command signal) ym is sufficiently smooth

or ym
(n), ym

(n−1), ⋯ , ẏm exists.

Assumption 4.2. For a θ‐domain NPI system described by

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )q q j q q j q q q q= + = Y&̂ ˆ ˆ ˆ ˆ ˆ, , ,  f c gx f x B g x u y x

the nonlinear functions f (x̂(θ)) and g(x̂(θ)) are assumed to linearly relate to the system
parameters φf  and φg , i.e.,

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )q j q j q q q j q j q q
=

= =å
1

ˆ ˆ ˆ ˆ, , ,
p

f i i g g
i

f x f x g x g x

Remark 4.2. Assumption 1 may be satisfied by considering a reference trajectory without
sudden change of slope. Assumption 2 may be satisfied by many systems, e.g., LTI and NTI
systems.

4.2 Spatial‐based adaptive iterative learning control

For tidy presentation, the θ notation will be dropped from most of the equations in the sequel.
Rewrite (48) as

( ) ( )j j w= + = = Y&̂ ˆ ˆ ˆ ˆ ˆ ˆ, , ,  f c gx f x B g x u y x (50)

where the output ŷ is equal to the angular velocity ω̂, which is set to be the first state of the
system. Also note that

( ) ( ) ( ) ( )j j j j= =1 1ˆ ˆ ˆ ˆ ˆ ˆ, , and , ,f t f g t gf x f x x g x g x x

Robust Control - Theoretical Models and Case Studies120



The system (50) is valid within the set D0 = {x̂∈R | x̂1≠0}. Within this set, a diffeomorphism
T (x̂) : D0⊂D (as defined previously) exists and may be described by

( ) ( ) ( ) ( )-é ù= = ë ûL0 1ˆ ˆ ˆ ˆ ˆ Tn
f f fz T x L h x L h x L h x (51)

where ẑ = ẑ1 ⋯ ẑn
T . Using (51), we may transform (50) into

( ) ( )
( )-

-

=
é ù= + + =ë û

&
1

1
1ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ,  n n
c c f g f x T z

z A z B L h x L L h x u y z (52)

where

( ) ( )

( )

- ´ -

´ -

é ù
= ê ú
ê úë û

1 1

1 1

0

0 0
n n

c
n

I
A

According to Assumption 3.2, we may rewrite (52) as

( ) ( ) ( )r jé ù= + + Q + =ë û
&

1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ,  T
c c f g gz A z B z W z W z u y z (53)

where Θ = φ1 ⋯ φp φg ⋯ T  is the actual parametric vector, φg  is a parameter mapped via
the diffeomorphism, W f (ẑ) is a vector of nonlinear terms, and ρ(ẑ) and Wg(ẑ) are two nonlinear
functions.

Consider a reference trajectory ym(t) satisfying Assumption 3.1, which may be transformed

into its counterpart in the θ‐domain, i.e., ŷm(θ)= ym(λ −1(θ))= ym(t). Define another state or
coordinate transformation:

( ) ( ) ( ) ( )q q q-= = =& L 1
1 2ˆ ˆ ˆ ˆ ˆ ˆ, , , .n
r m r m nr mz y z y z y

We may form a state space model, which produces the reference trajectory, as

( )= +&̂ ˆ ˆ n
r c r c mz A z B y (54)

where ẑr = ẑ1r ⋯ ẑnr
T . Define the tracking error as ê = ẑ − ẑr . Then, the error dynamics can be

obtained using the first equation of (53) and (54), i.e.,
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( )r s jé ù= + Q + + - +ë û
&̂ ˆ ˆ ˆnT

c f m g ge Ae B W y W u (55)

where σ = cê with c = c1 ⋯ cn−1 1 , and

( ) ( ) ( )- ´ - ´ -é ù
= ê ú
ê úë û

1 1 1 10 n n nI
A

c

Next, specify an LKF as

( ) ( )
q

q j
s j t b t t-

-
= + F Fò2 12 1 2

c

T
gV d (56)

where Φ =Θ̄ − Θ̃̄  and Θ̄  is a vector of parameters (to be defined later). Θ̃̄  is the estimate of
Θ̄ . The objective for the following steps is to establish a suitable control input and parametric
update law rendering the derivative of the LKF negative semidefinite. Calculating the
derivative of V , we obtain

( ) ( ) ( ) ( )s s j q b q q j b q j
j j

- -é ù= + = - = F F -F - F -ë û
&& &

2
1 1

1 2 1 22
ˆ, ,  1 2 .

2
T T

g c c
g g

V V V V ce V (57)

Substituting the error dynamics (55) into V1 and recalling that σ = cê, we have

( )( ) j ss r
j j j

é ùQ
= + - + - +ê ú

ê úë û

& 2

1
1 ˆ ˆ ˆ .

2

T
gn

m f g
g g g

V ce y W W u (58)

where c̄ = 0 c1 ⋯ cn−1 . Hence, we may specify û as

( )s= - + Q%ˆ 1 ,T
gu W k W (59)

where k  is a positive variable, Θ̃̄ is the corresponding estimate of

( )( )j sr
j j j

é ù é ùQ
Q = = + - -ê ú ê ú

ê ú ë ûë û

& 21 ˆ ˆ, and .
2

T TT
g n

m f
g g g

W ce y W
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This will simplify V1, i.e.,

s s= - + F2
1

TV k W (60)

Using the periodicity of Θ̄ (θ)= Θ̄ (θ −φc), we may rewrite V2 as

( ) ( ) ( )( ) ( )( )b q j b q j- -é ù= Q -Q Q -Q - Q -Q - Q -Q -ê úë û
% % % %1 1

2 1 2 .
T T

c cV (61)

According to the following algebraic relationship,

( ) ( ) ( ) ( ) ( ) ( ) ( )b b b- - - - - = - é - + - ùë û1 2 2T T Ta b a b a c a c c b a b b c

where a, b, and c are vectors, (61) implies that

( )( ) ( ) ( )( )q j b q j- é ù= Q - -Q Q -Q + Q -Q -ê úë û
% % % % %1

2 1 2 2
T

c cV (62)

Therefore, we may specify a periodic parametric update law as

( ) ( ) ( ) ( )q q j q j s q j qQ = Q - + G Q = - £ £% % %, ;  0 if 0c c cW (63)

Recall that Γ(θ, φc) is the adaptation rate as defined in (49). For φc ≤θ, V2 becomes

s s b s= - F -2 1 2T T TV W W W (64)

With (60) and (64), we conclude that

s s b s s= - - £ -& 2 21 2 T TV k W W k (65)

The objective is achieved. The main results are summarized in the following theorem.

Theorem 4.1 Consider a spatial‐based nonlinear system (50) with spatially periodic parameters
satisfying Assumption 3.2. The error dynamics described by (55) exists under Assumption 3.1.
Assume that the control input is determined by (59) along with the periodic parametric
adaptation law (63). Then, the tracking error ê will converge to 0 with the performance
characteristics described by
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t q

-
® ®¥ò 2ˆ 0,

c

e d as

Proof: Refer to [37].

5. Conclusion

Adaptive fuzzy control (AFC) has been investigated for coping with nonlinearities and
uncertainties of unknown structures [38–40]. The major distinctions between AFC techniques
and the ones described in Sections 2 and 3 are (a) time‐based (AFC) versus spatial‐based design
(OFLRARC/OFBRARC) and (b) less information assumed on the nonlinearities/uncertainties
(AFC) versus more information on the nonlinearities/uncertainties (OFLRARC/OFBRARC).
Because, in spatial‐based design, a nonlinear coordinate transformation is conducted to change
the independent variable from time to angular displacement, the systems under consideration
in AFC and OFLRARC/OFBRARC are distinct. Next, AFC design techniques claim being able
to tackle systems with a more generic class of nonlinearities/uncertainties, which relies on
incorporating a fuzzy system to approximate those nonlinearities/uncertainties. It is not clear
how to determine the required structure complexity of the fuzzy system (e.g., number of
membership functions) to achieve desired control performance with reasonable control effort.
Generally speaking, known characteristics of the uncertainties or disturbances should be
incorporated as much as possible into the control design to improve performance, avoid
conservativeness, and produce sensible control input. Therefore, instead of assuming the
disturbances to be of generic type (as done by AFC), the methods presented in this chapter
aim at a category of disturbances prevalent in rotary systems and explore the spatially periodic
nature of the disturbances to design a specific control module and integrate into the overall
control system.
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