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Abstract

The extracellular matrix (ECM) represents the framework of tissues and organs and is
involved in cell differentiation and function. The study of ECM is challenging and required
a combination of identification and imaging techniques to give a valuable scheme of its
composition, organization, and finally function. The study of ECM enables to culture cells
ex vivo, but cultures are restricted to two-dimensional surfaces, whereas in the mean‐
time, material sciences were developing devices able to bring cell culture in a three-
dimensional (3D) environment. This chapter presents basic techniques to investigate
extracellular  matrices  composition  and  organization.  Basic  knowledge  on  ECM
composition  and  organization  should  inspire  material  scientists  to  propose  more
biologically relevant materials. In a second time, we present strategies available to create
ex vivo models of ECM and a series of examples of 3D materials that were engineered to
investigate  cell  adhesion,  phenotype,  and differentiation  in  a  biologically  relevant
microenvironment. The production of a gold-standard material is possible for a specific
biological question, and it might be developed from an intelligible dialogue between
material scientists, that bring engineering strategies, and cell biologists who implement
the material design to meet the biological process that has to be investigated ex vivo.

Keywords: extracellular matrix, tissue organization, 3D materials, in vitro cell culture
models, tissue engineering

1. Introduction

Multicellular organisms require a framework to delineate functional territories and to pro‐
vide a shelf where the cells can attach to perform their specific functions. The extracellular matrix
(ECM) represents this framework for tissues and organs and as such it is an important actor of
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organisms’ physiology. The most known examples of ECM-related tissues are the skin, where
ECM act as a barrier against the outside environment, and the bones where ECM is strength‐
ened by a mineral phase which allows the body to stand and to move. However, its apparent
structural and mechanical properties have hidden more subtle roles of ECM in cell differentia‐
tion and function as ECMs are not restricted to load-bearing organs but are present and required
in all types of tissues and organs. During the development of the embryo, neural crest cells lose
their cell-cell adhesion properties toward cell–ECM interactions that allow them to move along
the dorsal part of the embryo and reach their specific site of function and give birth to the future
skeleton. Again, tissue remodeling, as observed during the healing processes, can release
messenger molecules that were entrapped in the ECM, waiting for the right moment to trigger
their signal and healing functions [1]. Some lack of knowledge on ECM functions remains mainly
because of the challenge represented by its comprehensive study. Indeed, ECM is made of several
high molecular weight proteins, proteoglycans, and polysaccharides molecules self-arranged
into fibers and networks difficult to solubilize and individualize. Basic biochemistry techni‐
ques have led to the identification of the major components of ECMs such as collagens or laminins,
but as the investigations are progressing, this results in the constant growing of the constitu‐
ent members of collagen and laminin families and in the discovery of new ECM components
with unknown functions [2]. Moreover, understanding the ECM not only means discovering
new molecules but also to unravel their organization in the ECM network. So the study of ECM
requires the combination of identification and imaging techniques to give a valuable scheme of
its composition, organization, and finally function. Interestingly, unraveling ECM complexity
meets one of the fundamental questions for biologists: how to recreate and maintain life outside
a living organism (literally ex vivo but commonly referred as in vitro)?

The beginning of the 20th century aroused the possibility to dissociate cells from living tissues
and to culture them ex vivo. This new technique has triggered the emergence of the new
discipline of cell biology which has brought most of the knowledge that we possess today on
cell proliferation, differentiation, metabolism, cell fate, and death. However, ex vivo cell
cultures were restricted to two-dimensional (2-D) culture systems, originally on glass and
subsequently on plastic dishes, occasionally supplemented by the coating of ECM molecules
to favor cell adhesion. Parallel to the development of cell biology, the broad field of materials
science was creating polymers and devices able to bring ex vivo cell culture to the third
dimension, and to the 21st century. Dedicated to materials that interact with living tissues, the
field of biomaterials encompasses several scientific disciplines, from physics and chemistry to
biochemistry and medicine. Several types of three-dimensional (3D) materials have been
engineered which may represent valuable tools for fundamental cell research, but a lack of
knowledge on ECM structures have undermined their use for cell biology. On the other hand,
cell biologists are not necessarily aware of the development and possibilities created by
extensive research in the field of 3D biomaterials, and this partly compromises the expansion
of 3D cell culture models.

In this chapter, we will present basic techniques involved in the investigation of extracellular
matrices and data generated by their use to understand ECM composition and organization.
Basic knowledge on ECM composition and organization should be useful for biomaterial
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scientists to propose more biologically relevant materials. Such methodologies are fully
transposable for the characterization of biomaterials and 3D models of ECMs. In a second
section, we will present a series of biomaterials that were engineered based on the investigation
of ECMs composition and organization in vivo and could become suitable 3D cell culture
models for mechanobiology, aging, cell migration, cell differentiation, and studies on
pathologies and their treatments.

2. Exploring the ECM

Extracellular matrices are multimolecular three-dimensional (3D) networks made of a large
variety of ECM-specific molecules and their compositions and organizations are tissue-
specific. Exploring the ECM means (1) the determination of its distribution within the tissue
and its relation to the cell content, (2) the identification and quantification of its composition,
and (3) the characterization of the 3-D architecture of the ECM network [2]. ECMs contain
similar biomolecules which can be organized in two main classes (1) proteins and glycopro‐
teins and (2) proteoglycans and polysaccharides. Variation in the composition or in the amount
of certain ECM molecules will change dramatically the physical properties of the ECM such
as the tensile strength observed in the hard mineralized ECM in bones, the elasticity observed
in dermis of the skin, or even the transparency in the cornea of the eye. The biochemistry of
ECM components strongly influences the techniques used to investigate them. Light micro‐
scopy associated with histological staining is based on the differences of biochemical features
of tissues (i.e., hydrophobicity, electrical charge, and molecular weight). Proteomics associated
with mass spectrometry is a powerful tool to exhaustively identify proteins in a complex
sample, but biochemistry of ECM proteins is particularly unfavorable to this method that need
significant adaptation to be effective with ECM samples. Finally, electron microscopy is the
ideal method to investigate the molecular and fibrillary organization of the ECM network.

2.1. Biochemistry of the main ECM components

2.1.1. Proteins and glycoproteins

A large diversity of proteins is found in ECMs where they are the principal component. They
are classified either in structural proteins that are directly involved in the overall architecture
of the ECM or in soluble factors that are globular proteins entrapped in the ECM network.
Structural proteins are mainly fibrous, insoluble, and high molecular weight molecules,
including collagens, elastin, laminins, and fibronectins. They are direct actors of the shape and
the mechanical properties of tissues and organs and further possess the ability to auto-
assemble among themselves as well as to interact with each other to form fibrillary network
and complex 3-D architectures. Most of the ECM proteins have sequences recognized by cells
for adhesions and some of them can bind specifically soluble growth factors or cytokines. These
molecules present several posttranslational modifications like hydroxylation at Proline and
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Lysine residues in collagens and O-glycosylation and N-glycosylation in laminins and
fibronectin.

Collagens are found in all types of ECMs and are the main constituent of connective tissues
like skin, bone, and tendons [3]. They belong to a large family of molecules with to date 28
members identified (numbered from collagen type I to type XXVIII). Collagens are trimeric
proteins, made of the association of three alpha-chains specific to each type of collagens that
assemble together to form a super-helix structure. For some collagen types several alpha-
chains exist, leading to multiple isoforms of the same collagen molecule and raising the
diversity and the complexity of the collagen family. In ECMs, collagens are organized in
different supramolecular assemblies inherited from the specificity for each collagen types
taking into account their amino-acid sequences and the 3-D folding of their tertiary structure
[4]. Fibril-forming collagens include collagen type I, II, III, V, and XI. They assemble in large
fibrils (up to 500 nm in diameter) that can merge to form collagen fibers of micrometric size.
All ECMs contain fibrillary collagens. Connective tissues are characterized by an abundant
ECM content made mainly by fibrils of collagen type I in dermis and bone, or of collagen type
II fibrils in cartilage. Basement membranes (BM) are a specialized form of ECM mainly found
in epithelial tissues and contain heterotypic fibrils combining collagen I and III or V [5]. Size
and diameters of collagen fibrils are regulated by other ECM molecules like fibril-associated
collagens or proteoglycans. Collagen fibrils and fibers are finally stabilized by covalent cross-
links making these structures highly resistant to mechanical load and stresses. Network-
forming collagens are mostly found in BM where collagen type IV is the most abundant.
Collagen IV molecules assemble in a hexameric superstructure that propagate to form finally
a 2-D network that is maintained by covalent crosslinks with methionine and lysine residues
[6].

Laminins are large molecular weight (from 400 to 900 kDa), heterotrimeric glycoproteins and,
along with collagen type IV, they are the main constituent of BM [7]. Even found in every BM,
laminin is a large family of molecules, and their distribution among BM is tissue-specific. A
laminin molecule consists of the association of one alpha, one beta, and one gamma chain. To
date, 5 alpha, 3 beta, and 3 gamma chains have been identified which may be assembled in 16
different laminin molecules. All laminins share common structural features: a cross-shaped 3-
D structure with one long and two shorts arms, di-sulfide bridges in-between the chains that
maintain their association and the presence of several N-glycosylation on asparagine residues.
Laminins auto-assemble in a network interlaced with the collagen type IV network. Directed
toward the cells, laminins gives cues for cell adhesions through integrin receptors.

Elastin is organized in fibers closely linked to fibrillar collagens where it gives the elasticity to
tissues and compensate the tensile strength of collagen fibers [8]. Elastin is secreted by cells as
a 60–70 kDa monomeric soluble precursor, tropoelastin, which contains intermittent hydro‐
phobic domains. Tropoelastin monomers auto-assemble to form elastin fibers that are stabi‐
lized by enzymatic cross-linking through Lysine residues and rendering the elastin network
highly insoluble. Stacks of hydrophobic domains in the elastin network are responsible for its
elastic properties and make elastin highly resistant to enzymatic degradation and solubiliza‐
tion in aqueous solutions.
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Fibronectin is a large (500 kDa) dimeric glycoprotein made of the association of two nonident‐
ical monomers linked by two disulfides bounds at their C-terminal extremities [9]. Diversity
of the monomers is due to alternate splicing of the fibronectin mRNA, as fibronectin is encoded
by only one gene. Fibronectin is expressed by several cell types and found in most of ECMs.
It assembles through disulfide bridges in oligomers and finally in insoluble fibers possessing
various diameters ranging from 10 nm to microns [10]. A soluble form made of the dimeric
monomer may be also found to circulate in the blood. Fibronectin primary structure is arranged
in several domains that specifically interact with collagens or with cells via integrins.

There are globular, soluble proteins associated with the ECM network of structural proteins.
Among the globular proteins there are growth factors, cytokines, and ECM-specific proteolytic
enzymes like matrix metalloproteinases (MMP). They play an important role in cell signaling
and in the remodeling of the ECM network and finally in the overall biological activity of
ECMs. They can be linked to structural proteins by labile interactions at specific biding sites
or be trapped in the high molecular weight chains of the structural proteins and proteoglycan.
However, they are not core proteins of the ECM network, and their biochemistry is similar to
most of the other globular proteins.

2.1.2. Proteoglycans and polysaccharides

Polysaccharides found in ECMs of vertebrae are glycosaminoglycans (GAG) and are cova‐
lently linked to a core protein to form proteoglycans, except for hyaluronan representing the
only “pure” polysaccharide of ECMs [11]. Even if this chapter focuses on mammalian ECMs,
it has to be mentioned that polysaccharides are the main ECM components of invertebrates
and plants represented by chitin and cellulose, respectively. Hyaluronan, equally called
hyaluronic acid, has the particularity to be synthesized at the plasma membrane by three
different Hyaluronan synthase enzymes and not inside the Golgi apparatus like all the other
proteoglycans [12]. GAGs are linear, unbranched polysaccharides composed by tens to
hundreds of disaccharides units. The combination of disaccharide units is highly heterogene‐
ous, but can be specific for each individual chain. The disaccharide unit is made of glucosamine
or galactosamine linked to another modified hexose, the most often to glucuronic acid, iduronic
acid, or galactose. These monosaccharides are mainly modified by N-acetylation and N-
sulfatation. The nature of the disaccharide unit and the types of modifications lead to the
formation of different types of GAG, including chondroitin sulfate, dermatan sulfate, keratan
sulfate, heparan sulfate, and hyaluronan. At physiological pH, GAGs chains are highly
negatively charged due to the sulfate and carboxylic acid functions carried on modified
hexoses. The net negative charge of GAGs make them highly hydrophilic, and thus, they play
an important role in the hydration of ECMs [13]. High amounts of water associated with GAGs
ensure some mechanical properties to ECMs, especially the resistance to compression as in the
cartilage. Proteoglycans are abundant within ECM, but may be also found at the cell membrane
or intracellularly. The most active part of the proteoglycans is the GAGs chain which can
interact with growth factors, cytokines, cell receptors, and other constituents of the ECM.
However, their core proteins also possess interaction sites that make proteoglycans highly
versatile molecules inside ECMs [14]. Due to their interactions with ECM components, they
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play a role in ECM organization, but their important role is to be a reservoir for growth factors
and to anchor signal molecules that are released through specific enzymes in particular after
injuries and favor wound healing.

2.2. Exploring the organization and the composition ECMs within tissues by histology

Histology is an old, but still a powerful technique to image the organization of tissues at the
scale of the cells. Organs or tissues have to be fixed to stabilize their organization after removing
them from the living body and to be embedded in a hard material for being sectioned into thin
slices to allow light to pass through the tissue and so be visible by the lenses of an optical
microscope. Usually, tissues are fixed in paraformaldehyde and embedded in wax (paraffin).
Tissues can also be frozen-fixed in liquid nitrogen. This approach may help to avoid some
prejudicial effects of chemical fixations and do not require an embedding step to slice the tissue.
However, frozen sections give pictures with less contrast and sharp edges, therefore formalin-
fixed paraffin embedded (FFPE) samples are preferred for routine examination. To be inter‐
pretable under light microscopic examination, the histological sections have to be stained to
give some contrast to the different tissue and cells structures [15]. Numerous special stains
have been developed to give a precise contrast to the organization and to the components of
ECM, and this approach still keeps all its strength and efficiency to describe and accurately
decorticate a tissue [16]. A significant further step in histology is the use of antibodies by the
mean of immunohistochemistry (IHC) to specifically identify a target molecule, and at the
same time, visualize its exact localization within the tissue [17]. However, IHC relies on the
quality of the antibody, and it appears more difficult to obtain commercially reliable antibodies
against ECM molecules than for intracellular molecules. A model of the accuracy and the
potentials of histological techniques for investigation of ECMs are reported in a recent and
thorough study on tooth root cementum using exclusively light microscopy techniques, with
a combination of special stains, polarized light, and immunodetection [18].

2.2.1. Special stains for histology of ECMs

Masson’s and Gomori’s trichrome– they are ideal for connective tissues and in particular to stain
fibrillar collagens. Trichrome staining indicates that three different dyes are used to discrim‐
inate the ECM materials from the cell cytoplasm and the nucleus. Selectivity of the dye for the
different tissue structures is based mainly on size exclusion: a small dye will penetrate into
low porosity elements while larger dye will penetrate preferably into the more porous
structures. Gomori’s trichrome stains collagen-based ECM in green, cell cytoplasm and
noncollagenous tissue in pink to purple and cells nuclei in black to blue. Same discrimination
of connective tissue comportments but with different colors is obtained with Masson’s
trichrome (collagen in blue, cytoplasm in red, and nucleus in black). This trichrome staining
is longer and maybe more delicate to perform than the classical hematoxylin-eosin staining,
however, this staining should be used each time when collagen-based samples (tissue or
biomaterial) are investigated because of the high degree of contrast it enables compared to
H&E [19].
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Von Kossa staining— It is used to reveal mineral deposits within tissues. Mineralisation of ECM
is observed in bones or teeth but can also appear pathologically in blood vessels, skin, or
cartilage. Von Kossa staining detects calcium phosphate deposits by its substitution with silver
nitrate to form black precipitates. This method is robust and useful to follow mineralization
of bone substitute materials or progressive differentiation of naive cells into the osteoblastic
lineage. It can also discriminate calcium–phosphate based materials from organic compounds.

Picro-sirius—This staining method is specific of fibrillar collagens (type I–III), although it can
slightly stain collagen type IV in BM. Sirius-red dye is an anionic molecule that arrange parallel
to collagen molecules by interaction with basic (cationic) amino acids [20]. Collagenous tissue
is stained in red while remaining tissue is pale yellow, and nuclei can be counterstained in
black or deep blue if necessary. The parallel organization of picro-sirius is used to enhance the
birefringence signal of collagen fibers observed under a polarized microscope. With the
combination of polarized light and picro-sirius, it is possible to address the 3D orientation of
the collagen fibers as the intensity of the birefringence depends on fibers orientation, with
maximum birefringence intensity for fibers organized at 45°(+/–90°) toward the transmitted
light axis, while no birefringence signal is observed with fibers organized parallel or orthog‐
onal to the transmission axis [21,22]. Picro-sirius is also used to make quantitative analysis of
the collagen content in tissues, in particular to address the degrees of fibrosis.

Verhoeff–Van Gieson—This coloration method stains preferentially elastic fibers which have a
higher affinity for the dye than the rest of the tissue due to hydrophobic interactions. The elastic
fibers are stained black or dark brown while collagen fibers are red and the rest of the tissue
appears pale yellow. This coloration is particularly appropriate to reveal atrophy of elastic
tissues in case of vascular diseases and to discriminate arteries from veins due to differences
in the elastic fibers organization and content [23].

Alcian blue—This dye is a cationic molecule and interacts specifically with negatively charged
polysaccharides like sulfated and carboxylated GAGs. Because the selectivity of the dye is
based on the charge of GAGs it is of importance to ascertain the pH of the alcian blue solution,
as the carboxylic acid groups are in their acidic neutral form at pH < 2 and therefore will not
interact with the dye. This specificity allows the discrimination between the carboxylated and
the sulfated GAGs, as the latter are negatively charged at pH < 2. Polysaccharide’s rich tissues
are stained in light blue, counterstaining with nuclear fast red, making cells cytoplasm and
nuclei colored in pink-red. Alcian blue is routinely used to stain cartilaginous ECM due to their
large content of GAGs [24].

Periodic Acid–Schiff (PAS)—This staining is also sensitive to polysaccharides and is used to stain
BM due to their high content in glycoproteins and proteoglycans. Unlike alcian blue, PAS
staining reveals both charged and neutral polysaccharides because this coloration is based on
the oxidation of monosaccharides with periodic acid and subsequent reaction of newly formed
aldehyde groups with the Schiff reagent dye. BM are finely stained in pink-purple color,
whereas the cytoplasm and the nuclei are colored in shades of blue when counterstained with
Harris’ hematoxylin. This staining method is also used to reveal other polysaccharides-rich
compounds, such as mucins and glycogen [15].
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2.2.2. Immunohistochemistry of the extracellular matrix

IHC enables the identification of a specific component of the ECM and to image its distribution
within the tissue [25]. The target molecule is recognized by an antibody that reacts to a specific
epitope and then is visualized by light microscopy through a chromogenic enzymatic reaction
(alkaline phosphatase or horseradish peroxidase) or through a fluorescent dye with a fluores‐
cence microscope. The antibody is observed directly if the dye or the enzyme is linked to it,
but most of the time it is detected indirectly by a labeled (by a fluorophore or an enzyme)
secondary antibody which reacts to the first one through its Fc fragment. Frozen sections are
more appropriate for Immunohistochemistry because they avoid the use of fixative that may
alter the epitope, but frozen sections cannot be counterstained and so keeps the tissue organ‐
ization around the epitope not visible [26]. In contrast, FFPE samples are well preserved and
can be counterstained with different dyes after antibody incubation and detection. However,
if the fixative (generally 4% paraformaldehyde in neutral buffer) preserves the morphology of
the tissue, it can severely compromise the antigenicity of the target molecule, and then make
immunodetection inefficient or inoperative. Paraformaldehyde fixative triggers intra- and
intermolecular cross-linking of proteins by the formation of methylene bridges between amino
acids residues [25]. It may also alter the molecular structure of polysaccharides, lipids, and
nucleic acids. The degree of cross-linking will depend on the concentration and the pH of the
fixative solution, as well as on the time and the temperature at what the fixation is performed.
The formation of intra- and intermolecular cross-linking modifies the secondary and tertiary
structures of proteins that lower the detection by antibodies because of the modification of the
target epitopes [27]. In the early 1990s, an antigen retrieval (AR) method was introduced to
recover the antigenicity of FFPE tissue sections impaired by the fixation treatment [28]. The
AR method originally refers to the high-temperature processing of FFPE sections, but with the
development of other methods it is nowadays a generic term for any kind of treatment used
to recover the original antigenicity of the FFPE sections [29]. The rationale of AR is the breaking
of fixative-induced cross-links and methylene bridges that enable a renaturation of the proteins
and a partial recovery of the epitopes. However, it has to be noticed that the true mechanism
of AR is not yet understood, and it remains an empirical technique that requires several
positive and negative controls to avoid true- or false-positive reactions [30]. AR is performed
with the use of heat (called heat-induced antigen or epitope retrieval) or enzymes (referred-to
PIER for proteolytic enzyme-induced epitope retrieval) to break fixative cross-links.

In heat-Induced epitope retrieval (HIER), three parameters appear essential in the outcome of
the AR: temperature and pH of the solution and time of incubation of the sections [29,31].
Classically, sections are incubated for 10–20 minutes at 95°C in a water bath. Microwave and
steam-cookers are also used to heat sections and have shown good AR properties, although
the control of the temperature is more delicate. The pH of the solution is a critical factor because
some epitopes will be revealed only in acidic or in alkaline buffer. The most common acidic
buffer is citrate used in a pH range of 3–6. The most used alkaline buffer is Tris supplemented
or not with EDTA at pH 8–10 [29,31]. All pH, temperature, and time have to be checked
carefully because extreme conditions will damage the tissue sections.
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Enzyme treatment is thought to break some of the fixative methylene bridges and to elicit the
reconstitution of epitopes after a moderate digestion of proteins. It is generally performed with
proteolytic enzymes such as pepsin, trypsin and proteinase K at a concentration of 0.05–1%
for 10–30 minutes. Glycosidases, such as hyaluronidase, chondroitinase, and keratinase have
shown valuable AR properties on polysaccharides-rich tissues and on glycosylated proteins
[32]. The pH and temperature of the solution are adjusted to the optimal activity of the enzyme,
and time of digestion and the concentration of the enzyme have to be carefully set to avoid
overdigestion of the tissue sections which will lead to a loss of tissue structure and
organization.

Success of immunohistostaining mainly relies upon the quality of the antibody. Compared to
soluble proteins, only few antibodies against ECM molecules are commercially available [32].
The ECM proteins are highly conserved in mammals making difficult the immunization of
animals to generate an efficient antibody. Some antibodies are raised from synthetic peptides
(5–20 amino acids) chosen from the primary amino-acid sequence of the target protein, but the
epitope generated could be irrelevant to the secondary and tertiary structures of the native
proteins [33]. Polysaccharides are either not or very slightly immunogenic, making very
difficult to generate antibodies against the sugar part of proteoglycans. Moreover, ECM
proteins are organized into dense fibers structures or meshwork or bear high polysaccharides
chains that hinder the access of the antibody to the epitopes. In conclusion, IHC of the ECM is
a delicate technique but remains the best option to obtain a picture of individual ECM
components distribution within the different compartments of a tissue. As an example among
several ones, by the means of monoclonal antibodies raised against laminin chains alpha-4 and
-5, beta-1 and -2, and gamma-1, it has been possible to elucidate the particular composition
and organization of the basement membrane surrounding islets of Langerhans in human
pancreas [34]. The identification of a duplex BM surrounding intra-islets vessels with a specific
laminin composition for each of the two BM has led to the proposition of a double-basement
membrane model of human islets of Langerhans clearly distinct from the organization of
basement membrane surrounding islets in mouse [35].

2.3. Identification of ECM composition by proteomics with mass spectrometry

The proteomic strategy is based on the isolation of a complex mixture of proteins from cells,
tissues, or a whole organism and their identification by mass spectrometry and genomic
database. Mass spectrometers commonly used for protein identification are MALDI–TOF (for
Matrix–Assisted Lazer Desorption Ionization—Time of Flight) and ESI-Q-TOF (for Electro
Spray Ionization—Quadripole—Time of Flight) that have their own characteristics and
performances but do not change the general flow-chart of the sample preparation and
identification [36,37]. After extraction and purification, proteins are separated by 1D or 2D
sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS-PAGE), respectively to
their molecular weight (1D) or by both their isoelectric point (pH which net charge of protein
is neutral) and molecular weight (2D). Mass spectrometers only detect charged molecules with
an accuracy and sensibility that depends on the ratio of mass over charge (m/z), so the proteins
samples have to be hydrolyzed into peptides before mass spectrometry analysis to obtain
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spectra at atomic resolution. Protein bands (1D) or spots (2D) are excised from the gel,
hydrolysed into peptides by a proteolytic enzyme (frequently Trypsin), and loaded in the mass
spectrometer to measure the exact mass of the peptides. Each protein from the original mixture
is identified by matching the measured masses of their peptides with the expected masses of
peptides calculated in silico from genomic database [37,38]. This technique allows a large-scale
identification of components without the bias of predetermined molecular candidates as with
antibody detection. It is thus possible in theory to have the exact protein composition of a tissue
and follow its modification with time or diseases [39].

The total or relative amount of identified proteins can also be addressed. The SDS-PAGE
migration pattern and intensity of protein band (1D) or spot (2D) give a “map” of the protein
content of the target tissue or organ and can be used to identify particular band/spot that are
modified in specific conditions, enabling discovery of new therapeutic targets [40]. Labeling
methods exist to generate quantitative data with mass spectrometry. Samples of the control
conditions are modified with nuclear isotopes 13C, 15N, or 18O, whereas the treated sample
is left unmodified, and the relative abundance of both isotopic pics is compared [41]. A direct
semiquantitative approach is also possible, with the mathematical integration of ion counts of
the peptides identifying each protein to describe its relative abundance [42]. In the ECM
analysis, relative quantification is a remarkable tool to identify the specific isoform of some
multimeric ECM proteins, such as collagens and laminins, as the relative amount of each
monomer will indicate under which form the ECM molecule is present in the tissue. To be
more specific, collagen type V exists in the common heterotrimeric isoform [α1(V)]2α2(V) and
a more scarce homotrimeric isoform [α1(V)]3. The relative amount of ion counts for the α1(V)
chain over α2(V) chain will indicate if the α1(V) chain is associated only with α2(V) (α1 chain
signal twofold of α2 chain signal) or if the investigated tissue contains both heterotrimeric
[α1(V)]2α2(V) and homotrimeric [α1(V)]3 isoforms (α1 chain signal >> twofold of α2 chain
signal). However, quantification by mass spectrometry can be restricted by the ionization
properties of some proteins that will make them less detected and consequently under-
represented in the final analysis. Nevertheless, this highlights the potentials of proteomics and
mass spectrometry in the study of ECM proteins, as such characterization of ECM proteins
isoform will require several antibodies (i.e., one per protein chain) to identify one isoform by
western blot or IHC [43].

The most critical steps of a proteomic analysis are the purification of the protein mixture and
their identification from database. ECM proteins have a high molecular weight and are tightly
associated with each other by covalent cross links that make them mostly insoluble. An
important point in the analysis of ECM by mass spectrometry proteomic will be the proper
solubilization of the ECM [44]. The tissue has to be first carefully decellularized to purify the
ECM and eliminate the remaining intracellular proteins. This step requires the use of a
detergent like SDS and will eliminate from the ECM part of the loosely bounded proteins like
remodeling enzymes or growth factors [40]. The purified ECM can be solubilized by a
combination of physical, chemical, and enzymatic methods. A physical method is the me‐
chanical breaking with a French press or grinding with mortar and pestle in liquid nitrogen.
This step is important to homogenize correctly the purified ECM and make the following
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solubilization treatment effective. Ultrasound can also be used, but this process yields heat
that can denaturate and break the proteins creating smears instead of protein bands or spots
during SDS-PAGE separation if temperature is not carefully controlled. Homogenized ECM
can be solubilized with a chaotropic agent like concentrated urea or guanidium chloride [45].
These molecules are efficient for solubilization, but a too high concentration is not compatible
with SDS-PAGE separation and can impair the trypsin digestion. Highly cross-linked collagen
fibrils or elastin microfibrils can remain insoluble after chaotropic extraction. Partial digestion
with proteolytic enzymes such as pepsin is also used to favor ECM solubilization, but again,
it has to be done carefully to not hydrolyze the ECM sample before SDS-PAGE separation.
Deglycosylation with glucosidase such as PNGase or chondroitinase can unravel parts of the
dense polysaccharide network of proteoglycan and unleash trapped ECM proteins [45].
Moreover, deglycosylation is also favorable for further trypsin digestion and peptide identi‐
fication from database. ECM proteins undergo several posttranslational modifications, such
as hydroxylation, disulfide bridges, and glycosylation that can block digestive sites for trypsin,
leading to inefficient peptide generation, or resulted in peptides of different masses than the
expected masses from the genomic data base, leading to inappropriate identification of the
protein. All these biochemical specificities of ECM proteins make proteomic discovery
challenging and explain why only a few proteome of ECMs have been published so far.
Nevertheless, this approach has a huge potential and consequently efficient solubilization and
identification protocols are under development to make this technique more routinely usable
in ECM and biomaterials characterization.

2.4. Three-dimensional organization of ECMs studied by electron microscopy

Electron microscopy gives higher spatial resolution than light microscopy with the use a
shorter wave-length from an electron beam. With resolution at the nanometres scale, and below
with high resolution microscopes, it gives access to the molecular structure of ECM proteins
and can image their supramolecular organization (i.e., fibrils and fibers assemblies) that are
hardly distinguishable with optical microscopes. Transmission electronic microscopes (TEM)
are built on the same scheme as optical/visible-light microscopes and so, equivalent techniques
and processing of samples are required for both type of microscopy. In TEM, the electron beam
pass through the samples to give rise to a projected image on an electron-sensitive surface like
a phosphorescent screen, on a silver-film plate to record the image or nowadays on CCD
cameras. The electron beam requires a vacuum pressure and cannot pass through thick
samples of several micrometers which both represent a challenge for biological samples that
are mainly wet, thick, and soft materials [46]. Biological tissues have to be fixed, dehydrated,
and embedded in hard material (epoxy resin) and sliced with a diamond knife ultra-microtome
into hundreds nanometres slices to be investigated by TEM. The electron beam interacts poorly
with low atomic numbers atoms, such as carbon, oxygen, and nitrogen found in biological
samples, so sections are stained with heavy metal solutions (commonly tungsten in phospho‐
tungstic acid, uranium in uranyl acetate, and lead in lead citrate) to give contrast [47]. Com‐
pared to histological staining, negative staining is more commonly used to prepare TEM
sample to improve the contrast of organic materials: heavy metals dyes are absorbed by the
background that creates contrast to the slightly stained specimen. The observation of ECM by
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TEM is nearly concomitant of its apparition in the late 1930s. Native collagen fibrils extracted
from tissues and stained negatively with phosphotungtsic acid present a typical cross-striated
pattern with a series of dark and light bands, spaced with a regular period of 67 nm. These
observations have allowed the establishment of the assembly model of collagen molecules into
collagen fibrils, known as the quarter-stagger model from Hodge and Petruska (1963). This
model proposes a lateral stacking of collagen molecules, creating overlaps that exclude
phosphotungstic dye and appear light, and a longitudinal collinear succession of collagen
molecule spaced with a constant gap filled by Tungsten dye and appears dark under electron
beam [48]. The cross-striated pattern is characteristic of fibrillary collagen, that are collagen
type I, type II, and type III. On the other hand, network forming collagen type IV do not present
any bands on TEM but is seen as a meshwork of hexagonal structures [49]. The resolution
(roughly 1–5 nm) of TEM allows analyzing single macromolecules deposited on carbon film
and stained by rotary-shadowing, creating a 3D electron sensitive replica of the specimen [50].
This method has revealed the semiflexible rod structure of collagen molecules terminated by
a globular C-term pro-peptide and the cross-shaped triple chain structure of laminin mole‐
cules. TEM is particularly accurate to measure length of ECM molecules and diameters of fibrils
and fibers assembly. These last parameters are important when analyzing a tissue because
ECM fibrils diameters appear to be tissue-specific and modification of their size can be induced
by pathologies such as diabetes, fibrosis, cancer, or aging and consequently impair tissue
organization and function [51]. Compact bone tissue which supports most of the load of the
body and muscles anchorage has to resist strong mechanical solicitations, but it is surprisingly
light in weight structure if compared to human-engineered buildings. Bone tissue is made of
an abundant organic ECM, strengthened with a mineral phase, and has highly hierarchical
structure with length scales ranging from meters to nanometers that give its overall mechanical
properties [52]. The shaft of long bones is organized in cylindrical osteons formed by successive
concentric lamellae, themselves constituted by compact assemblies of collagen fibrils. An
oblique transverse section of successive concentric lamellae made with ultra-microtome and
observed with TEM revealed coexistence of two patterns of organization for collagen fibrils
[53]. One is an alternation of parallel and orthogonal fibrils, with a regular 90° shift of fibrils
orientation from one lamellae to another. The second is seen under TEM as arced structures,
as if collagen fibrils were bent in between two series of longitudinal fibrils. The arced pattern
is the consequence of the oblique sections into succession of collagen fibrils rotating with a tiny
and constant angle from one lamellae to another, creating the illusion of bend structures [54].
From these TEM observations, a twisted plywood model of collagen fibril organization in bone
has been proposed. This particular constant angle twist recall the organization observed in
some liquid crystal phase, and it has been suggested that collagen molecules could have a
liquid crystal behavior and autoassemble in higher-scales structures [21,55]. This finally
underlines the potentials of transmission electron microscopy (TEM) to address ECM archi‐
tectures in tissues. As mentioned above, similar techniques and processing of samples used in
optical microscopy are also applied with TEM. The different components of the ECM can be
identified by immunolabeling with the same limitations for the necessity to retrieve antigens
from the fixation and embedding processes. The antibodies are covalently linked to a gold
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particle to be seen by TEM and multiple labeling is possible with the use of a specific size of
gold particle for each antibody [30].

TEM, however, needs a very thin specimen and cannot directly image a 3D structure. Unlike
TEM, scanning electron microscope (SEM) uses electrons reflected from the surface of the
sample as signals for image generation and provides information on surface topography,
fibrillar organization, porosity, and also atomic composition of a bulk sample [56]. Samples
have to be dehydrated to enter the low-vacuum chamber of the microscope and coated with
an electron conducting layer (commonly gold) to ensure an adequate contrast and avoid
charging phenomenon on the sample which are deleterious for the quality of the image. To
keep their native 3D structure intact, biological samples are usually dehydrated by ethanol
treatment and to a critical point drying. This procedure has enabled the evaluation of collagen
fibrils diameters and spatial organization in reconstituted collagen hydrogels [57]. In biological
tissues, the higher proportion of cells compared to ECM can minimize the access to the ECM
fibrillar network. By a gentle decellularization method, the cellular counterpart of the tissue
is removed and the native ECM frame remains [58]. This process mainly keeps in their original
shape the reticular fibers of collagen and elastin but degrade most part of the laminins and
GAGs network.

3. Extracellular matrix-inspired biomaterials

The deep exploration of ECMs composition, organization, and biological functions associated
with the development of methods to produce new biocompatible materials has enabled
material scientists to recreate ex vivo some of the key characteristics of ECM [59]. This section
focuses on how the structural and functional characteristics derived from the knowledge of
the native cell microenvironment have been applied to design biologically relevant biomate‐
rials. Different strategies currently exist to build 3D models of the ECM: tissue-derived ECM,
use of natural or synthetic polymers, and formulation into hydrogel or porous 3D materials.
Some biomaterials are designed to recreate the composition of the ECM and thus offering the
right environment for studying cell adhesion and anchorage-associated cell phenotypes. Other
materials are developed to recreate the 3D architectures of ECM, proposing fibrillary structures
with similar organization and mechanical properties of native tissues. These examples
represent preliminary attempts of ex vivo models of ECM that will most likely be improved
and increase with an overcoming of technical hurdle faced by material scientists and with
rising interest of cell biologists for 3D models that will ask for more refined and specific
materials to answer fundamental questions on cell biology.

3.1. Strategies to engineer 3D models of ECMs

3.1.1. Tissue-derived ECM: the gold standard Matrigel®

A basement membrane-derived tissue isolated from Engelberth–Holm–Swarm (EHS) mouse
sarcoma is commercially available under the brand name Matrigel® (BD Biosciences) and has
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become widely used to evaluate cell migration, cancer cells behavior, and to create organoids
in vitro. EHS-sarcoma produces a large amount of ECM rich in collagen type I, laminin-111,
heparin sulfate proteoglycans (Perlecan), and Nidogen that are the main constituents of BM
[60]. This basement membrane extract is liquid at 4°C and turns into a gel at 37°C under
physiological pH and ionic strength. Matrigel® is currently the gold standard in most of the
3D assays performed in cell biology. Indeed, there is not yet any material in the market that is
able to better reproduce the composition and partially the organization of BM, in particular
because Matrigel® is obtained directly from animals and is not an ex vivo engineered ECM. It
is a ready-to-use solution that allows user-defined utilization, even if manipulating Matrigel®
requires skills and experience. The success of Matrigel® is also due to its biological activity
that allows under normal conditions of culture the differentiation of several cell types and the
formation of complex structures like vessels or mammary glands acinar structures [61,62].
Besides structural ECM molecules, Matrigel® contains soluble growth factors such as fibro‐
blast growth factors (FGF), epidermal growth factor (EGF), and transforming growth factor-β
19 (TGF-β) and matrix metalloproteinases (MMPs) including MMP-2 and -9. The unique
coexistence in an ex vivo substrate for cell culture of native and organized fibrous ECM proteins
associated with soluble factors explains its genuine bioactivity. Concomitantly, this represents
its main drawback to serve as an ECM model for 3D cell cultures. Because Matrigel® is
produced and purified from an animal, there is a lack of control on its exact composition and
a batch-to-batch variability of its content [63]. Moreover, the presence of growth factors in an
unknown and uncontrollable amount can interfere (positively or negatively) with the intended
parameters to be studied, like with the evaluation signaling molecule or a drug, and invalidate
the use of Matrigel® in any experiments where the role of a growth factors in a cellular process
would like to be addressed. The work of Edna Cukierman has demonstrated the dramatic
changes in cell morphology in-between 2D and 3D cell culture systems with a massive
reorganization of cell cytoskeleton and a modification of integrins expression [64]. This has
increasingly recognized the importance of studying cells, in particular their adhesion and
migration, within a 3D environment. Thus, Matrigel® should be considered with caution and
with the full awareness of its limitations when it is chosen for a 3D model and so not creating
a “black-box” during the switch of cell biology from 2D to 3D.

3.1.2. Biological polymers

Biological polymers were first used as a coating of tissue culture dishes to favor cell adhesion
and spreading, and then incorporated into 3D materials under different forms (hydrogels,
freeze-dried materials, and surface coating of bulk inorganic materials). Most of the biological
polymers used in biomaterials are structural molecules derived from mammalian ECM such
as collagens (type I–IV), elastin, fibronectin, laminin (mainly laminin-111), fibrin, and glycoa‐
minoglycans (Hyaluronan, Chondroitin sulfate, and Heparan sulfate) [65]. They are classically
purified from animals’ ECM-rich tissues such as dermis and tendons (collagen type I, elastin),
cartilages (collagen type II and GAGs), tumors (laminins and collagen IV) or directly from
blood (fibrin and fibronectin). Nowadays, it is possible to obtain some of these molecules from
DNA-recombinant sources. This allows to work with human ECM molecules, produced with
a high degree of purity and free of many pathogens [66]. However, DNA-recombinant
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production of multimeric high molecular weight molecules is still a challenge and it minimizes
the number and the amount of molecules available from this source and raises dramatically
their prices. Nonmammalian ECM molecules are also widely used in the design of biomate‐
rials, mainly for their ability to self-assemble in 3D structures. Numerous materials are
engineered in the form of hydrogel from chitin/chitosan (polysaccharide purified from fungi
or arthropods exoskeleton), agarose or alginate (both polysaccharides purified from algae).
Silk fibroin, a protein found in silkworm cocoon and spiders, is also used to produce fibrous
materials [67]. Because of their origin, nonmammalian biological polymers lack many of the
cell adhesion cues on their structures and should be most often supplemented with adhesive
molecules or peptides to obtain a biologically active material. Their inherent abilities to form
3D materials remain their best interests. Last type of biological polymers usable in the design
of 3D materials are growth factors (FGF, EGF, platelet derived growth factor [PDGF], and
vascular endothelial growth factor [VEGF]) that give important biological signals to the cells
and enzymes (MMPs, proteolytic enzymes) that can favor a remodeling and a progression with
time of the material, like that is observed in the healing processes and during tumor invasion.
However, as mentioned in the first section of this chapter, these molecules are not structural
proteins and thus no 3D material can be raised from them. Nevertheless, both growth factors
and enzymes represent essential molecules to reinforce the basic 3D scaffold in a relevant ECM
model. For that purpose, there are strategies to incorporate these soluble molecules into a
material and trigger their appropriate release at specific time points or location in the material
[59].

3.1.3. Synthetic polymers

Synthetic organic polymers offer a large panel of creativity to produce 3D materials. They
inherently lack basic biological activity but possess a great processing flexibility. They are
easier to produce as well as purify in large quantities and finally, are free from animal
contaminations. Synthetic polymers are suitable for many types of chemical modifications such
as chemical grafting of adhesive peptides or incorporation of bioactive molecules and can be
processed into 3D materials with many types of techniques (electrospinning, foaming,
hydrogel, and sheets), some of them not bearable by biological polymers. The diversity of
synthetic polymers used in biomaterials is large, including polyacrylamides, polyacrylates,
polyethers (e.g., polyethylene glycol), polyesters (e.g., polycaprolactone), polyhydroxy acids
(e.g., poly lactic acid, poly glycolic acid, and copolymers poly lactic-co-glycolic acid), polyfu‐
marates, and polyphosphazenes [68]. Polyesters and polyhydroxy acids have both biodegrad‐
able properties with presence of hydrolysable bonds in their backbone, whereas
polyacrylamides and polyacrylates are almost unbreakable under cell culture conditions.
Chemically or genetically engineered peptides or protein-like polymers with amphiphilic or
autoassembling properties offer a direct incorporation of bioactive cues into fibrillar materials.
Inorganic materials such as metal (e.g., titanium, stainless, and cobalt) and mineral alloys (e.g.,
ceramics) are widely used as bone and dental substitutes, but their bulk and stiff structures
associated with poor possibilities of chemical modifications make them rarely used as ex
vivo engineered ECM [69]. Synthetic polymers are usually functionalized by chemical grafting
of peptides which are recognized for cell adhesion such as the well-known Arg-Gly-Asp (RGD)
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motif found in numerous ECM molecules (fibronectin, collagen, and vitronectin) and bind by
several integrins. More specific ECM-derived peptides can also be grafted, such as DGEA and
GFPGER sequences found in collagen I and IV, respectively, or IKLLI and YIGSR sequences
from laminin alpha-1 and beta-1 chain, respectively. Functionalization strategies use the
inherent properties of the synthetic polymers to form a 3D scaffold and to contain active
chemical groups (amine, acid, or alcohol functions) sensitive to chemical reactions and so
providing an ECM model with well-defined characteristics in order to answer a specific
question. Synthetic polymers can also be functionalized with whole proteins such as growth
factors or enzymes. Through the mediation of a peptide spacer incorporating a cleavage
sequence, the release of the bioactive compounds may be triggered at the required time or
progressively by the proper proteolytic action of the cells [70]. In conclusion, synthetic
polymers represent an engineering solution to rationalized parameters tested in 3D model of
ECM and can introduce a dynamic aspect into the system [71,72].

3.1.4. Hydrogels

Hydrogels are produced from polymers in solutions which are gelated into 3D materials that
possess high water content. To some extent, hydrogels behave in the same way than proteo‐
glycans in ECM and represent a valuable mimicry of soft-tissues ECM structures and physical
properties due to its hydrated state. They are most often produced by mild, physiological
conditions and, as such, are mainly compatible with cell encapsulation and culture, as water
is the natural solvent for living organisms and biochemical reactions. The water content of the
gels also facilitates the diffusion of low molecular weight nutriments, oxygen, and metabolic
waste. Hydrogel can be produced from a large variety of polymers, including both natural and
synthetic substrates, offering a large diversity of biochemical, physical, and mechanical
properties. Depending on polymers characteristics, the gelation can be reversible or irrever‐
sible and triggered by different factors such as multivalent ions, chemical covalent cross-
linking (including aldehyde fixatives), and physical phase-transition induced by temperature,
pH, or concentration [73]. Covalent cross-linking can form hydrogel with almost all types of
polymers in solutions, but the toxicity of cross-linking molecules must be considered, and
furthermore, most of the cross-links are nondegradable by cells or in physiological conditions.
Moreover, the gelating process can be deleterious for cells, and thus it will dictate the ways
that cells are associated with the scaffold (i.e., before or after gelation). Mixing the cells with
the polymers prior gelation allows a homogenous distribution of the cells inside the material,
which could be more difficult to achieve when seeding the cells on an already formed hydrogel
[74].

Natural polymer hydrogels can be made with collagen, fibrin, hyaluronan, alginate, and
agarose. Collagen hydrogels are formed by pH neutralization of acid solutions that trigger the
assembly of the collagen molecules into fibrils and fibers which will stabilize the structure of
the gel. Mechanical properties of collagen hydrogels can be finely modulated by adjusting their
concentrations [75]. Fibrin gels are formed following the same reaction that occurs in the body
after an injury or an inflammatory response: fibrinogen is mixed in solution with thrombin, a
serine protease, which hydrolyses the N-terminal peptide of fibrinogen to create fibrin
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monomers that assembles into fibrils that will produce an interconnected fibrous hydrogel.
Mechanical properties of fibrin gel are tuned by adjusting fibrinogen and thrombin concen‐
trations. However, fibrin gels are highly sensitive to several proteases, which are secreted by
cells, and a gel degradation regularly occurs in long-term cell cultures if no protease inhibitors
are added in the culture media [76]. Hyaluronan hydrogels are formed by covalent cross-
linking with hydrazide derivatives that react with the carboxylic acid groups of the polymer.
They bear inherent biological properties and are susceptible for further chemical modifications
which modulate these properties, such as the grafting of fibrous proteins or adhesive peptides.
However, hyaluronan hydrogels are mechanically poor, and hyaluronan is more often
incorporated into other materials than being the main frame of a hydrogel. Several different
types of materials are produced from alginate hydrogels. Alginate polymerization is triggered
by addition of divalent cations Ca2+, Mg2+, Ba2+, or Sr2+ that create bridges in-between
negative charges of alginate monomers. Processing of alginate hydrogels enables an easy cell
encapsulation, but a progressive diffusion and solution-exchange of divalent cation can
undermine its structure. Agarose gels are formed by heating (near boiling temperature) of the
solution that gelate with cooling. Different porous architectures and mechanical properties are
obtained with modulation of agarose concentration.

Hydrogels can be formed with synthetic polymers including polyethylene oxide, polyvinyl
alcohol or in a blended solution or copolymer association with poly lactic acid. Again, the
interest of synthetic polymers to form hydrogels is the diversity and the reproducibility of
materials that they are able to produce, with versatile biophysical, mechanical and biological
properties. Poly ethylene glycol (PEG) polymers can be modified to allow in situ gelation by
visible UV-light induction [77]. Photopolymerization is based on the interaction of light with
photo initiators that create free radicals which react with the polymer and initiate cross-links.
Compared to other type of chemical cross-linkers, photopolymerization is fast (second or
minutes) and allows a spatial control of the polymerization. It works under physiological
conditions and the radical species, even harsh for living species, are quickly removed by the
polymerization process, making these materials more free of adverse chemical compounds as
it may occur with aldehyde or hydrazide derivatives. Photopolymerization of PEG-based
solutions was used to encapsulate chondrocytes that were cultured for 14 days with progres‐
sive deposition of a cartilaginous native ECM showing the biocompatibility of the process [77].
Synthetic peptides containing cell adhesion cues can also be designed for autoassembling into
supramolecular structures able to form hydrogels. Engineered proteins produced by recombi‐
nant DNA can, in the same way, present adhesive domains and reactive groups such as thiols
and amines for being the specific targets of polymerization reactants [72]. Finally, hydrogel-
forming properties of synthetic polymers can be used to include biological polymers unable
to form otherwise materials on their own and then offering a mixed inert 3D structures with
biological functions.

3.1.5. Porous material

Hydrogels show a good biocompatibility due to their water content but present most often
low mechanical properties, high degradation rates, and a compromised deep diffusion of large
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molecules like proteins. To overcome these issues, porous materials with interconnected pore
networks and surfaces or fibers to sustain cell adhesion as well as cell phenotype have been
designed. These materials are discriminated in microporous scaffolds where embedded cells
will mainly attach on the surface of pores of >100μm diameter and will more represent curved
2D surfaces, and in nanoporous scaffolds where pore structures are in the range of the cell
diameter (roughly 10 μm) and represent more the native 3D environment of ECMs [78].
Nevertheless, microporous structures allow a more effective cell penetration and migration
into the material while smaller-sized pores can represent a barrier for cell colonization of the
material, and limit the cell interactions at the edges of the material [79]. This particular point
of cell colonization represents one of the challenges with nanoporous materials, and definitely
a limitation when directly compared with both the microporous and the hydrogel materials.
Similar to hydrogels, porous materials can be prepared with both natural and synthetic
polymers with a large panel of techniques including, but not restricted to electrospinning,
phase separation, templating, and vapor-phase polymerization [79]. Electrospinning forms
fibrillar materials with control on the fibers diameters, fibers alignment, and fibers interdis‐
tances that dictate the overall porosity of the material. A polymeric solution is injected through
a capillary tube into a high electric field that forms a Taylor cone with application of the
electrostatic forces. On the opposite side of the capillary, the collector of the electrospun fibers
is charged or grounded. The electric field in-between capillary and collector accelerates the
flow of the polymer solution that evaporates the solvent and generate coalescence of the
polymers that finally form solid fibers arrays. This technique is mainly used with synthetic
polymers (poly lactic/glycolic acid and poly caprolactone) but is also suitable for natural
polymers such as collagen and silk fibroin [80]. Electrospinning produces thin materials not
exceeding millimeters and with a high-packing density of fibers that can impair a deep
colonization by cells, but intensive researches are presently conducted to overcome these issues
[81]. Collagen porous materials can be formed by thermally induced phase separation leading
to the production of the so-called “collagen sponges” due to their high porous structures.
Acidic collagen solutions are frozen which induces a phase separation of collagen molecules
from the water-based solvent that is then eliminated by lyophilization. Materials are then made
of dense collagen walls with unstriated microfibrils [57] or with native cross-striated fibrils
[82]. Size and interconnectivity of the pores can be modified by modulation of the length and
temperature of the phase separation, by modulation of the collagen concentration or by mixing
the collagen solutions with other natural polymers such as GAGs [82] or with synthetic
polymers such as poly lactic acids. Freeze-dried collagen materials have weak mechanical
properties and are often strengthened by the addition of GAGs, or cross-linked by chemical
species (aldehydes) or dehydrothermal processes [83].

The various polymers and processes presented above enable the engineering of different types
of 3D materials designed to study ex vivo a large variety of cellular phenomenon such as cell
differentiation, drug response, tumor formation, cell migration, cell morphology and cytos‐
keleton organization, cell death and proliferation, tissue architecture, and coculture behavior
of cells [84]. For that purpose, 3D materials are built either to mimic ECM composition, ECM
organization, or ECM mechanical properties. We present here examples of such engineered
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3D models of ECM with description of the material characteristics and cellular outcomes
observed.

3.2. Three-dimensional models mimicking ECM composition

Recreating ex vivo the ECM composition in 3D materials offers the possibility to address in a
relative more biologically relevant environment the specific function of one or several of its
components on several cell mechanisms. It can be used to recreate cell adhesion and cell
migration or to offer adhesive cues that are specially organized.

A minimal system has been designed with a gelatin hydrogel mixed with PEG and function‐
alized with RGD and PHSRN adhesion peptides to evaluate the inflammatory response of
adhering immune cells [85]. Monocytes are circulating immune cells which are among the first
cells to react at the site of an injury. Once they have migrated and attached to the site of
aggression, they start to secrete cytokines and ECM remodeling enzymes. The hydrogel was
built with PEG-diacrylate (PEG-da) photopolymerizable polymers mixed with gelatin
monomers covalently grafted with PEG-RGD and PEG-PHSRN, two amino acid sequences
found in fibronectin and recognized by several types of integrins. The hydrogel mixture was
made with different ratios of Gelatin-PEG-peptides compared to the PEG-da polymers for the
formation of hydrogels with different adhesive peptide densities (from 30 to 50% of gelatin-
modified polymers). The study showed that monocyte adhesion and cytokine secretion
reached a plateau when the gelatin-modified polymers concentration was above 40%, indi‐
cating that rising adhesive-peptides densities did not improve their accessibility for mono‐
cytes. The nature of the ligands has also an influence on monocytes behavior, with a higher
level of MMP-9 expression when hydrogels are incorporating PHSRN peptides, while more
interlekin-1β was secreted in RGD hydrogels. These data suggest a specific monocyte inflam‐
matory response for each of these adhesive cues. This model can be developed and used, for
instance, to study the different parameters that initiates the inflammatory response at the site
of injury.

Metastatic cancerous cells escape the original tumor site to attach and invade a distant organ.
The switch of the cellular microenvironment from primary tumor site to the metastatic organ
can affect the metastatic cells response to therapeutics which was originally designed to act on
the original cancerous cells in the specific microenvironment of the primary tumor site. Blehm
and coworkers have engineered a 3D model of the ECM of the perivascular niche of the brain,
a metastatic target of cutaneous melanomas, to address the effect of anti-MAPK therapeutics
(ERK inhibitor and Darafemib) on metastatic cutaneous melanomas cells lines [86]. Cells were
seeded in a huyaluronic acid-PEG-diacrylate hydrogel supplemented with purified full-length
proteins, laminin-111 and fibronectin, or with RGD-cyclic peptides. Diminution of Darafemib
drug efficacy is reported for one melanoma cell line in hydrogels supplemented with fibro‐
nectin, whereas laminin-supplemented hydrogels protected against ERK inhibition. With
another cell line, drug efficacy was weakened for both therapeutics only on laminin-supple‐
mented hydrogels, reinforcing the importance of the cellular microenvironment for drug
testing.
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Natural polymers, including ECM proteins, GAGs, and growth factors, with a high degree of
purity were successively assembled to form molecularly defined materials evaluated by
subcutaneous implantation as well as in a cartilage reconstruction model [87]. Collagen type
I solution purified from bovine Achilles tendon was mixed with insoluble elastin, purified
from equine ligamentum nuchae and homogenized in a grinder before molding and freeze-
drying of the solution. This process formed a porous scaffold (collagen sponge-based material)
with both collagen and elastin fibrils. Porosity of the material was controlled by the freezing
temperatures, as higher rates of freezing provided materials with smaller pore diameter.
Complexity and ECM mimicry of the material is extended by incorporation of chondroitin
sulfate or heparan sulfate. Collagen-elastin material is soaked with either chondroitin or
heparan sulfate solution, and GAGs are covalently bounded to the collagen-elastin fibers by
carbodiimide cross-linking. The amount of GAGs effectively grafted to the materials is a
function of GAGs structures and their respective reactiveness to the cross-linker, with a final
grafting of 10% of the original heparan sulfate solution and 6% of the chondroitin sulfate
solution. Finally, growth factors such as bFGF and VEGF were loaded into the Collagen-
Elastin-GAG material to form a valuable model of the different classes of natural polymers
found in ECMs. Incubation of growth factor solution with the material only allowed a partial
adsorption as growth factors are rapidly lost after a few hours of cultures. However, heparan
sulfate bears native biding sites for bFGF, enabling a more efficient loading of bFGF into the
material and a progressive and extended release during cell culture. Two-weeks after subcu‐
taneous implantation in rat, collagen-heparan sulfate materials showed a higher vasculariza‐
tion than collagen alone. After 10 weeks, collagen materials loaded with bFGF exhibited a
lower cell invasion and vascularization than the collagen-heparan sulfate-bFGF material. Even
evaluated in vivo, where cells are in a more positive environment than cultured in vitro, this
study showed the possibility to engineer a complex material reproducing the different class
of natural polymers found in ECMs. A critical parameter for the use of such porous material
as an ex vivo ECM model is the possibility to seed evenly the cells within the material as
compared to hydrogel-embedding. However, this can be overcome by creation and control of
an open and interconnected porosity within the material.

3.3. Mimicking ECM organization and mechanics

Two-dimensional cell cultures on TCPS have been coated with ECM molecules to give more
biologically relevant ligands for cell adhesion, spreading, migration, and expression of
phenotypes. This has partly raised the idea that instead of coating, ECM-derived adhesive cues
should be displayed in 3D to be more close to the cell environment, and we have presented
above 3D materials that recreate ECM composition. However, this approach does not generally
consider the reconstruction of the spatial organization of ECM that is of equal importance as
the ECM composition [88].

The study of collagen-rich connective tissues such as skin, tendons, and bones by polarized-
light microscopy and TEM revealed that type I collagen is highly structured, with a spatial
geometry specific for each tissue. This spatial organization of collagen I in tissues can be
reproduced in vitro, using the autoassembling properties of collagen molecules in acidic
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solutions which will self-organize in different liquid-crystal organizations dependent on the
collagen concentration [89]. Regulated evaporation of solvent raise progressively the collagen
concentration and modify collagen molecules organization. These organized molecular
textures are stabilized by neutralization of the pH of the solution and further triggering the
assembly of soluble collagen molecules into insoluble cross-striated native collagen fibrils
[54,90]. The supramolecular assembly of collagen molecules into collagen fibrils also induce
the transition from the original collagen solution to a solid hydrogel structure (i.e., so-called
“sol/gel transition”) that retains the molecular tissue-like organization of collagen molecules.
This leads to materials with collagen fibrils architecture which may mimic those observed in
tendon, skin, and bones [21,91] but that also reproduce the mechanical features of collagen-
rich tissues from dermis to bone, depending on the collagen concentration of the material [75].
Ordered collagen hydrogels have been used to study myofibroblasts migration as a model of
wound-healing [92], behavior of human osteoblasts in long-term in vitro cultures [57,93] and
also as a model to study the kinetics of noncollagenous ECM proteins secretion in relation to
the biomineralization processes [94]. However, tissue-like organization of collagen fibrils
resulted in mild (20–40 mg/mL) or high (>80 mg/mL) collagen concentrations, which mainly
restricted cell seeding to the surface of the materials.

In the depth of a tissue, different ECM organization could be found, like in the skin with
different ECM compositions, organizations, and properties of epidermis and dermis, or in
articular cartilage from the GAGs-rich upper surface to the deeper interface with the under‐
lying bone tissue. A layer-by-layer approach, based on successive freeze-drying of different
natural polymer solutions to modulate material organization, was used to recreate the
discrepancies in the ECM organization observed in the cartilage tissue [95]. The first layer
intends to recreate main features of the deeper osteochondral tissue architecture. Collagen type
I in acidic solution is mixed with hydroxyapatite, the mineral phase found in bones, and freeze-
dried at a constant rate to obtain a dense porous structure. The subsequent porous material
was cross-linked with carbodiimide to strengthen its structure. The second layer mimics the
bone–cartilage interface and is made with an equal amount of mixture of the collagen type I,
main collagen of bone tissue, and of the collagen type II that is the main collagen of cartilage
tissue. Collagen I and II mixture is supplemented with hydroxyapatite at a final concentration
five-times lower than on the first layer. This mixture is poured on the surface of the first layer
and freeze-dried to finally form a two-layer material, with two distinct compositions and
porous structures. The last layer mimics the articular cartilage tissue. This layer is made from
a mixture solution of 25%/75% of collagen type I and II, respectively, and then further
supplemented with hyaluronic acid to recreate the GAGs content of the articular cartilage. The
last layer is again freeze-dried with time-prolonged freezing and drying steps to ensure the
proper porous structure. The overall material is strengthened by a dehydrothermal process
that creates amine-based cross-links. This process forms a material with three specific porous
structures as well as a molecular composition and with the opened and interconnected porosity
that allows an effective cell colonization of each of the three layers.

The specific composition and spatial organization of the ECM dictate its overall mechanical
properties, that cells are able to sense through their integrin receptors and their cytoskeletons.
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On 2D surfaces, it has been shown that cells are responsive to surface rigidity and that it
influences the commitment of mesenchymal stem cells toward differentiation in a specific
lineage [96]. Again, surface stiffness applies forces which are unevenly distributed on the cells
(i.e., only located at the cell-surface interface). Developing a 3D material with tuned and
controllable mechanical properties will generate a more biologically relevant environment to
evaluate the role of ECM mechanobiology on cells functions and differentiation processes. To
study the influence of mechanical stiffness on mesenchymal stem cells differentiation, a series
of alginate gels with elastic modulus ranging from 2.5 to 110 kPa has been developed [97].
Mechanical properties of alginate gels are modulated by the percentage of alginate polymers
in the final hydrogel. Because alginate is not sensitive to the degradation of hydrolytic enzymes
of mammalian cells, the elastic modulus of the mechanical properties of the material are
expected to remain constant all along the study (7 days of cell culture). RGD-peptides are
covalently grafted to alginate polymers prior to hydrogel formation to give to the cells adhesive
cues. The more rigid materials trigger mesenchymal stem cells differentiation toward bone
lineage with an expression of the bone-related molecular markers such as alkaline phosphatase
and osteopontin after 7 days of culture. On the other hand, alginate gels with the lower elastic
modulus (softer material) triggers an accumulation of oil-droplets into stem cells, indicating
adipose tissue differentiation. The density of RGD-peptides incorporated into these materials
did not modify the cell fate related to the elastic modulus of the material, but induce a higher
level of expression of the lineage markers for both bone and adipose-committed cells.

3.4. Conclusion: toward a gold-standard of 3D model of ECMs?

As mentioned at the beginning of this section, the ECM-derived Matrigel® represents currently
the most often used material for 3D experiments in cell biology. Despite that Matrigel®-related
drawbacks are of importance, Matrigel®is a widely and available model to investigate many
fundamental questions in cell biology, from cell adhesion and tumor formation, to drug testing.
We have presented in this chapter a large panel of techniques, methodologies, and engineering
processes that allow the exploration of ECM organization and permit to recreate ex vivo some
of their key features. At the conclusion of this chapter and after the review of several studies
investigating various 3D materials, it appears that no material can represent the unique and
ideal answer for all cell investigations in 3D [63]. A modular approach should be taken by
rationalizing the biological question to be studied and the parameter of ECM intended to be
recreated. Nevertheless, more and more complex materials are engineered that will finally be
able to mimic simultaneously several key factors of ECM composition, architecture, or
mechanical properties, and so enabling investigation of multiple parameters for cell biology
experiments. An important drawback with engineered 3D materials is to create a “black-box”
where undefined and uncontrollable parameters may influence the cellular outcomes to be
investigated. To avoid part of this problem, rigorous attention should be paid on the purity of
polymers used to build the material, in particular with biological polymers. The development
of DNA-recombinant production of ECM proteins can overcome this problem, even if this will
raise ultimately the cost of the final material. The structural characteristics of the final material
(porosity, polymers distribution, and fibrils diameter) should be consistently reproducible and
addressed. To do so, an “easy,” meaning straightforward, process of the material should be
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sought and preferred rather than a more complex multistep fabrication process. Biomaterial
scientists propose continuously new design and approaches to engineer ex vivo ECMs. The
production of a gold-standard material may become possible for a specific biological question.
It might happen with the existence of a deep and intelligible dialog in-between material
scientists, whom brings engineering strategies, and the cell biologists, that implement the
material design to mimic the biological process that has to be investigated ex vivo. This
collaboration may result in major advances for science and medicine.
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