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Abstract

The flight actuation system plays important role in the accurate guidance of the flight

vehicles. The actuators driving the control surfaces are aerodynamically loaded during

flight. The design, testing and selection process of the flight actuators play important

role to ensure the stable and safe flight. Since a reliable flight actuation system can ensure

appropriate guidance,  the importance of qualification process cannot be neglected.

Qualification of the actuators through field trials is a very costly and time-consuming

process. The testing process using real flights takes more time and is costly. For ground

testing, aerodynamic loading systems are used. The aerodynamic loading system is

ground-based hardware in the loop (HWIL) simulator that can be used for exerting

aerodynamic loads on actuation system of flight vehicles in real-time experiment. The

actuation system under test is directly connected to the loading motor through a stiff

shaft  and the aerodynamics loading is applied in real  time according to the flight

trajectory generated by a flight computer.

This chapter is preliminarily focused on the basic working principle, mathematical

modelling and torque/force control system design of the load simulator system. As a

case study, the response and dynamics of the electrical aerodynamic loading system are

analysed using mathematical modelling concept. The dynamic model is discussed and

adaptive fuzzy sliding mode control techniques are introduced to ensure the high-

performance torque loop of the aerodynamic loading systems.
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1. Introduction

In a flight control system, aerodynamic loads are introduced during flight at the control

surfaces or fins of flight vehicle as a function of air density, fin angle, etc. The fin control system

must respond to these loads to maintain the accuracy of flight control system [1–3]. Since load

simulators are used for the qualification of flight actuation system, the control performance of

load simulators is vital [4, 5]. Before the invention of the motorized load simulators, the

mechanical springs or torsion bars were utilized for the testing process. Conventional testing

has several disadvantages, for example, the loading devices are not adaptable to varying loads.

In modern ages, the testing and qualification of flight actuators are done through a hardware

in the loop simulator system. In order to reduce cost and time, hardware in the loop simulators

are utilized in which a loading motor is used as the aerodynamic loading device [6–9]. There

are three types of load simulators depending on the type of applications and loading require‐
ments [2–6]. Electro-hydraulic load simulators (EHLS) are widely used as hardware-in-the-

loop-simulation (HILS) system in flight control applications that can simulate the air load

executed on flight actuation systems. The EHLS can simulate rapid and large torque/force

loads with big volume. Some advantages and disadvantages are listed. The hydraulic load

simulators move fast and have rapid steering. The natural frequency of the electro-hydraulic

servo valve is generally above 100 HZ, so the hydraulic load simulator’s frequency response

is very fast and smooth. The low-speed performance of electro-hydraulic actuator is good. The

load simulators can be operated in wide speed range. On other hand, due to big size and

volume, maintenance cost is high. Temperature effects can cause degradation of performance.

At low temperature the friction loss is high, and at high temperatures the leakage phenomenon

is significant. Leakage of hydraulic fluid or oil is a major drawback. It causes the environmental

pollution. This can easily cause a fire. The oil contamination causes system blockage and

system failures. Another type is the pneumatic load simulator that is a typical hardware in

loop (HIL) system used to apply medium-range torque/force loads on the actuator under test.

The pneumatic load simulator can track the fast deployed load with compressibility. Pneu‐
matic systems are often used instead because pneumatic pressure is usually cheaper to obtain,

especially since most industrial facilities already have compressed air available. The pneumatic

load simulators use air or any other compressed gas to transmit power. It is hard to obtain

smooth performance due to large compressibility factor, especially at low speeds. Similarly,

temperature changes can degrade the performance of pneumatic load simulators. The

pneumatic load simulators are smaller in size and volume as compared to hydraulic load

simulators, so the maintenance cost is lower. The electrical load simulator is an important

ground-based hardware tester simulator used for qualification of flight actuation system, such

as the aircraft control surfaces, ship steering system, robotics arm, undercarriage of the plane

and high-speed elevator system. The electrical load simulators are used to apply medium and

small loads on actuators under test. Some advantages of electrical load simulator are its small

size and volume, low installation and maintenance cost, less sensitive to temperature changes

as compared to hydraulic and pneumatic load simulators and high performance. There are no

environmental hazards associated with electrical load simulators.
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2. Working of load simulator system

Laboratory testing and qualification of flight actuators play vital role for ensuring the design

of reliable flight control with cost-effective solutions. The hardware diagram given in Figure 1

is the minimal setup that is used in the laboratory testing of the flight actuators. The flight

actuator is directly connected to the loading motor through a stiff shaft. The direct mechanical

connection allows the application of the loading torque generated at the output shaft of loading

motor in a close loop system. The Autopilot controller is used to set the reference position

trajectory of the flight actuator. An important block of the system is the aerodynamic load

calculator system, and the inputs to this block are the reference position command of the

actuator system, air speed, Mach number and angle of attack. The output of the load calculator

block serves as reference command to the loading motor. Thus, the torque load loop is closed

using the feedback signal from torque sensor. The advantage of using the proposed setup

provides the designer a freedom for applying real-time loads simulated in the laboratory with

minimum cost.

Figure 1. Block diagram of electrical load simulator.

3. Actuator testing: a case study

The flight actuator under test is a brushless DC motor. A permanent magnet synchronous

motor (PMSM) is used as the loading motor. For simplicity, the load calculator is used in

proportional mode. In proportional mode, the output of the load calculator is directly pro‐
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portional to the reference command of the flight actuator. Let θa represents the reference

command of flight actuator, then the output of the load calculator Tr is Cθa where “C”

represents the proportionality constant. The parameter Tr is set as reference command of the

torque loading motor. From Figure 2, the reference command signal of the flight actuator θais

constructed from a real test scenario of a flight vehicle.

Figure 2. Reference signal command of flight actuator.

Before discussing the control problem, basic understandings of system dynamics is a pre

requisite. A PMSM is used as a loading motor. The voltage and torque balance equations of

PMSM loading motor are written as
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In Eq. (1) [id iq] is the d-axis and q-axis current vector, [ud uq] represents d-axis and q-axis voltage

vector, wm is the angular velocity of torque motor, [Lsq Lsd Rs] represents inductances and

resistances of ELS motor,[P , ψm] represents the number of pole pairs and magnetic flux of rotor,

[J, B] represents inertia and damping coefficient, kt =
3P

2 ψmis torque constant, kb = Pψm is back

emf constant, and [Te , Tf, TL] is the electromagnetic torque, friction torque and output load

torque. Assuming that inertia and damping coefficient of torque sensor is very small, thus the

dynamics can be written as

( )  L s m aT K q q= - (2)

Here, [θm θa] represents the angular position of loading motor and actuator, Ks is the total

stiffness of torque sensor and connecting shaft. To achieve largest torque operation and to
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eliminate coupling effect between speed and currents, we set d-axis reference current id
′ equal

to zero. Considering the effect of PWM driver and the current feedback, Eq. (2) can be written

as given in [4]. For simplicity, we set Lsq = L and Rs = R

q b v i
q m

di K K KR
i w

dt L L L
= - - + (3)

Here, ki is the current controller gain. Current feedback is assumed to be unity. Assuming that

load and friction torque are zero and taking Laplace transform of Eq. (3) and eliminating I(s),

we get the transfer function from input voltage to output position as
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In Eq. (4), tm =
RJ

kt kb
 is the electromechanical time constant, te =

L

R  is the electromagnetic time

constant. Replace Eq. (2) into Eq. (2), the simplified relation can be written as
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From the numerator of Eq. (5), it is concluded that extra torque is caused by the effect ofθa, θ̇a

and θ̈a. If the reference input command of loading torque motor is zero, i.e.u = 0, then Eq. (5)

is reduced to the following simplified relation

[( )( ) ]

( )

b t s a
L

s Ls R Js B k k K
T

D s

q- + + +
= (6)

From Eq. (6), it is concluded that extra torque is acting on the loading torque motor even if the

reference input command u is zero. Extra torque is a function of the acceleration and velocity

components of the actuators movement. After some simplifications, the state equation

representation of electrical load simulator is written as
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(7)

In Eq. (7) the parameters are defined as
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In Eq. (7) the nonlinear friction is represented using LuGre model, which is written as
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In Eq. (8) the parameter g(v) is the Stribeck effect, vs is the Stribeck velocity, fc is coulomb friction,

fs is static friction, z is the average bristle defection,a0 is the stiffness of the bristles, a1 is the

damping term and a2 is the viscous friction coefficient. Now to realistically apply the loading

torque on flight actuator, a feedback torque control system plays vital role. In this study,

adaptive fuzzy sliding mode control system is used to formulate the torque control system.

3.1. Adaptive fuzzy sliding mode control for electrical load simulator system

Sliding mode is a robust control method which has been widely applied to many nonlinear

systems [10–15]. This section provides an overview of derivations of torque control system for

electrical load simulator’s system. Let TLbe the output load torque and Trbe the desired torque

signal, we define tracking error vector as

L r

L r

L r

e T T

e T T

e T T

= -é ù
ê ú= -ê ú
ê ú= -ë û&& &&&&

& && (9)
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Error surface vector is defined as

 s e e

s e e
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l
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Assuming that the nominal parameters of the system are known, then by combining Eqs. (7),

(9) and (10) yields

( )( ),L extra f rs aT bu f T T T el= - + - - +&&&& & (11)

The control law is given by

( )( ) ( )( )ˆ1 1
, | . .L extra f r du aT f T T T e K s w sgn s

b b
q l= + + - - -&&&& (12)

From Eq. (12), it can be analyzed that the total control effort u is the sum of three terms

T f extrau u u u= + + (13)

Here, uT is the control effort for torque tracking, uf is the friction compensation control and uextra

is the extra torque compensation control. The unknown function f̃ (Textra,T f |θ)is the estimated

output of fuzzy logic for friction and extra torque.

3.1.1. Stability analysis

To prove stability of the closed loop, the Lyapunov function is chosen as

V =
1

2 (s 2 + ∑
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n

ηiθ̃
2

i)

V
.

= ss
.

+ ∑
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n

ηiθ̃ iθ̃ i
˙

(14)

Hereθ̃ i = θ̂ i −θi . Combine Eq. (11) and Eq. (14)

V
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Define Ṫ n = − T̈ r + λė and combine Eq. (12) into Eq. (15)

V
.

= s(−aT
.

L + aT
.

L + f
^

(Textra, T f )|θ + T̈ n − Kds −w.sgn(s)

− f (Textra, T f )− T̈ n) + ∑
i=1

n

ηiθ̃ iθ̃ i
˙

(16)

The fuzzy approximation error is defined as [3]
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Combining Eq. (16) and Eq. (17) yields [16]

V
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Using Eq. (19) the following adaptive law is derived

θ̃ i
˙ = −ηi

−1siξi
(θ, θ

. ) (20)

By replacing Eq. (20) in Eq. (19) and simplifying

( )( ).sgnf dV s e K s w s= - - -& (21)

It is assumed that ideally fuzzy compensating error ef is approaching zero, and by choosing

Kd > 0 it can be shown that

0dV sK s= - £& (22)
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3.1.2. Results and discussion

For simulations and validity of the proposed control scheme, the following parameters are

used. Total inertia of the system is given as J = 0.04Kg/m2, resistance R = 7.5Ω, inductance

L = 1mH, motor torque constant kt = 5.7325Nm/A, back emf constant kb = 5.7325Nm/V, viscous

coefficient B = 0.244Nm/rad/s, torque sensor stiffness Ks = 950Nm/rad, static friction fs = 3Nm,

coulomb friction fc = 2.7Nm, σ0 = 260Nm/rad, σ1 = 2.5Nm − s/rad, σ0 = 0.022Nm − s/radand Stribeck

velocity α = 0.001rad/s. The parameters of the controller are given as fuzzy learning rate

ηi = 0.0001, amplifier gain ku = 10, kd = 10, w = 1.5, λ = 15.

3.1.3. Loading motor torque tracking performance

The testing of actuator is performed under the loading torque Tr = 16θa where “C = 10”. From

Figure 3, it is concluded that the output torque applied by the loading motor is exactly the

same as the reference loading torque.

Figure 3. Loading motor closed loop performance.

Figure 4. Flight actuator closed loop performance with aerodynamics load.
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3.1.4. Flight actuator angle tracking performance under load

Figure 4 presents the testing results and the qualification of the autopilots of the flight actuators

under the aerodynamic loading shown in Figure 3, which is mechanically transmitted from

loading motor. From the results provided, it is concluded that the flight actuator under can

withstand the non-linear profile of the aerodynamic load supplied. Moreover, the autopilot

position controller is also robust and the position tracking errors are small enough.

4. Conclusion

This chapter covers the basic working principle of the load simulator system for testing of the

flight actuators. As a case study, a real test data was used as reference command to the flight

actuators and the load calculator unit. The output of the load calculator system provides the

reference loading torque command for the loading motor, which is working in closed loop.

From the results presented in this chapter, it is concluded that the proposed hardware setup

is feasible to be utilized for cost-effective testing and qualification of the flight actuation system.
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