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Abstract

In modern industry, there usually exist high-precision stages, such as reticle stages and
wafer stages in VLSI lithography tools, metrology stages in coordinate measurement
machines, motion stages in CNC machine tools, etc. These stages need high-precision
measurement/metrology systems for monitoring its XY movement. As the metrology
systems are quite accurate, we often cannot find a standard tool with better accuracy to
implement a traditional calibration process for systematic measurement error (i.e., stage
error)  determination and measurement accuracy compensation.  Subsequently,  self-
calibration technology is developed to meet this challenge and to solve the calibration
problem. In this chapter, we study the self-calibration of two-dimensional precision
metrology systems and present a holistic self-calibration strategy. This strategy utilizes
three measurement views of an artifact plate with mark positions not precisely known on
the un-calibrated two-dimensional metrology stage and constructs relevant symmetry,
transitivity, and redundancy of the stage error of the metrology stage. The misalign‐
ment errors of all measurement views, especially including those of the translation view,
are totally determined by detailed mathematical manipulations. Then, a redundant
equation  group is  synthesized,  and  a  least-square–based  robust  estimation  law is
employed to calculate out the stage error even under the existence of random measure‐
ment noise. Furthermore, as the determination of the misalignment error components of
the measurement views is rather complicated but important in previous and the proposed
methods, this chapter also significantly analyzes the necessity of this costly computa‐
tion.  The  proposed  approach  is  investigated  by  simulation  computation,  and  the
simulation results prove that the proposed determination scheme can calculate out the
stage error rather exactly without random measurement noise. Furthermore, when there
exist various random measurement noises, the calibration accuracy of the proposed
strategy is also investigated, and the results illustrate that the standard deviations of the
calibration error are consistently with the same level of those of the random measure‐
ment noises. All these results verify that the proposed scheme can realize the stage error
rather accurately even under the existence of random measurement noise. The practical
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procedure for performing a standard self-calibration is also introduced for engineers to
facilitate actual implementation.

Keywords: Self-calibration, Metrology system, Stage error, Measurement noise, VLSI
lithography

1. Introduction

Modern precision applications such as  VLSI  lithography tools,  CNC machine tools,  and
coordinate measurement machines usually need multi-dimensional stages those are capable of
manufacture accuracy at micro/nanometer levels [1, 2]. As automatic servo systems, these stages
have metrology/measurement systems for position information and motion feedback [3–5].
Because of the unavoidable surface non-flatness, non-orthogonality, scale difference, etc., in the
metrology systems, there exists systematic measurement error (i.e., stage error), which is the
difference between the actual metrology system and the ideal metrology system [6]. The common
way to determine the stage error map in Cartesian space needs traditional calibration technol‐
ogy [7, 8] with a rather standard measurement plate or scale for direct “high-precision calibra‐
tes low-precision”. If the stage error can be figured out, the measurement accuracy of the
metrology system in the stage could be determined and compensated, which will improve the
positioning accuracy and repeatability of practical motion systems [9, 10]. However, in practical
ultra-precision applications such as nano-lithography, engineers usually cannot find a standard
measurement tool with better accuracy than the stage’s metrology system to perform a traditional
calibration process. Therefore, the idea of self-calibration is developed. The basic principle is to
utilize an artifact plate with mark positions not precisely known and place the plate on the
metrology stage with different locations or orientations to construct different measurement
views [11]. In the following Figure 1, one example of the measurement view is shown where
the pedestal is the un-calibrated metrology system and the grid plate is the artifact plate.

The key point of the self-calibration way is that the positions of the marks on the plate are fixed
whatever the measurement view is, and researchers could utilize the measurement informa‐
tion of the marks in different views to construct equation about the stage error for final
determination. Following this way, self-calibration has attracted attention of researchers and
engineers and has been applied to certain special but important applications [12, 13], such as
nano-positioners [14], profiling stages [15], scanning probe microscope [16], and coordinate
measuring machines [17]. For example, Takac [18] concerned the self-calibration problem of
one-dimensional stages with the utilization of an un-calibrated artifact plate to obtain con‐
gruency via transitivity and provided a calibration that makes a set of tool graduation markers
with identical spacing. Raugh proposed a rigorous mathematical method for two-dimensional
self-calibration under the assumption that the stage error map in Cartesian space can be
expressed as a finite polynomial [19]. However, the scheme is complicated with extensive
computation and even may be unstable under the existence of random measurement noise.
To reduce the computation of Raugh’s algorithm, for the two-dimensional self-calibration,
Takac et al. [9] developed a transitive algorithm based on direct point-to-point comparison,
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which is intuitive and simple, but quite sensitive to random measurement noise due to that
the handling of the rotation and translation of each measurement view is oversimplified.

Figure 1. An artifact plate on a two-dimensional metrology stage.

In [20], Ye proposed a discrete Fourier transform-based algorithm for two-dimensional self-
calibration, which is numerically robust. He also validated that the algorithm provides an exact
self-calibration on the discrete sample sites when there was no random measurement noise,
and only introduced calibration error of about the same size as the random measurement noise
when there exists random measurement noise. The development of this algorithm is inspired
by the achievement of Takac and Raugh and is considered as a standardized process by related
researchers and engineers [16]. However, the computation for the misalignment error com‐
ponents of translation view is complex due to that the information of the rotation view is not
sufficiently utilized. Moreover, discrete Fourier transform is widely used in the algorithm,
which further increases the difficulty on understanding and implementation for researchers
and engineers [21].

In this chapter, considering the complexity of existing algorithms, the self-calibration of X–Y
precision metrology stages is studied with simplicity and effectiveness orientation. The
method sufficiently utilizes the three properties of stage error detailed in [20] but abandons
the Fourier transform way to provide an easily understood self-calibration algorithm. Specif‐
ically, with the three measurement views of the plate on the un-calibrated stage, the measure‐
ment information of the plate’s mark positions in all views is utilized to construct symmetry,
transitivity, and redundancy of the stage error. Consequently, a least-square-based self-
calibration algorithm is proposed to effectively realize the stage error accurately even under
the existence of random measurement noise. The computation process for the components of
misalignment error of each measurement view is also provided in detail, which could be
utilized as basis for synthesis of other self-calibration strategies. Furthermore, as the determi‐
nation of the misalignment error components of the measurement views is rather complicated
but important in previous and the proposed methods, this chapter also significantly analyzes
the necessity of this costly computation. The proposed self-calibration algorithm is investigat‐
ed by computer simulation, and the results validate that the stage error could be determined
quite exactly when there is no random measurement noise. Furthermore, when there exists

Self-Calibration of Two-Dimensional Precision Metrology Systems
http://dx.doi.org/10.5772/62761

187



random measurement noise, the calibration accuracy also could be guaranteed, and the
calibration error is at the same level as the random measurement noises, which illustrates that
the proposed scheme possesses certain performance robustness. The proposed scheme actually
develops a well-understood solution to two-dimensional self-calibration problem, which
could facilitate practical implementation.

2. Problem formulation of two-dimensional self-calibration

2.1. Stage error

In this section, the expression of stage error would be presented. In a two-dimensional
metrology/measurement system of the stage, define (x, y) as the true location of the sample
site in the Cartesian grid, and G(x, y) as the stage error at (x, y), which is the difference between
the actual metrology/measurement system and the ideal metrology/measurement system. The
field to be calibrated is assumed to be L × L, and the origin of the X–Y axis is at the center of
this area. Define

( , ) ( , ) ( , )x x y yx y G x y G x y= +G e e (1)

where ex and ey are the unit vectors of the two-dimensional stage axis; Gx(x, y) and Gy(x, y) are
functions of the continuous X–Y field L × L. The sample sites are set to be as an N × N square
array covering the field L × L, and N is odd. Then, the sample site locations in the Cartesian
grid can be expressed as follows:

 ,m nx m y n= D = D (2)

where m= − N − 1
2 , − N − 3

2 , ⋯ , N − 1
2 , n = − N − 1

2 , − N − 3
2 , ⋯ , N − 1

2 , and Δ = L/(N − 1), which is called
sample site interval. For notation simplicity, we denote as follows:

, , , , ,

, ,

, ,

( , )
( , )

m n x m n x y m n y

x m n x m n

y m n y m n

G G
G G x y
G G x y

º +

º

º

G e e

(3)

Figure 2(1) shows an example of the stage error, Gm,n which leads the distortion of the actual
measurement system. The objective of self-calibration in this chapter was to calculate Gm,n out
which can be directly utilized to compensate the measurement accuracy. According to the
presentation of [20], there are three properties for Gm,n those essentially define the ideal
calibration coordinates.
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• Gm,n has no translation, i.e.,

, , , ,
, ,

0x m n y m n
m n m n
G G= =å å (4)

• Gm,n has no rotation, i.e.,

, , , ,
,

( ) 0y m n m x m n n
m n

G x G y- =å (5)

• Gm,n has no magnification, i.e.,

, , , ,
,

( ) 0x m n m y m n n
m n

G x G y+ =å (6)

Figure 2. (1) An example of Gm,n ; (2) an example of Am,n .

Meanwhile, two dimensionless parameters O and R are defined as the X–Y non-orthogonality
and the X–Y scale difference of Gm,n, respectively. Consequently, Gm,n be described as follows
[20]:

, , , ,

, , , ,

x m n n m x m n

y m n m n y m n

G Oy Rx F
G Ox Ry F

= + +

= - +
(7)

Therefore, the determination of Gm,n can be completed by calculating out the first-order
components O and R, and the residual error Fm,n. It must be noted that the origin of X–Y axis
is the center of the sample array and the following properties of Fm,n could be obtained [20]:
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, , , , , ,
, , ,

, , , , , ,
, , ,

0

0

x m n x m n m x m n n
m n m n m n

y m n y m n m y m n n
m n m n m n

F F x F y

F F x F y

= = =

= = =

å å å

å å å
(8)

2.2. Artifact error

As we state previously, an artifact plate is needed as a critical device for the self-calibration.
The used artifact plate has a square N × N mark array with the same size of the stage sample
site array, and the origin of the plate X–Y axis is located at the center of the mark array. The
plate axis is fixed on the plate and will move with the plate during its motion. The nominal
mark locations in the plate coordinate system are the same as the sample site locations in the
stage coordinate system. It is well known that the artifact plate cannot be perfect, and each
actual mark at (m,n) deviates from its nominal location by Am,n. Herein, Am,n is named as artifact
error with one example illustrated in Figure 2(2), and

, , , , ,

, ,

, ,

( , )
( , )

m n x m n px y m n py

x m n x m n

y m n y m n

A A
A A x y
A A x y

º +

º

º

A e e

(9)

where m= − N − 1
2 , − N − 3

2 , …, N − 1
2  , n = − N − 1

2 , − N − 3
2 , …, N − 1

2 , epx and epy are the unit vectors
of the plate axes. It should be noted that each mark on the artifact plate is with an identification
number (m,n). The mark’s identification number is fixed with the mark and does not change
when the plate moves on the stage. The mark number is utilized to identify each physical mark
of the plate, when different measurement views are conducted and compared. Similar to the
stage error Gm,n, the artifact error Am,n also has two properties as follows [20]:

• Am,n has no translation, i.e.,

, , , ,
, ,

0x m n y m n
m n m n
A A= =å å (10)

• Am,n has no rotation, i.e.,

, , , ,
,

( ) 0y m n m x m n n
m n

A x A y- =å (11)

3. Fundamental of X–Y self-calibration

The self-calibration requires performing independent measurement views with different
permutations of the artifact plate on the un-calibrated metrology stage as illustrated in
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Figure 3, where the grid is the artifact plate and the colorful plane out of the grid is the
metrology stage. The first view is the original orientation of the artifact plate referred to as
View 0, in which the X-axis and Y-axis of the plate are aligned with those of the stage as closely
as possible. In View 1, the artifact plate is rotated 90° around the origin from View 0 on the
metrology stage. In View 2, the artifact plate is translated from the original View 0 by one
sampling site + Δ along X-axis. In the following, we measure the rigid artifact plate marks when
the plate is placed on the metrology stage in three measurement views. Through these
measurement data, the stage error map can be determined by comparing different measure‐
ment views, and the misalignment error can be directly figured out with mathematical
manipulations in detail.

Figure 3. Three measurement views for X–Y self-calibration.

3.1. View 0

In the first view, the artifact plate is placed on the un-calibrated metrology stage with the
corresponding axes aligned roughly as shown in View 0 of Figure 3. The deviation of mark
(m,n) from the measurement value to its nominal position in the stage coordinate system is
denoted as v0,m,n, where subscript 0 represents View 0. Define

0, , 0, , , 0, , ,m n x m n x y m n yv v= +v e e (12)

It must be noted that the alignment between the stage axes and plate axes cannot be perfect,
i.e., there inevitably exists a small offset between their origins and a small rotation between
their orientations. Therefore,

0, , , , , , , 0, , , 0, , ,

0, , , , , , , 0, , , 0, , ,

x m n x m n x m n x m n x m n

y m n y m n y m n y m n y m n

v G A E r
v G A E r

= + + +

= + + +
(13)
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where the misalignment error E0,m,n is denoted as follows:

0, , , 0 0

0, , , 0 0

x m n n x

y m n m y

E y t
E x t

q

q

= - +

= +
(14)

and θ0 and t0 are the rotation and offset of the misalignment. r0,y,m,n and r0,y,m,nare the random
measurement noises. To attenuate the effects of r0,x,m,nand r0,y,m,n, repeated measurements are
constructed with exactly the same mark position of the artifact plate. Resultantly, V0,x,m,n and
V0,y,m,n are the mean values of a number of repeated measurements of V0,x,m,n and V0,y,m,n, and
the random measurement noise is consequently assumed to be completely attenuated, i.e.,

0, , , , , , , 0, , ,

0, , , , , , , 0, , ,

x m n x m n x m n x m n

y m n y m n y m n y m n

V G A E
V G A E

= + +

= + +
(15)

Substituting Eqs. (7) and (14) into Eq. (15) leads to the following:

0, , , , , , , 0 0

0, , , , , , , 0 0

x m n x m n n m x m n n x

y m n y m n m n y m n m y

V F Oy Rx A y t
V F Ox Ry A x t

q

q

= + + + - +

= + - + + +
(16)

Noting Eqs. (8), (10), (11), and (16), t0x, t0y, and θ0 of the misalignment error E0,m,n are determined
[20], i.e.,

0, , , 0, , , 0, , , 0, , ,
, , ,

0 0 02 2 2 2

,

( )
, ,

( )

x m n y m n y m n m x m n n
m n m n m n

x y
m n

m n

V V V x V y
t t

N N x y
q

-
= = =

+

å å å
å (17)

After computing t0 and θ0, the misalignment error E0,m,n is determined. Then, define

0, , , 0, , , 0 0

0, , , 0, , , 0 0

x m n x m n x n

y m n y m n y m

U V t y
U V t x

q

q

= - +

= - -
(18)

It must be pointed out that, the transformation from V0,m,n to U0,m,n is commonly referred to as
multiple-point alignment. Combining Eqs. (16) and (18) leads to the following

, , , , 0, , ,

, , , , 0, , ,

x m n x m n x m n n m

y m n y m n y m n m n

F A U Oy Rx
F A U Ox Ry

+ = - -

+ = - +
(19)
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3.2. View 1

In the second measurement view, the artifact plate is rotated 90° around the origin from View
0 as shown in View 1 of Figure 3. In this view, the plate X-axis is aligned along the stage Y-
direction with same direction, and plate Y-axis is aligned along the stage X-direction but with
converse direction. The deviation of mark (m,n) from the measurement value to its nominal
position in the stage coordinate system is denoted as V1,m,n, where subscript 1 represents View
1. It must be noted that although located at a different position relative to the stage, the mark
(m,n) in View 1 is the same physical mark (m,n) in View 0. Then,

1, , 1, , , 1, , ,m n x m n x y m n yv v= +v e e (20)

and

1, , , , , , , 1, , ,

1, , , , , , , 1, , ,

x m n x n m y m n x m n

y m n y n m x m n y m n

V G A E
V G A E

-

-

= - +

= + +
(21)

where V1,m,n is the mean value of a number of measurements of V1,m,n, and E1,m,n is the mis‐
alignment error. With similar procedure of above subsection, we define

1, , , 1, , , 1, , ,
, ,

1, , , 1, , , 2 2 2

,

1, , , 1, , , 1, , ,
, ,

1, , , 1, , , 2 2 2

,

( )

( )

( )

( )

x m n y m n n x m n m
m n m n

x m n x m n m
m n

m n

y m n y m n n x m n m
m n m n

y m n y m n n
m n

m n

V V y V x
U V x

N x y

V V y V x
U V y

N x y

- -
= - +

+

- -
= - +

+

å å
å

å å
å

(22)

Consequently, Eqs. (21) and (22) yield

, , , , 1, , ,

, , , , 1, , ,

x n m y m n x m n m n

y n m x m n y m n n m

F A U Ox Ry
F A U Oy Rx

-

-

- = - +

+ = + +
(23)

Comparing Eq. (23) of View 1 with Eq. (19) of View 0, with the same procedure in [20], the
stage error components O and R can be calculated out as follows:
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0, , , 0, , , 1, , , 1, , ,
, ,

2 2 2 2

, ,

0, , , 0, , , 1, , , 1, , ,
, ,

2 2 2 2

, ,

( ) ( )
1 [ ]
2 ( ) ( )

( ) ( )
1 [ ]
2 ( ) ( )

x m n n y m n m x m n m y m n n
m n m n

m n m n
m n m n

x m n m y m n n x m n n y m n m
m n m n

m n m n
m n m n

U y U x U x U y
O

x y x y

U x U y U y U x
R

x y x y

+ -
= +

+ +

- - -
= +

+ +

å å
å å

å å
å å

(24)

After calculating out O and R, Eqs. (19) and (23) can lead to the following

, , , , ,

, , , , ,

x m n y n m m n

y m n x n m m n

F F P
F F Q

-

-

- =

+ =
(25)

where

, 0, , , 1, , ,

, 0, , , 1, , ,

2 2

2 2
m n x m n y m n n m

m n y m n x m n m n

P U U Oy Rx
Q U U Ox Ry

= - - -

= + - +
(26)

3.3. View 2

As the first-order components O and R have been determined by View 0 and View 1, we try
to determine Fm,n in the third view. In this view, the artifact plate is translated by roughly one
sample site interval +Δ from View 0 along X-axis relative to the stage, while the stage axes and
plate axes are roughly aligned, which is shown in View 2 of Figure 3. The deviation of mark
(m,n) from the measurement value to its nominal position in the stage coordinate system is
denoted as v2,m,n, where subscript 2 represents View 2. Different from View 0 and View 1, the

subscript m here is from − N − 1
2  to − N − 3

2 ,  due to that the far right column, i.e., m= − N − 1
2 ,  is

outside the initial N × N stage sample sites. It also should be noted that although located at a
different position relative to the stage (by about one sample site interval translation), the mark
(m,n) here is the same physical mark (m,n) in View 0. As only the (N − 1) × N sites in View 2
within the initial N × N sites can be used, the properties of no translation and no rotation cannot
be used.

Similar to Views 0 and 1, we can obtain

2, , 2, , , 2, , ,m n x m n x y m n yv v= +v e e (27)

and
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2, , , , 1, , , 2, , ,

2, , , , 1, , , 2, , ,

2, , , 2 2

2, , , 2 2

x m n x m n x m n x m n

y m n y m n y m n y m n

x m n n x

y m n m y

V G A E
V G A E
E y t
E x t

q

q

+

+

= + +

= + +

= - +

= +

(28)

where m= − N − 1
2 , − N − 3

2 , …, N − 1
2 , V2,m,n, is the mean value of a number of measurements of,

V2,m,n, θ2 and t2 are the rotation and offset of the misalignment. To be consistent with the
previous two views, U2,m,n is used instead of V2,m,n, i.e.,

2, , , 2, , , 2, , , 2, , , ,x m n x m n y m n y m nU V U V= = (29)

Combining Eqs. (28) and (29) and noting xm + 1 = xm + Δ lead to the following

, 1, , , 2, , ,

, 1, , , 2, , ,

x m n x m n x m n n m x n

y m n y m n y m n m n y m

F A U Oy Rx y
F A U Ox Ry x

q

q

x x

x x
+

+

+ = - - + -

+ = - + + +
(30)

where ξx = − (t2x + RΔ), ξy = − (t2y + OΔ), ξθ = − θ2. Subtracting Eq. (19) from (30) leads to the
following

, 1, , , 2, , , 0, , ,

, 1, , , 2, , , 0, , ,

x m n x m n x m n x m n x n

y m n y m n y m n y m n y m

F F U U y
F F U U x

q

q

x x

x x
+

+

- = - + -

- = - + +
(31)

Unlike the cases in View 0 and View 1, the misalignment error of View 2 is not identified simply
by applying the properties of Gm,n , Fm,n and Am,n , as View 2 provides no measurement data for
the first column of the sampling sites. Certain algebraic manipulation is needed and is
explained in Appendix A, B, and C, where the full procedures to determine the misalignment
error components of View 2, i.e., ξθ, ξx, and ξy, are separately presented in detail. It should be
pointed out that the determination process of ξθ, ξx, and ξy also can be used as foundation for
research of other self-calibration schemes.

4. Self-calibration algorithm for X–Y metrology systems

In this section, we try to synthesize a self-calibration algorithm for X–Y precision metrology
stages with accuracy and simplicity orientation. The proposed method should be well
understood and robust to meet the challenge of random measurement noise, which are both
important for engineers to implement in practical applications. In the following, two schemes
are provided.
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4.1. Scheme I

Combining Eqs. (25), (31), and (8), the following equation group for Fx,m,n and Fy,m,n can be
obtained:

, , , , 0, , , 1, , ,

, , , , 0, , , 1, , ,

, 1, , , 2, , , 0, , ,

, 1, , , 2, , , 0, , ,

, , , , , ,
, , ,

2 2

2 2
x m n y n m x m n y m n n m

y m n x n m y m n x m n m n

x m n x m n x m n x m n x n

y m n y m n y m n y m n y m

x m n x m n m x m n
m n m n m n

F F U U Oy Rx
F F U U Ox Ry
F F U U y
F F U U x

F F x F

q

q

x x

x x

-

-

+

+

- = - - -

+ = + - +

- = - + -

- = - + +

= =å å å

, , , , , ,
, , ,

0

0

n

y m n y m n m y m n n
m n m n m n

y

F F x F y

=

= = =å å å

(32)

Eq. (32) actually supplies linear equations for calculation of Fx,m,n and Fy,m,n with certain
redundancy. Therefore, a least-square solution for Fm,n can be synthesized with robustness to
meet the challenge of random measurement noise. To provide a more explicit illustration, we
take N = 11 as an example, and Eq. (32) can then be assembled into matrix form, i.e., MEF = S,
where M is a relational matrix of dimension 468 × 242, EF is a vector of dimension 242 × 1, and
S is a vector of dimension 468 × 1. This assembly of equations under matrix form is as follows:

FME S= (33)

where

, 5, 5 , 4, 5 , 3, 5 ,5, 5

, 5, 4 , 4, 4 , 3, 4 ,5, 4

, 5,5 , 4,5 , 3,5 ,5,5

, 5, 5 , 4, 5 , 3, 5 ,5, 5

, 5, 4 , 4, 4 , 3, 4 ,5, 4

,

[ , , ,..., ,
, , ,..., ,

, , ,..., ,
, , ,..., ,

, , ,..., ,

F x x x x

x x x x

x x x x

y y y y

y y y y

y

F F F F
F F F F

F F F F
F F F F
F F F F

E

F

- - - - - - -

- - - - - - -

- - -

- - - - - - -

- - - - - - -

=

M

M

5,5 , 4,5 , 3,5 ,5,5 242 1, , ,..., ]Ty y yF F F- - - ´

(34)

We have stated previously that three measurement views are required to generate equations
with data redundancy. Consequently, a least-square method can be synthesized to provide a
solution as follows

1( )T T
FE M M M S-= (35)
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which possesses certain robustness to random measurement noise. Therefore, Fm,n is obtained
which leads to the final determination of Gm,n.

4.2. Scheme II

As presented above, with the determination of the misalignment errors detailed in the
Appendix, the stage error can be calculated out. However, it also can be observed from the
Appendix that the computation process is complicated to some extent. Herein, this chapter
also analyses the necessity of this costly computation and provides another alternative as
follows [22].

As ξθ can be calculated out in the Appendix, define:

, , 2, , , 0, , ,

, , 2, , , 0, , ,

x m n x m n x m n n

y m n y m n y m n m

L U U y
L U U x

q

q

x

x

= - -

= - +
(36)

Combining (31) and (36) leads to the following

, 2, , 1, , , , 1, , ,

, 1, 1 , 1, , , 1 , , , , 1 , ,

, 2, , 1, , , , 1, , ,

, 1, 1 , 1, , , 1 , , , , 1 , ,

2

2

x m n x m n x m n x m n x m n

x m n x m n x m n x m n x m n x m n

y m n y m n y m n y m n y m n

y m n y m n y m n y m n y m n y m n

F F F L L
F F F F L L
F F F L L
F F F F L L

+ + +

+ + + + +

+ + +

+ + + + +

- + = -

- - + = -

- + = -

- - + = -

(37)

Consequently, the equations for Fm,n from (8), (25), and (37) can be grouped as follows

, , , , , ,
, , ,

, , , , , ,
, , ,

, , , , ,

, , , , ,

, 2, , 1, , , , 1, , ,

, 1, 1 , 1, , , 1 , , , , 1

0

0

2

x m n x m n m x m n n
m n m n m n

y m n y m n m y m n n
m n m n m n

x m n y n m m n

y m n x n m m n

x m n x m n x m n x m n x m n

x m n x m n x m n x m n x m n

F F x F y

F F x F y

F F P
F F Q
F F F L L
F F F F L

-

-

+ + +

+ + + + +

= = =

= = =

- =

+ =

- + = -

- - + = -

å å å

å å å

, ,

, 2, , 1, , , , 1, , ,

, 1, 1 , 1, , , 1 , , , , 1 , ,

2
x m n

y m n y m n y m n y m n y m n

y m n y m n y m n y m n y m n y m n

L
F F F L L
F F F F L L

+ + +

+ + + + +

- + = -

- - + = -

(38)

Eq. (38) also provides linear equations for determination of Fx,m,n and Fy,m,n with certain
redundancy. Then, a least-square solution for Fm,n can be synthesized. In detail, Eq. (38) can be
assembled into matrix form as follows
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FE SG = (39)

where Γ is a relational matrix of dimension D1 × D2, EF is a vector of dimension D2 × 1, and S is
a vector of dimension D1 × 1. Noting the subscripts of (38), we can calculate out D1 and D2 as:
D1 = 6 + N2 + N2 + (N − 2) × N + (N − 1)2 + (N − 2) × N + (N − 1)2 = 6N2 − 8N + 8, D2 = N2 + N2 = 2N2.
For example, assuming N = 11, Γis of dimension 646 × 242 which can be determined by (38),
while

, 5, 5 , 4, 5 , 3, 5 ,5, 5

, 5, 4 , 4, 4 , 3, 4 ,5, 4

, 5,5 , 4,5 , 3,5 ,5,5

, 5, 5 , 4, 5 , 3, 5 ,5, 5

, 5, 4 , 4, 4 , 3, 4 ,5, 4

,

[ , , ,..., ,
, , ,..., ,

, , ,..., ,
, , ,..., ,

, , ,..., ,

F x x x x

x x x x

x x x x

y y y y

y y y y

y

E F F F F
F F F F

F F F F
F F F F
F F F F

F

- - - - - - -

- - - - - - -

- - -

- - - - - - -

- - - - - - -

=

M

M

5, 3 , 4, 3 , 3, 3 ,5, 3

5, 5 4, 5 5,5

5, 5 4, 5 3, 5 2, 5 5,5

, 4, 5 , 5, 5 ,5,5 ,4,5

, 5, 4 , 5, 5 ,5,5 ,5,4 646 1

, , ,..., ,

[ , ,..., ,0,0,0,0,0
, , , ,..., ,

,..., ,

,..

,0,

., ]

y y y

x x x x

T
y x x x

F F F
S P P P

Q Q Q Q Q
L L L L

L L L L

- - - - - - -

- - - -

- - - - - - - -

- - - -

- - - - ´

=

- -

- -

M

(40)

As the system has requisite data redundancy, it can be solved using a least-square method to
calculate Fx,m,n and Fy,m,n , producing a solution like

1( )T T
FE S-= G G G (41)

Therefore, Fm,n is obtained with certain robustness which finally leads to the determination of
Gm,n by (7) as O and R are all known.

It should be pointed out that the proposed scheme does not calculate out the misalignment
error components ξx and ξy, while these calculations are important in previous published
strategies [15, 23, 24]. The proposed scheme does not need this costly computation, which
would be meaningful for simplification of the calculation process to some extent. In the
reminder of this chapter, as Scheme I is a holistic method and Scheme II is a simplified
alternative, the simulation test and self-calibration procedure are all presented just for Scheme
I. Readers could follow the following presentation to conduct similar issues for Scheme II.
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5. Computer simulation

In the following, the proposed self-calibration scheme would be tested by simulation. The stage
error is assumed to be on a 11 × 11 sample site array with the sample site internal Δ = 10 mm.
And the stage error is generated by the command “normrnd” of MATLAB software with mean
of 0 and standard deviation of 0.3, plus certain sine/cosine functions which may be partial
characteristics of the stage error data, i.e.,

, ,

, ,

2(0,0.3,11,11) 0.5 (3 )
11
2(0,0.3,11,11) 0.5 (3 )
11

x m n

y m n

G normrnd sin m

G normrnd cos n

p

p

= + ´

= + ´
(42)

The above data are utilized as the nominal Gm,n shown in Figure 4, where the red vector lines
are the stage error which have been zoomed in for 5000 times. It must be noted that Gx,m,n and
Gy,m,n are both generated by normrnd (0, 0.3, 11, 11), respectively. To satisfy relevant constrains
such as Eq. (4), little data modification has been made. In addition, the artifact error including
Ax,m,nand Ay,m,n is generated with mean of 0 and standard deviation of 0.5 µm.

Figure 4. Nominal Gm,n × 5000 with max(Gm,n) = = 1.0832 µm, min(Gm,n) = − 1.1448 µm, and std(Gm,n) = 0.4611 µm.

Self-Calibration of Two-Dimensional Precision Metrology Systems
http://dx.doi.org/10.5772/62761

199



5.1. Case I: simulation without random measurement noise

In this subsection, the random measurement noise is assumed to be perfectly compensated
by the mean value of a number of repeated measurements. The recalculated stage error

, i.e.,  and , can be calculated out through the proposed self-calibration
strategy. Figure 5 illustrates the calibration error EG including EGx and EGy, i.e.,

, and . The cali‐
bration error is shown as the red vector lines those have been zoomed in for 5 × 1017 times.
The maximum value max(⋅), the minimum value min(⋅) and the standard deviation std(⋅)of

  and EG are all listed in Table 1. It can be observed that the reconstructed stage

error  is always quite close to the actual stage error , and the calibration errors
are all below 1.6 × 10−14 μm , which validate that the proposed self-calibration algorithm can
accurately determine the stage error without the existence of random measurement noise.

Figure 5. Calibration error EGy(µm)s × 5 × 1017 with max(EG) = 1.5127 × 10−14μm, min(EG) = −1.1546 × 10−14μm, and std(EG)
= 4.6547 × 10−15μm (without random measurement noise).
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max (⋅) min (⋅) std (⋅)

Gmn(µm) 1.0832 −1.1448 0.4611

Gx,m,n(µm) 1.0832 −1.1448 0.4659

Gy,m,n(µm) 0.9753 −1.0870 0.4583

G
⌢
m,n(µm)

1.0832 −1.1448 0.4611

G
⌢
x ,m,n(µm)

1.0831 −1.1448 0.4659

G
⌢
y ,m,n(µm)

0.9753 −1.0870 0.4583

EG(µm) 1.5127 × 10−14 −1.1546 × 10−14 4.6547 × 10−15

EGx(µm) 1.2046 × 10−14 −1.0214 × 10−14 4.3670 × 10−15

EGy(µm) 1.5127 × 10−14 −1.1546 × 10−14 4.9431 × 10−15

Table 1. Calculation performance indexes (without random measurement noise).

5.2. Case II: simulation with random measurement noise of standard deviation 0.05 μm

The nominal stage error and artifact error in this subsection keep same with those of Sec‐
tion 5.1, except that in all site’s measurements, we add independent random Gaussian meas‐
urement noises. The random measurement noise is generated with mean of 0 and standard
deviation of 0.05µm . Following the proposed self-calibration scheme, the reconstructed

stage error , i.e.,  and  also can be computed out. The calibration error
EG, which is the difference between the recalculated and the actual stage error, is shown in
Figure 6, where the red vector lines as EG have been zoomed in for 5 × 104 times. The maxi‐
mum value max(⋅), the minimum value max(⋅), and the standard deviation of Gx,m,n, Gy,m,n,
EGx, and EGy are all listed in Table 2. It can be seen that the proposed self-calibration method

Figure 6. Calibration error EG × 5 × 104 with max(EG) = 0.0899 μm, min(EG) = −0.0793 μm and std(EG) = 0.0334 μm (with
random measurement noise std = 0.05 μm).
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can determine the stage error rather exactly even there exists certain random measurement
noise —when the measurement noise is with standard deviation of 0.05 μm , the corre‐
sponding calibration error is with a standard deviation of 0.0334 μm which is at the same
level as the random measurement noise.

We also further test the calculation robustness of the proposed scheme to various random
measurement noises those are continuously generated by arbitrary 15 times. The standard
deviations of the resultant calibration errors are shown in Figure 7, where the 15 standard
deviations are all below 0.05 μm . These results consistently validate that the proposed self-
calibration algorithm can meet the challenge of random measurement noise effectively.

max (⋅) min (⋅) std (⋅)

G
⌢
m,n(µm)

1.0919 −1.1598 0.4645

G
⌢
x ,m,n(µm)

1.0919 −1.1598 0.4693

G
⌢
y ,m,n(µm)

0.9744 −1.0835 0.4617

EG(µm) 0.0899 −0.0793 0.0334

EGx(µm) 0.0552 −0.0793 0.0334

EGy(µm) 0.0899 −0.0759 0.0336

Table 2. Calculation performance indexes (with random measurement noise std = 0.05 μm).

Figure 7. Standard deviation of calibration error for arbitrary 15 times (with random measurement noise std = 0.05
μm).

5.3. Case III: simulation with random measurement noise of standard deviation 5 × 10−4 μm

In this subsection, we implement other simulation to test the consistency of the proposed
scheme to random measurement noise. The random measurement noise is generated with
mean of 0 and standard deviation of 0.0005 μm which is rather small. Figure 8 shows the
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resultant calibration error EG under the existence of random measurement noise, where the
red vector lines is EG which have been zoomed in for 5 × 106 times. The maximum value max(⋅),
the minimum value min(⋅), and the standard deviation std(⋅) of Gx,m,n, Gy,m,n, EGx and EGy are all
listed in Table 3. Seen from this table, the proposed method can determine the stage error
when there exists random measurement noise with standard deviation of 0.0005 μm --- —the
standard deviation of calibration error is about 0.000327 μm , again the same level as the
random measurement noise. The algorithm’s robustness is further tested for arbitrary 15 times
with standard deviation of 0.0005 μm , and Figure 9 shows the standard deviations of the
calibration errors. It can be seen from the figure that the standard deviations are all <0.0005
µm . All these results consistently validate that the proposed self-calibration algorithm can
compute the stage error rather accurately no matter what the random measurement noise is.

Figure 8. Calibration error EG × 5 × 106 with max(EG) = 8.8410 × 10−4 μm, min(EG) = −7.4194 × 10−4 μm and std(EG) = 3.2684
× 10−4 μm (with random measurement noise std = 5 × 10−4 μm).

max (⋅) min (⋅) std (⋅)

G
⌢
m,n(µm)

1.0833 −1.1441 0.4612

G
⌢
x ,m,n(µm)

1.0833 −1.1441 0.4659

G
⌢
y ,m,n(µm)

0.9756 −1.0868 0.4583

EG(µm) 8.8410 × 10−4 −7.4194 × 10−4 3.2684 × 10−4

EGx(µm) 8.8410 × 10−4 −7.4194 × 10−4 3.2804 × 10−4

EGy(µm) 7.8703 × 10−4 −6.6555 × 10−4 3.2700 × 10−4

Table 3. Calculation performance indexes (with random measurement noise std = 5 × 10−4 μm).
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Figure 9. Standard deviation of calibration error for arbitrary 15 times (with random measurement noise std = 5 × 10−4

μm).

6. Standard self-calibration procedure

In this section, the procedure of performing a standard self-calibration following the proposed
scheme is provided to facilitate practical implementations. To illustrate the procedure more
clearly, a self-calibration system including an artifact plate, a two-dimensional stage, and a
mark alignment system is developed and shown in Figure 10. Herein, the mark alignment
system is developed to precisely obtain the measurement information of each mark position.
The actual steps are listed in the following.

• Step 0: Place the artifact plate on the 2-D metrology stage as shown in View 0 of Figure 1.
Utilize the metrology stage to measure the marks of the artifact plate through the mark
alignment system. Obtain v0,x,m,n and v0,y,m,n for K (e.g. K = 10) times, and get U0,x,m,n and U0,y,m,n

by (18), respectively.

• Step 1: Place the artifact plate on the 2-D metrology stage as shown in View 1 of Figure 1.
Use the metrology stage to measure the marks of the artifact plate, and get v1,x,m,n and v1,y,m,n

for K (e.g. K = 10) times. Then, determine U1,x,m,n and U1,y,m,n by (22), and obtain O and R by (24).

• Step 2: Place the artifact plate on the 2-D metrology stage as shown in View 2 of Figure 1.
Use the metrology stage to measure the marks of the artifact plate, and get v2,x,m,n and v2,y,m,n

for K (e.g. K = 10) times. Compute the misalignment error components ξθ, ξx, ξy , and obtain
(31).

• Step 3: Through above steps, Eq. (32) can be consequently obtained. Then, by (35), Fx,m,n and
Fy,m,n can be figured out. Finally, Gx,m,n and Gy,m,n can be computed out by (7) as O and R are
previously determined by Step 1.
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Figure 10. An example setup for 2-D self-calibration.

7. Conclusions

In this chapter, a least-square-based self-calibration strategy with simplicity and accuracy
orientation has been proposed for two-dimensional precision metrology stages to address the
measurement accuracy calibration problem. Three measurement views of an artifact plate on
the un-calibrated metrology stage are utilized to construct symmetry, transitivity, and
redundancy of the stage error, which is the basis for the synthesis of a least-square-based self-
calibration algorithm. The misalignment error of each measurement view has been calculated
out with explicit mathematical manipulations, while the necessity of these costly computations
has been discussed. The proposed algorithm has been investigated by computer simulation,
and the results show that the self-calibration strategy can reconstruct the stage error map rather
precisely even there exist various random measurement noises. Finally, the procedure for
performing the proposed self-calibration has been presented for engineers to facilitate practical
implementation.
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Appendix

Appendix A

Calculation of misalignment error component ξθ : Through Eq. (31), one can get

, 1, , ( 1), , , , ,

, 1, , , , , , ( 1),

2, , , 0, , , 2, , ( 1), 0, , ( 1),

2, , , 0, , , 2, , ( 1), 0, , ( 1),

( ) ( )

( ) ( )

( )

( )

x m n x m n x m n x m n

x m n x m n x m n x m n

x m n x m n x n x m n x m n x n

x m n x m n x m n x m n

F F F F
F F F F
U U y U U y
U U U U

q qx x x x

+ - + - - -

+ - - - + -

- + - - + - -

- + - - + -

+ - +

= - - -

= - + - - - + -

= - - + ( )n ny yqx -- -

(43)

Changing the index of Eq. (25), we can obtain

, , , , ,

, , , , ,

x m n y n m n m

x n m y m n n m

F F Q
F F P

- - - -

- - - -

+ =

- =
(44)

Combining Eqs. (25) and (44) leads to the following

, , , , , , ,

, , , , , , ,

x m n x m n m n m n n m

y m n y m n m n m n n m

F F C P Q
F F D Q P

- - -

- - -

+ = º +

+ = º -
(45)

Then, noting Eqs. (43) and (45), we can obtain

2, , , 0, , , 2, , ( 1), 0, , ( 1), 1, ,( ) ( )x m n x m n x m n x m n n n m n m nU U U U y y C Cqx- + - - + - - +- - + - - = - (46)

Eq. (46) can be directly utilized to determine the value of ξθ.

Appendix B

Calculation of misalignment error component ξx : Summing Eq. (31) over n leads to the
following

, 1 , ,

, 1 , ,

x m x m x m x

y m y m y m y m

H H Z N
H H Z N N xq

x

x x
+

+

- = +

- = + +
(47)

where m= − N − 1
2 , ⋯ , N − 3

2 , and
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, , , , 2, , , 0, , ,

, , , , 2, , , 0, , ,

, ( )

, ( )

x m x m n x m x m n x m n
n n

y m y m n y m y m n y m n
n n

H F Z U U

H F Z U U

= = -

= = -

å å

å å
(48)

Considering Hx,m, with j = − N − 1
2 , we can obtain

,

, , 1 , , 1

, , 1 , 1 , 2 , 2 , 3 ,

, , 1 , , , 1
1

{[ ] } ...

{[ ] [ ] [ ] ... }

[ ] ... [ ]

j

x m m
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x j j x j x j x j j

x j x j x j x j x j x j x j j

j j j

x j m x j x j m x j x j m
m j m j m j

H x

H x H H H x
H H H H H H H x

H x H H x H H x

=-

- - - + - - - +

- - - - - -

- - + - -
=- =- + =

= + - + +

+ - + - + - + +

= + - + + -

å

å å å

(49)

Substituting (47) into (49), and noting ∑m=− j
j xm=0 , one can get

,

1 2

, , 1 , 1
1 2

[ ... ]

[ ... ]

j

x m m
m j

j j j

x m m m
m j m j m j

j j j

x j m x j m x j m
m j m j m j

H x

N x x x

Z x Z x Z x

x

=-

=- + =- + =

- - + -
=- + =- + =

= + + +

+ + + +

å

å å å

å å å

(50)

From Eq. (8), it can be seen that

, , ,
,

= 0
j

x m m x m n m
m j m n

H x F x
=-

=å å (51)

Appendix C

Calculation of misalignment error component ξy : Similar to Hx,m, the following equation for

Hy,m with j = − N − 1
2  can be constructed, i.e.,
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y j y j m
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H x H H x
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-
=

= + - + +

+ - + - + +
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å
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(52)

Substituting Eq. (47) into (52), and noting ∑mj = − jm
x =0 , one can obtain

,

1 2

1 1
1 2

, , 1 , 1
1 2

[ ... ]

[ ... ]

[ ... ]

j

y m m
m j

j j j

y m m m
m j m j m j

j j j

j m j m j m
m j m j m j

j j j

y j m y j m y j m
m j m j m j

H x

N x x x

N x x x x x x

Z x Z x Z x

q

x

x

=-

=- + =- + =

- - + -
=- + =- + =

- - + -
=- + =- + =

= + + +

+ + + +

+ + + +

å

å å å

å å å

å å å

(53)

From Eq. (8), it also can be seen that

, , ,
,

0
j

y m m y m n m
m j m n

H x F x
=-

= =å å (54)

As ξθ has been calculated out in Appendix A, ξy can be figured out by Eqs. (53) and (54).
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