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Abstract

In literature, several hierarchical scheduling frameworks (HSFs) have been proposed for
enabling resource sharing between components on a uni-processor system. Each HSF
comes with its own set of composition rules which take into account a specific synchro‐
nization protocol for arbitrating access to resources. However, the inventors of these
synchronization protocols have also chosen to describe these composition rules with the
help of protocol-specific component interfaces. This creates unnecessary framework
dependencies on components.

In this chapter, we review existing interfaces and propose uniform interfaces to integrate
resource-sharing components into HSFs. For the purpose of computing uniform interfaces,
we  introduce  a  local  (component-level)  timing  analysis  for  components  which  is
independent (or agnostic) of the global synchronization protocol being used for arbitrating
access to shared resources. An individual component can therefore be analyzed as if all
resources are entirely dedicated to it. Given its interface, the component can then be used
with an arbitrary global synchronization protocol. This increases the reusability of a
component's timing interface, because the interface can still be fed to protocol-specific
composition rules when components are integrated.

Keywords: hierarchical scheduling frameworks, resource sharing, component compo‐
sition, real-time interfaces, synchronization protocol

1. Introduction

Hierarchical scheduling frameworks (HSFs) have been developed to enable composition and
reusability of real-time components in complex systems, for example, as described by Hole‐
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nderski et al. [1] for the automotive domain. During the development of such systems,
component models have become important in order to separate and structure the development
of system parts over engineering teams (or third parties). The increasing system complexity
therefore demands a decoupling of (i) development and analysis of individual components
and (ii) integration of components on a shared platform. This decoupling requires component
interfaces covering both functional aspects as well as non-functional aspects, such as timing.
An HSF supports system composition from a timing perspective because it isolates compo‐
nents by allocating a processor budget to each component. A component that is validated to meet
its timing constraints when executed in isolation will continue meeting its timing constraints
after integration (or admission) on a shared uni-processor platform. The HSF is therefore a
promising solution for industrial standards, e.g., the AUTomotive Open System ARchitecture
(AUTOSAR), which more and more specify that an underlying operating system should
prevent timing faults in any component to propagate to other components on the same
processor.

Independent analysis of components and their integration in HSFs is enabled through a set of
composition rules (e.g., as proposed by Shin and Lee [2]). By splitting the timing analysis in
complementary parts, one could establish global (system level) timing properties by compos‐
ing independently specified and analyzed local (component level) timing properties. Local
timing properties are analyzed by assuming a worst-case supply of processor resources to a
component. The way of modeling the provisioning of the processor budget to a component is
defined by a resource-supply model, e.g., the periodic resource model by Shin and Lee [2] or
the bounded-delay model by Feng and Mok [3]. These models make it possible to combine the
timing constraints of the tasks within a component (typically deadlines) and abstract from the
way tasks are locally scheduled. A component can therefore be represented by a single real-
time constraint, called a real-time interface. Components can be composed into an HSF by
combining a set of real-time interfaces, which will treat each component as a single task by
itself. This enables reuse of components.

The global scheduling environment (a parent component) can provide more resources to its
(child) components than just processor resources. For example, components may use operating
system services, memory mapped devices, and shared communication devices requiring
mutually exclusive access. An HSF with support for resource sharing makes it possible to share
serially accessible resources (from now on referred to as resources) between arbitrary tasks,
which are located in arbitrary components, in a mutually exclusive manner. A resource that
is only shared by tasks within a single component is a local shared resource. Their local sched‐
uling impact can be easily abstracted by real-time interfaces. A resource that is used in more
than one component is a globally shared resource.

Any access to a resource (local or global) is assumed to be arbitrated by a synchronization
protocol. In practical situations, a component developer is typically unconcerned about the
sharing scope of resources. A component may access resources for which just local usage or
global usage is determined only upon integration of components into the HSF. Fortunately,
the syntax of the primitives for accessing local and global resources can be the same, even
though the synchronization protocols are different (e.g., as implemented by van den Heuvel,
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et al. [4]). The actual binding of function calls to scope-dependent synchronization primitives,
that arbitrate either global or local resource access, can be done at compile time or when the
component is loaded. Dynamic binding of primitives makes it possible to decouple the
specification of global resources in the interface from their use in the implementation. This
flexible decoupling of the sharing scope of resources in the application's programming
interface is called opacity by Martinez et al. [5] and it abstracts whether or not a resource is
globally shared in the system.

This chapter presents an extension of this notion of opacity to component analysis and the
corresponding derivation of a real-time interface of a component. Opacity requires that the
implementation of a component, as well as the way in which interface parameters are derived
(the local analysis), are unaware of the global synchronization protocol. In this way, compo‐
nents cannot make use of any knowledge about the constraints and modifications to a
component imposed by the global synchronization protocol. By definition of opacity, all
computed interface parameters of a component are made independent of a global synchroni‐
zation protocol.

Based on this observation, we present the following contributions:

• We present a uniform representation of component interfaces and a corresponding opaque
analysis to derive these interfaces.

• We survey the existing analyses for components that are assumed to run in HSFs with a
particular synchronization protocol. We characterize the opacity compliance of their
analyses.

2. Related work

In hierarchically scheduled systems, a group of recurring tasks, forming a component, is
mapped on a reservation; reservations were originally introduced by Mercer et al. [6] and
Rajkumar et al. [7]. We first review existing works on hierarchical scheduling of independent
components. Secondly, we lift the assumption on the independence of components, so that
tasks may share resources with other tasks, either within the same component or located in
other components. This means that resource sharing expands across reservations which calls
for specialized synchronization protocols for arbitrating access to resources. Finally, we
discuss the extension of real-time interface representations for components requiring access
to shared resources through a synchronization protocol.

2.1. Timing interfaces of independent real-time components

The increasing complexity of real-time systems led to a growing attention for component-
based systems. Deng and Liu [8] therefore proposed a two-level HSF for open systems, where
components may be independently developed and validated. The corresponding timing
analysis of the HSF has been presented by Kuo and Li [9] for fixed-priority preemptive
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scheduling (FPPS) and by Lipari and Baruah [10] for earliest-deadline-first (EDF) global
schedulers.

Later, the research community identified the challenges of separating the timing analysis of
the HSF by means of real-time interfaces for components. A real-time interface separates the
component's internals (i.e., its tasks and scheduling policy) from its global resource allocation
strategy. Wandeler and Thiele [11] calculate demand and service curves for components using
real-time calculus. Shin and Lee [2] proposed the periodic resource model to specify periodic
processor allocations to components. The explicit-deadline periodic (EDP) resource model by
Easwaran et al. [12] extends the periodic resource model of Shin and Lee [2] by distinguishing
the relative deadline for the allocation time of budgets explicitly. The bounded-delay model
by Feng and Mok [3] describes linear service curves with a bounded initial service delay.

Many works presented approximated [e.g., 13–15] and exact [e.g., 2,12,14] budget allocations
for the bounded-delay and periodic resource models under preemptive scheduling policies.
Both Lipari and Bini [14] and Shin and Lee [16] have presented methods to convert the
bounded-delay model into a periodic resource model. In our chapter, we extend these models
in order to support task synchronization.

2.2. Task synchronization in hierarchically scheduled systems

In literature, several alternatives are presented to accommodate resource sharing between
tasks in reservation-based systems. de Niz et al. [17] support this in their fixed-priority
preemptively scheduled (FPPS) Linux/RK resource kernel based on the immediate priority
ceiling protocol (IPCP) by Sha et al. [18]. Steinberg et al. [19] implemented a capacity-reserve
donation protocol to solve the problem of priority inversion for tasks scheduled in a fixed-
priority reservation-based system. A similar approach is described by Lipari et al. [20] for EDF-
based systems and termed bandwidth inheritance (BWI).

BWI regulates resource access between tasks that each have their dedicated budget. It works
similar to the priority-inheritance protocol (PIP) by Sha et al. [18], and when a task blocks on
a resource, it donates its remaining budget to the task that causes the blocking. BWI does not
require a priori knowledge of tasks, i.e., no ceilings need to be precalculated. BWI-like protocols
are therefore not very suitable for arbitrating hard real-time tasks in HSFs, because the worst-
case interference of all tasks in other components that access global resources needs to be added
to a component's budget at integration time in order to guarantee its internal tasks' schedula‐
bility also in case budget needs to be donated. This leads to pessimistic budget allocations for
hard real-time components. To accommodate resource sharing in HSFs, three synchronization
protocols have therefore been proposed based on the stack resource policy (SRP) from Baker
[21], i.e., HSRP by Davis and Burns [22], SIRAP by Behnam et al. [23], and BROE by Bertogna
et al. [24].

2.3. Timing interfaces for resource-sharing components

Global resource sharing in HSFs is often based on the SRP by Baker [21] in order to compute
blocking delays in the schedule; these computations follow a similar approach as the SRP,
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which is then re-used at the various scheduling levels in the HSF. In addition, resource sharing
requires scheduling mechanisms which have an impact on the local scheduling of a compo‐
nent. If a task that accesses a globally shared resource is suspended during its execution due
to the exhaustion of its (processor) budget, excessive blocking periods can occur which may
hamper the correct timeliness of other components (see Ghazalie and Baker [25]). To prevent
such budget depletion during global resource access (see Figure 1), four synchronization
protocols have been proposed. These are based on two general mechanisms to prevent budget
depletion during the execution of a task's critical section:

Figure 1. When the budget Qs (allocated every period Ps) of a task depletes while a task executes on a global resource,
tasks in other components may experience excessive blocking durations, B.

1. self-blocking: wait with accessing a resource when the remaining budget is insufficient to
complete a resource access entirely. Self-blocking comes in two flavors: (i) the subsystem
integration and resource allocation policy (SIRAP) by Behnam et al. [23] and (ii) the
bounded-delay resource open environment (BROE) by Bertogna et al. [24]. With SIRAP,
a self-blocked task essentially spin locks, i.e., it idles the component's budget away, while
the task is waiting for its budget to replenish. Instead, BROE delays the remaining
processor's resource supply to a component if there is insufficient budget to complete the
entire critical section and if the budget supplied so far is running ahead with respect to
the guaranteed processor utilization.

The idea of self-blocking has also been considered in different contexts, e.g., see [26] for
supporting soft real-time tasks and see Holman and Anderson [27] for a zone-based
protocol in a pfair scheduling environment. SIRAP by Behnam et al. [23] and BROE by
Bertogna et al. [24] use self-blocking for hard real-time tasks in HSFs on a single processor
and their associated analysis supports composition. Behnam et al. [28] have significantly
improved the original SIRAP analysis by Behnam et al. [23] for arbitrating multiple shared
resources; similarly, Biondi et al. [29] have improved the analysis of BROE for arbitrating
multiple shared resources. However, these improvements also complicate the analysis
and they make the timing analysis more protocol specific.

2. overrun: execute over the budget boundary until the resource is released—called the
hierarchical stack resource policy (HSRP) by Davis and Burns [22]. HSRP has two flavors:
overrun with payback (OWP) and overrun without payback (ONP). The term without
payback means that the additional amount of budget consumed during an overrun does
not have to be returned in the next budget period.

The overrun mechanism (with payback) was first introduced by Ghazalie and Baker [25]
in the context of aperiodic servers. This mechanism was later re-used in HSRP in the
context of two-level HSFs by Davis and Burns [22] and complemented with a variant
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without payback. Although the analysis presented by Davis and Burns [22] does not
integrate in HSFs due to the lacking support for independent analysis of components, this
limitation is lifted by Behnam et al. [30].

Although these four resource-arbitration protocols prevent budget depletion during a task's
resource access, in order to do so, processor resources may need to be delivered differently.
This, on its turn, may add constraints to the supply of processor resources in order to preserve
local deadline constraints of tasks. Protocol developers deal with these constraints in different
ways and sometimes these are already taken into account in the local analysis of a component
(e.g., see [28–30]). This may therefore result in protocol-specific interfaces of components.

We present a uniform way to model the local constraints on the component's processor supply
imposed by resource sharing by extending the periodically constrained model of Feng and
Mok [3], as presented for independent components by Shin and Lee [16]. It is therefore
important to know which resources a task will access in order to support independent analysis
of each of the resource-sharing components. Our local analysis then yields the same timing
interface, regardless of the protocol being used for global resource synchronization. During
the integration of components, we take those interfaces and we analyze the impact of syn‐
chronization penalties with the help of protocol-specific composition rules.

3. Real-time scheduling model

A system contains a single processor and a set ℛ of M resources R1, …, RM. The processor and
(some of) these resources need to be shared by N components, C1, …, CN, and each component
executes its work through a set of (concurrent) tasks (as depicted in Figure 2).

Figure 2. Overview of our system model. A parent component implements a global scheduler to allocate a share of the
processor and a share of other resources, e.g., R1 and R2, to each of its child components, C1 … CN. Each child compo‐
nent, Cs, contains a set of tasks, τs1 … τsn, and a local scheduler. Tasks, located in arbitrary components, may share re‐
sources. Tasks receive their share of the resources as specified by their component interface, Γs.
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3.1. Component and task model

Each component Cs contains a set Ts of ns sporadic, deadline-constrained tasks τs1, …, τsns
. A

sporadic task generates an infinite sequence of jobs which are activated at least Tsi time units
separated from each other. Each sporadic job may arrive at an arbitrary moment in time, i.e.,
it may delay its arrival for an arbitrarily long period. A sporadic task can be seen as a sporad‐
ically periodic task which exhibits its worst-case processor demand when subsequent jobs
arrive separated minimally in time, i.e., similar to a periodic task under arbitrary phasing (see
Liu and Layland [31]).

We extend the timing characteristics of a sporadic task, as introduced by Mok [32], with a
parameter to capture its resource requirements. The timing characteristics of a task τsi∈Ts are
therefore specified by means of a quadruple (Tsi, Esi, Dsi, ℋsi), where Tsi ∈ IR+ denotes its
minimum inter-arrival time, Esi ∈ IR+ its worst-case execution time (WCET), Dsi ∈ IR+ its
(relative) deadline (where 0 < Esi ≤ Dsi ≤ Tsi), and ℋsi denotes the set of its WCETs of critical
sections. The WCET of task τsi within a critical section accessing global resource Rℓ is denoted
hsiℓ (i.e., a value contained in ℋsi), where hsiℓ ∈ ℝ+ ∪ {0}, Esi ≥ hsiℓ. For tasks, we also adopt the
basic assumptions by Liu and Layland [31], i.e., jobs do not suspend themselves, a job of a task
does not start before its previous job is completed, and the overhead of context switching and
task scheduling is ignored. For notational convenience, tasks (and components) are given in
deadline-monotonic order, i.e., τs1 has the smallest deadline and τsns

 has the largest deadline.
A task set is said to be schedulable if all jobs of the tasks are able to complete their WCET of
Esi time units within Dsi time units from their arrival. The tasks of this component have to meet
their deadlines with a particular budget on the processor and each resource being used. These
budgets specify the periodically guaranteed fraction of the resource that the tasks may use.
The timing interface of a component Cs specifies this budget, i.e., the interface is denoted by a
triple Γs = (Ps, Qs, Xs), where Ps ∈ IR+ denotes the component's period, Qs ∈ IR+ denotes its
budget on the processor, and Xs denotes the set of resource holding times to global resources
(which may be seen as budgets on resources). The maximum value in Xs is denoted by Xs and,
just like any budget, the resource holding time must fit in the components budget: 0 ≤ Xs ≤ Ps.
The period Ps therefore serves as an implicit deadline of the component.

The set ℛs denotes the subset of global resources accessed by component Cs, so that
hsiℓ > 0 ⇔ Rℓ ∈ ℛs and the cardinality of ℛs is denoted by ms (just like the cardinality of Xs).
The maximum time that a component Cs executes on the processor while accessing resource
Rℓ ∈ ℛs is called the resource holding time which is denoted by Xsℓ, where Xsℓ ∈ IR+ ∪ {0} and
Xsℓ > 0 ⇔ Rℓ ∈ ℛs. The relation between the WCET of a critical section (hsiℓ) and the resource
holding times (Xsℓ) of a component is further explained in Section 4.1.

3.2. Scheduling model

A unique system-level (global) scheduler selects which component, and when a component,
is executed on the shared processor. The component-level (local) scheduler decides which of
the tasks of the executing component is allocated the processor. The global scheduler and each
of the local schedulers of individual components may apply different scheduling policies. As
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scheduling policies, we consider EDF, an optimal dynamic uniprocessor scheduling algorithm,
and the deadline-monotonic (DM) algorithm, an optimal priority assignment for FPPS of
deadline-constrained tasks. The SRP by Baker [21] is used to arbitrate access to shared
resources between components at the global level; similarly, the SRP is used at the local level
to arbitrate access to shared resources between tasks locally.

3.3. Synchronization protocol

This chapter focuses on arbitrating global shared resources using the SRP. To be able to use the
SRP for synchronizing global resources, its associated ceiling terms need to be extended.

3.3.1. Preemption levels

With the SRP, each task τsi is assigned a static preemption level equal to πsi = 1/Dsi. Similarly,
we assign a component a preemption level equal to Πs = 1/Ps, where period Ps serves as a relative
deadline. If components (or tasks) have the same calculated preemption level, then the smallest
index determines the highest preemption level.

3.3.2. Resource ceilings

With every global resource Rℓ two types of resource ceilings are associated; a global resource
ceiling RCℓ for global scheduling and a local resource ceiling rcsℓ for local scheduling. These
ceilings are statically calculated values, which are defined as the highest preemption level of
any component or task that shares the resource. According to the SRP, these ceilings are defined
as:

= max( ,max{ | }),N s sRC R RP P Îl l (1)

= max( ,max{ | > 0}).s sn si sis
rc hp pl l (2)

We use the outermost max in (1) and (2) to define RCℓ and rcsℓ in those situations where no
component or task uses Rℓ. The values of the local and global ceilings as defined in (1) and (2)
by definition guarantee mutual exclusive access to their corresponding resource Rℓ by the
sharing tasks and components and, therefore, the values of these ceilings cannot be further
decreased. In some situations—as further investigated by Shin et al. [33] and van den Heuvel
et al. [34]—it might be desirable to limit preemptions more than is strictly required for mutual
exclusive resource access, which can be established by increasing the value of the local resource
ceilings in (2) artificially. On the contrary, increasing the global ceiling, i.e., the value of RCℓ

in (1), never returns schedulability improvements.
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3.3.3. System and component ceilings

The system ceiling and the component ceiling are dynamic parameters that change during
execution. The system ceiling is equal to the highest global resource ceiling of a currently
locked resource in the system. Similarly, the component ceiling is equal to the highest local
resource ceiling of a currently locked resource within a component. Under the SRP, a task
can only preempt the currently executing task if its preemption level is higher than its com‐
ponent ceiling. A similar condition for preemption holds for components.

4. Opaque schedulability analysis of a component

After developing a component and before publishing it to a framework integrator, a compo‐
nent is packaged as a re-usable entity. This includes deriving a timing interface to abstract
from deadline constraints of tasks. Such an abstraction requires an explicit choice for a re‐
source-supply model, capturing the processor supply to a component. Moreover, a compo‐
nent specifies what it needs in terms of resources and exposes those resources that may be
shared globally in its interface. Whether or not a global resource is actually used by other
components is unknown within the context of a component.

There are several ways to account for local scheduling penalties due to global resource shar‐
ing. One might assume that each resource must be globally shared and, subsequently, ac‐
count for the worst-case overhead inside the local analysis. Alternatively, we opt for the
assumption that all resources are just locally shared during the local analysis and we com‐
pensate for global sharing between components at integration time. These assumptions are
often made tacitly.

The latter alternative presents the same view as during component development, i.e., a com‐
ponent has the entire platform at its disposal and all resources. Whenever a synchronization
protocol for global resources is used that is compliant with a synchronization protocol for
local resources, the local analysis of a component can be based on local properties only. We
call such a local analysis opaque because it separates local and global resource arbitration.

Definition 1An opaque analysis provides a sufficient local schedulability condition for an individual
component. It treats all resources accessed by the component as local, so that, even under global shar‐
ing, properties of the global synchronization protocol do not influence the computed interface parame‐
ters.

The key consequence of an opaque local analysis is the absence of assumptions on the global
synchronization protocol. Section 4.1 shows how resource holding times, X sℓ∈Xs, can be
computed without making assumptions on the global synchronization protocol. Next, we
accomplish the same for budget parameter Qs in the interface of the component. This means
that the values of the resource holding times should be absent in the equations that validate
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the local tasks' schedulability. Table 1 gives an overview of local analyses found in literature
by indicating their opacity. This section proceeds with an opaque analysis which ultimately
results in a uniform representation of component interfaces, Γ(Ps, Qs, Xs).

Analysis of resource-sharing
strategies

Authors Opacity Impact on local analysis

BROE Bertogna et al. [24] Yes –

Enhanced BROE Biondi et al. [29] No Proc.-supply model uses RHTs

HSRP—overrun without
payback (ONP)

Davis and Burns [22] No Not compositional

HSRP—overrun without
payback (ONP)

Behnam et al. [30] Yes –

Enhanced overrun Behnam et al. [30] No Proc.-supply model uses RHTs

Improved overrun without payback Behnam et al. [35] No Proc.-supply model uses RHTs

HSRP—overrun with
payback (OWP)

Davis and Burns [22] No Not compositional

HSRP—overrun with
payback (OWP)

Behnam et al. [30] No Proc.-supply model uses RHTs

SIRAP Behnam et al. [23,28] No Proc.-supply model uses RHTs

Table 1. Overview of the synchronization protocol's support for integrating resource-sharing components into the HSF
with opaque analysis.

4.1. Computing resource holding times

The resource holding times were introduced by Bertogna et al. [36] in order to represent the
cumulative processor time consumed by the tasks within the same component Cs that can
preempt a task τi while it is holding a resource Rℓ. The way of computing resource holding
times of tasks therefore depends on the local scheduling policy, because the scheduling policy
determines possible preemptions. Besides the scheduling policy, preemptions may be limited
by a resource ceiling, i.e., the value of the local resource ceiling rcsℓ also influences the resource
holding times (see Figure 3). In an HSF, the resource holding time represents the longest critical-
section length as experienced by blocked tasks in other components.

In literature, various system assumptions in the description of a particular global synchroni‐
zation protocol have shown to affect the way of computing resource holding times [e.g., see
23, 24, 30]. However, all these methods can be simplified and unified (independent of the local
scheduling policy and the global synchronization protocol) by assuming that the component's
period Ps is smaller than the tasks' periods.
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Figure 3. The resource holding time (RHT) represents the cumulatively consumed processor time by any task of a com‐
ponent while one task holds a resource. In order to guarantee mutual-exclusive access to resource Rℓ, the associated
resource ceiling (rcsℓ) is at least equal to the highest preemption level of any (local) task sharing resource Rℓ. One may
consider to further limit preemptions during critical sections by increasing the resource ceiling. On the one hand, this
may lead to longer blocking delays to tasks with a higher preemption level (in this case: τs1). On the other hand, this
decreases the tasks' RHTs (in this case: τs2 or τs3).

The main observation leading to this simplification is that an access to a global resource must
be followed by a release of the resource in the same component period, for example, established
by the self-blocking mechanisms or the overrun mechanisms considered in real-time literature.
If a resource must be accessed and released in the same component period which is smaller
than the task periods, then we can limit the number of preemptions within a critical section
and this, on its turn, will lead to a smaller resource holding time. The resource holding time
of a task τi accessing a resource Rℓ is captured by a value Xsiℓ, which represents the amount of
processor time supplied to component Cs from the access until the release of task τsi to resource
Rℓ. We now present a lemma that captures the possible preemptions of task τi, regardless of
other system assumptions.

Lemma 1 (Taken from van den Heuvel et al. [34]). Given Ps <Ts
min and

Ts
min =min {Tsi | 1≤ i ≤ns}, all tasks τsj that are allowed to preempt a critical section accessing a global

shared resource Rℓ, i.e., πsj > rcsℓ, can preempt at most once during an access to resource Rℓ when using
any global SRP-compliant protocol, independent if the local scheduler is EDF or FPPS.

Lemma 1 makes it possible to compute the resource holding time, Xsiℓ of task τsi to resource Rℓ

as follows:

>
= ,si si sj

rcsj s

X h E
p

+ ål l
l

(3)

and the maximum resource holding time within a component Cs is computed as

Uniform Interfaces for Resource-Sharing Components in Hierarchically Scheduled Real-Time Systems
http://dx.doi.org/10.5772/62691

39



= max{  | 1 }.s si sX X i n£ £l l (4)

The computed values of Xsℓ are included in the set Xs which is part of the component's interface,
Γs. We recall that opacity requires that the way of computing the interface parameters Qs and
Xs of a component is independent of the global synchronization protocol; Lemma 1 establishes
this requirement for the set of resource holding times, Xs, of a component.

4.2. Computing a processor budget

The traditional schedulability analysis of tasks fills in task characteristics in a demand-bound
function or a request bound function and compares the tasks' requirements with the supplied
processor resources. The same schedulability analysis holds for tasks executing within a
component, although the processor supply is modeled in a more complicated way.

The processor supply refers to the amount of processor resources that a component Cs can
provide to its tasks in order to satisfy deadline constraints. The linear lower bound of the
processor resources supplied to a component with a periodically assigned processor (specified
by an interface Γs = (Ps, Qs, Xs)) is given by [2]:

( )( )( ) = 2 .s
s ss

s

Qt t P Q
PG - -lsbf (5)

The longest interval a component may receive no processor supply on a periodic resource
Γs = (Ps, Qs, Xs) is named the blackout duration, i.e.,

{ }= max  | ( ) = 0 = 2( ).s s ss
BD t t P QG -lsbf (6)

The lsbfΓs
(t) in (5) is not only a linear approximation of the supplied processor resources in

an interval of length t, it also models a bounded-delay resource supply as defined by [3] with

a continuous, fractional provisioning of 
Qs

Ps
 of the shared processor (also referred to as the

virtual processor speed) and a longest initial service delay of BDs time units.

4.2.1. Testing interfaces with earliest-deadline-first scheduling of tasks

Assume we are given a component Cs and its tasks have to execute on a periodic budget Qs

every period Ps. If this processor budget is allocated to the tasks according to an EDF scheduling
policy, then the following sufficient schedulability condition holds (as described by Shin and
Lee [16]):
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where dbfs(t) denotes the cumulative processor demand of all tasks of component Cs for a time
interval of length t and the set Ss denotes a non-empty finite set of time-interval lengths (see
Baruah [37]), i.e.,

{ }({ }def

1S = =  | 1 ; N ; 0,l , , .s si si s s sns
t b T D i n b t cm T T+ ù× + £ £ Î Î úû

K (8)

The dbfs(t) is fully compliant to the schedulability analysis for task sets on a dedicated unit-
speed processor, i.e.,

1
( ) = ( ) .si si
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The blocking term, bs(t), is defined according to the SRP, as described by Baruah [37]:

( ) = max{ | : > 0 < }.s sj sk sk sjb t h k h D t D$ Ù £l l (10)

The algorithmic complexity of verifying the scheduling condition in (7) is pseudo-polynomial
in the number of tasks.

4.2.2. Testing interfaces with fixed-priority preemptive scheduling of tasks

Assume we are given a component Cs and its tasks have to execute on a periodic budget Qs

every period Ps. If this processor budget is allocated to the tasks according to a FPPS policy,
then the following sufficient schedulability condition holds (as described by Shin and Lee [16]):

1 : S : ( , ) ( ),s si s s
i n t t i tG" £ £ $ Î £rbf lsbf (11)

where rbfs(t , i) denotes the worst-case cumulative processor request of τsi for a time interval
of length t and the set Ssi denotes a non-empty finite set of time-interval lengths (see Lehoczky
et al. [38]), i.e.,

{ }
def

S = =  | < ; IN ; (0, ] { }.si sa si sit b T a i b t D D+× Î Î È (12)
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The rbfs(t , i) is fully compliant to the schedulability analysis for task sets on a dedicated unit-
speed processor, i.e.,

1
( , ) = .s si sj

j i sj

tt i b E
T£ £

é ù
+ ê ú

ê úê ú
årbf (13)

The blocking term, bsi, is defined according to the SRP, as described by Baker [21]:

= max{ | < }.si sj sj si sb h rcp p £l l (14)

The algorithmic complexity of verifying the scheduling condition in (11) is pseudo-polynomial
in the number of tasks.

4.2.3. Deriving the processor budget from the scheduling test

Computing a processor budget for a component Cs involves a function that takes a fixed period
Ps, a task set and a local scheduling policy as input and returns the smallest component budget
Qs. The function should satisfy, dependent on the local scheduling policy, the condition in (7)
or (11).

One may approximate the size of the smallest required processor budget by means of a binary
search in the range Qs ∈ (0, Ps). As amongst others suggested by Shin and Lee [2], the smallest
value of budget Qs can be found by means of taking an intersection between the left-hand sides
and the right-hand sides of the inequalities. This intersection concerns solving a simple
quadratic equation (e.g., see Lipari and Bini [14]).

5. Integration of components and global schedulability

In this section, we present the composition rules of components in HSFs in the presence of
global shared resources. A global integration test implements the admission control for
components based on the resource requirements specified in their interfaces. The global
analysis explicitly takes into account the corresponding penalties for global resource sharing
which depend on the synchronization protocol applied at the top-level scheduler. These
penalties include (i) blocking between components and (ii) protocol-specific penalties (in our
case, either BROE, ONP, OWP, or SIRAP). Dependent on the chosen global synchronization
protocol, the latter influences the processor requests by a component or it influences the
processor supplies to a component. To analyze these scheduling penalties appropriately, it is
reasonable to assume that during component-integration in the HSF, the synchronization
protocol of the HSF is known.
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Looking at resource sharing between components, the effectively used processor bandwidth
of a component therefore depends on two parts (see Section 3.1): the processor budget (denoted
by Qs in interface Γs) and the set of budgets on global resources (which are the resource holding
times denoted by Xs in interface Γs). The budget Qs should be sufficient to meet the deadline
constraints of the tasks and no other constraints should influence the size of Qs (e.g., constraints
related to global synchronization should be avoided). The resource holding times define the
amount of execution time that a component receives for an accessing a global resource. In other
words, if component Cs is granted access to resource Rℓ, it receives Xsℓ time units of execution
time on resource Rℓ prior to the implicit deadline Ps. The global synchronization protocol
defines how this is established and the run-time rules of the protocol may or may not lead to
an overlap of the processor allocation times to a component as contained in Qs and Xs. In the
remainder of this section, we show the integration of components for two scheduling policies
(EDF and FPPS) applied to the allocated bandwidth of the components.

5.1. Earliest-deadline-first scheduling of components

In the processor supply model, we assumed that the component's period also serves as a
deadline for the provisioning of its processor budget. The following utilization-based sched‐
ulability condition, as defined by Baruah [37], can therefore be applied to the top-level EDF-
scheduler:

1

( ) ( ) :1  : 1.w s s s

s ww s

B P Q O Pw w N
P P£ £

+
" £ £ + £å (15)

The blocking term, B(t), presents the resource holding time of a potentially interfering,
resource-sharing component with a deadline beyond the considered component, Cw; it is
defined by Baruah [37]:

( ) = max{ | : R R < }.u u s s uB t X s R P t P$ Î Ç Ù £l l (16)

The term Os(t) defines the additional amount of budget that a component Cs requires under a
certain global synchronization protocol in order to prevent excessive blocking durations for
other components in the system.

With ONP, a component can request for an additional amount of Xs time units of processor
time each period Ps. Similarly, with SIRAP, a task of a component may idle away at most Xs

time units of processor time each period Ps. Hence, the synchronization penalties of both SIRAP
and ONP can be modeled by allocating Xs time units of processor time in addition to the regular
processor budget Qs in each period Ps, so that the term Os(t) is defined by Behnam et al. [30]
for ONP and van den Heuvel et al. [39] for SIRAP:
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With OWP, a component can only request an additional amount of Xs time units of processor
time once. Hence, the term Os(t) is defined by [30]:

if
( ) =
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For both SIRAP and BROE, it is required that Xs ≤ Qs in order to be able to complete an entire
critical section within a single budget of size Qs. For SIRAP, we establish this condition by
allocating Qs + Xs time units of processor budget every period Ps. For BROE, however, we
increase Qs with Os(t) time units if it is too small to fit Xs time units contiguously, where Os(t)
is defined as follows:

( )( ) = max 0, .s s s
s

tO t X Q
P
ê ú

-ê ú
ë û

(19)

5.2. Fixed-priority preemptive scheduling of components

For global FPPS of components—by definition disallowing BROE—the following sufficient
scheduling condition can be applied (as defined by Lehoczky et al. [38]):

1
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The blocking term, Bs, is defined by the resource holding time of a lower-priority, resource-
sharing component (in line with Baker [21]):

= max{ | < }s u u sB X RCP P £l l (21)

and the term Or(t) defines the additional amount of budget that a component Cs requires under
a certain global synchronization protocol in order to prevent excessive blocking durations for
other components in the system.

Similar to EDF, under global FPPS the term Or(t) is defined by Behnam et al. [30] for ONP and
by van den Heuvel et al. [39] for SIRAP:
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Also under FPPS, a component arbitrated by OWP can only request an additional amount of
Xs time units of processor time once. Hence, the term Or(t) becomes time independent and it
is defined by [30]:

( ) = .r rO t X (23)

Just like with tasks, a finite set of time-interval lengths t can be tested in order to determine
the schedulability of a set of components, i.e., the set can be specified as in (12) using component
period Ps as the deadline for the execution of budget (WCET) Qs. The algorithmic complexity
of verifying the scheduling condition in (20) is then pseudo-polynomial in the number of
components.

6. On the importance of opacity and its properties

Traditional protocols such as the PCP by Sha et al. [18] and the SRP by Baker [21] can be used
for local resource sharing in HSFs, as observed by Almeida and Peidreiras [13]. With an opaque
local analysis, we can re-use the same local analysis of components in the presence of global
shared resources. The local analysis for HSFs with the ONP protocol, as presented by [30],
already satisfied the notion of opacity because it uses a simple overrun upon integration and
nothing else locally. In the previous sections, we also unified the local analysis of HSFs with
other resource-sharing protocols (OWP, SIRAP, and BROE). This means that the interface of a
component is independent of the resource-arbitration protocol. In this section, we briefly
review non-opaque analysis and we highlight some important properties of opacity.

6.1. Monotonicity of the analysis

In Sections 4 and 5, we have summarized the compositional timing analysis of an HSF: the
global analysis verifies the admission of a set of components into the HSF and the local analysis
verifies the deadline constraints of tasks of each component in isolation on a periodically
allocated budget, Qs. The local scheduling conditions in (7) and (13) determine the smallest
size of Qs. For analyzing these conditions, we observe that increasing a local resource ceiling
rcsℓ cannot lead to less blocking of local tasks (term bs(t) or bsi) and, thus, it cannot lead to a
smaller budget Qs. As a result, we have the following property.

Property 1In an analysis satisfying (7) for EDF or (13) for FPPS, the total requested resources of a
component reflected in the allocated budget Qs is monotonically non-decreasing with an increase of a
local resource ceilings rcsℓ, ∀ Rℓ ∈ ℛs.
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Although not mentioned explicitly, this property is tacitly assumed in some analysis (e.g., by
Shin et al. [33], Behnam et al. [40] and Behnam et al. [30]) and our analysis supports it as well.
It holds for all global synchronization protocols except for some non-opaque analysis (see
Table 1).

6.1.1. SIRAP and its opacity

The analysis as traditionally presented for SIRAP is non-opaque. However, SIRAP is an
important and widely used protocol, so we side-step this problem by applying the same local
and global analysis of ONP also to SIRAP, i.e., inserting Xs units of idle time every period Ps.
The intuition behind this idea is that SIRAP never idles away more processor time in one
component period Ps than ONP requires for overrun (see van den Heuvel et al. [39] for the
details). This adjusted analysis of SIRAP satisfies Property 1.

6.1.2. How Property 1 could be violated

Since global resources may need to be shared with tasks in other components, the ideas
underlying most of the non-opaque analyses (like the non-opaque ones in Table 1) is to use
the resource holding times of local tasks to tighten the analysis of wasted resources. Often this
means that the tasks of a component are penalized by changes in the processor supply due to
arbitrated accesses to global resources. The properties of a synchronization protocol are then
reflected on the computed value of budget Qs of a component. For example, this could work
based on the following observations:

• With OWP, see Behnam et al. [30], the resource holding time can be used to account for the
processor time that is being exchanged between two consecutive component periods due
to overruns and paybacks.

• With ONP, see Behnam et al. [35], the resource holding times can be used to tighten the
delivery of budget Qs in component period Ps, because an overrun must fit in each compo‐
nent period as well.

• With SIRAP, see Behnam et al. [23], the resource holding times can be used to determine the
amount of resources that can be idled away by the tasks in each component period.

• With BROE, see Biondi et al. [29], the resource holding times can be used to bound an
additional delay due to resource sharing experienced by tasks compared to the regular delay
of their resource supply (BDs).

Intuitively, resource sharing comes with penalties to the tasks involved. However, sometimes
the local tasks may also benefit from resource sharing, i.e., the tasks may require less processor
resources. Section 6.1.3 presents an example of such a scenario using a non-opaque analysis of
ONP. This clearly shows that a non-opaque analysis may violate our monotonicity property
(Property 1).
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6.1.3. Motivating example

We now demonstrate the effect of using properties of the global synchronization protocol for
optimizing the parameters of the component's interface in the local analysis. We consider a
simple non-opaque analysis for ONP. Behnam et al. [35] improved ONP by observing that the
normal budget Qs of a component Cs has to be served at least before Ps − Xs instead of the regular
relative deadline Ps (as we assumed for our analysis). The reason is that an overrun of at most
length Xs must also fit in each period Ps after budget Qs has been depleted. This means that the
blackout duration of the processor supply becomes shorter, so that tasks have to wait shorter
until they get selected for execution by the local scheduler. Behnam et al. [35] model their idea
with the help of the explicit deadline periodic resource model by Easwaran et al. [12]. The
explicit deadline Ps − Xs improves the required budget of the tasks in a non-opaque way because
it uses resource holding times to tighten the deadline.

Example 1Consider a component C1with a period P1 = 10 and a single task τ11 = (27, 5, 27, {0.5}) which
specifies an access to a global resource Rℓ for a duration of h11ℓ = X11ℓ = X1 = 0.5 time units. We use ONP
for arbitrating access to global resources.

According to the improved ONP analysis of Behnam et al. [35] where the resource holding time of 0.5
time units is exploited to tighten the deadline for budget Q1, it is sufficient to allocate Q1 = 2.5 time units
every period of 10 time units. This budget allocation can be captured by interface
Γ1 = (P1, Q1, X1)=(10, 2.5, {0.5}) with explicit deadline P1 − X1. This interface is derived based on the
assumption that an additional amount of 0.5 time units may need to be supplied within one component
period to complete resource access by means of a budget overrun.

If resource Rℓturns out to be local to component C1, i.e., component C1is independent of other components
in the system, then budget overruns are unnecessary for accessing resource Rℓ. An independent
component C1would have required a periodic budget ofQ1 = 8

3 time units every period of 10 time units.
We recall, however, the 2.5 time units must be supplied within 9.5 time units from the budget's release,
leading to a density of processor allocations of 2.5

9.5 . This density is higher than the one without resource

sharing, i.e., 8 / 3
10 < 2.5

9.5 .

Once the HSF is composed, one may admit a component into the system requiring 8
3 time units every 10

time units while one may need to reject a component requiring 2.5 time units before relative deadline
9.5 every 10 time units. This depends on the resources requirements of other components in the HSF.
Hence, a non-opaque analysis may give the illusion of resource efficiency by artificially creating resource
dependencies.

By making assumptions in the local analysis on how ONP changes the processor supply to a
component, a manufacturer may give an untruthful impression on the efficiency of the
component. Such impressions cannot be given through an opaque analysis due to its monot‐
onicity property. For some protocol-specific local analysis, monotonicity of the local analysis
is hard to prove or disprove. Nevertheless, the above example clearly shows the importance
of monotonicity for multi-vendor environments, for example, obtained through an opaque
local analysis.
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6.2. Detecting and accounting for shared resources

An additional problem with a non-opaque analysis (e.g., see the analyses in Table 1) is that it
impacts the budget of a component with synchronization penalties, no matter whether or not
an accessed resource is shared with other components. As a result, the synchronization
penalties are incorporated in the component's timing interface and they cannot be taken out
any longer. Hence, it disallows us to account for the synchronization penalties corresponding
to the resources that really need to be shared between components as detected at integration
time.

Since a component is unaware of other components, it is also unknown which resources
actually need to be shared. Instead of directly deriving the interface of a component, one may
therefore perform an intermediate step. One may specify partial interfaces for components for
each of the resources the component requires. Upon integration of components, these partial
interfaces can then be combined into a true interface by selecting just the interfaces corre‐
sponding to the resources that are globally shared with other components.

This procedure works intuitively with an opaque analysis and works as follows. Given a
component Cs, we assume that Ps is given by the system designer and is fixed during the whole
process of merging partial interfaces into a single interface. A partial interface Γsℓ considers
one global resource Rℓ in isolation, i.e., Rℓ can be globally shared or it can be local to the
component.

Definition 2 (Partial interface candidate)(Taken from van den Heuvel et al. [34]) A partial interface
candidate Γsℓ = (Ps, Qsℓ, {Xsℓ}) of component Cs accessing resource Rℓ is a valid interface Γs for component
Cs—i.e., an interface that satisfies the local scheduling condition in (7) for EDF or (11) for FPPS—
under the assumption that only resource Rℓ may be globally shared with other components.

A partial interface Γsℓ is a valid interface for the restrictive case that resource Rℓ is the only
resource being exposed globally. It specifies the budget and the resource holding time to
resource Rℓ of the component, but other resources accessed by the same component are
excluded from the interface. The remaining problem is to derive one interface for the case a
component accesses more than one globally shared resource. Lemma 2 shows how to merge
partial interfaces into a single interface.

Lemma 2 (Taken from van den Heuvel et al. [34]). Assume a component Cs accesses ms resources.
Let a selection of partial interfaces of component Cs be a series of Γsℓ = (Ps, Qsℓ, {Xsℓ}), i.e., one partial
interface Γsℓ is selected for each resource Rℓ. The local tasks' deadlines of component Cs are met by
interface Γs = (Ps, Qs, {Xsℓ | Rℓ ∈ ℛs}), where Qs = max{Qsℓ | Rℓ ∈ ℛs}.

The intuition behind this lemma is as follows. By virtue of the SRP [21], a task τsi can be blocked
by just one (outermost) critical section of task τsj with a lower preemption level (where
πsi ≥ πsj) before τsi can start its execution. Hence, it is sufficient to add the largest difference in
budget to the value of Qsℓ in order to accommodate for one local blocking occurrence.

Lemma 2 presents an important result for open environments in which components may be
loaded or removed from the platform after deployment. It enables us to incrementally analyze
the resource dependencies of the components in the HSF. Prior to the integration of compo‐
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nents, it is still unclear which of the global resources need to be shared with other components
and which resources can be treated as local. Upon integration of components, the sets ℛs of
accessed resources by component Cs with the resources that truly need to be shared globally
are known. We can then make an appropriate selection of partial interfaces and combine them
into a single interface for each component. Figure 4 illustrates this procedure as defined by
Lemma 2. The result is that we account for the synchronization penalties of just the globally
shared resources. If components enter or leave the HSF, one may use the partial interfaces to
detect the updated resource dependencies between the components in the HSF.

Figure 4. Partial interfaces define the resource requirements of a component on each accessed resource separately.
They can be combined into a single interface which captures all resource requirements of a component. The resources
that do not need to be shared between components can be ignored (in this example, Rs and Rh can be ignored), so that
resource arbitration and the corresponding penalties can be avoided for those resources.

7. Conclusion

This chapter introduced the notion of uniform interfaces for resource-sharing components that
need to be integrated on a uni-processor platform. The interface of a component abstracts from
global resource sharing until component integration. The local timing analysis of a component
that returns such an interface is called opaque. Sufficient conditions for opacity are

• component periods are smaller than the local tasks' periods, so that resource holding times
of a component are defined independently of the global synchronization protocol;

• resource holding times must disappear from the local schedulability test, so that the budget
parameter of a component can be solely computed with the purpose of meeting deadline
constraints of tasks (and independently of the global synchronization protocol).

As a result of both conditions, when the SRP arbitrates access to shared resources between
periodic components, the necessary condition of opacity is satisfied: all interface parameters
of a component are computed independently of a global synchronization protocol. Moreover,
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component dependencies on shared resources and the corresponding synchronization
penalties can be optimized at component integration.

We applied opacity to four existing global synchronization protocols: SIRAP, ONP, OWP, and
BROE. For some systems that deploy such a protocol, a non-opaque analysis has shown to
significantly improve schedulability (e.g., as demonstrated by Behnam et al. [28], Biondi et al.
[29]). However, this requires that components are delivered to system integrators with an
interface that includes worst-case synchronization penalties, which in practice may never
occur. We therefore believe that the simplicity of opaque analysis and its opportunities to
analyze systems incrementally may be beneficial for complex systems in which component
development, test, analysis, and integration is spread over different research and development
teams.

8. Glossary

This section gives an overview of the abbreviations and the symbols being used throughout
this chapter.

Abbreviation Description

AUTOSAR AUTomotive Open System Architecture

BROE Bounded-delay resource open environment

BD Blackout duration

BWI Bandwidth inheritance

DM Deadline monotonic

EDF Earliest-deadline-first

EDP Explicit-deadline periodic

FPPS Fixed-priority preemptive scheduling

HSFs Hierarchical scheduling frameworks

HSRP Hierarchical SRP

IPCP Immediate PCP

LCM Least common multiple

ONP Overrun and no payback

OWP Overrun with payback

PCP Priority ceiling protocol

RHT Resource holding time

LSBF Linear supply-bound function

SIRAP Subsystem integration and resource allocation policy
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Abbreviation Description

SRP Stack resource policy

WCET Worst-case execution time

Symbol Description

N Number of components in the system

M Number of global resources

ℛ Set of global resources

Rℓ ℓ-th global resource

RCℓ Global resource ceiling of Rℓ

Cs s-th component

Πs Preemption level of Cs

Ps Period of the resource allocations to component Cs

Ds Relative deadline for the resource allocations to component Cs

Qs Periodically allocated processor time for Cs

ℛs Set of global resources accessed by Cs

Xs Set of holding times to global resources accessed by Cs

Xsℓ the resource holding time of Cs for Rℓ

Xs Maximum of the resource holding times of Cs

Os Processor time for Cs merely dedicated to prevent excessive blocking

Γs Interface of Cs defining periodic resource demands of Cs

Γsℓ Partial interface defining Cs' demands for a given resource Rℓ

BDs Longest duration for Cs without any processor supply

dbfs(t) Demand-bound function of the tasks of Cs in an interval t

rbfs(t , i) Request-bound function of task τsi and its higher priorities in an interval t

lsbf(t) Linear lower bound of the processor supply in any sliding window of length t

Ts Task set of a component

ns Number of tasks composing component Cs

τsi i-th task of component Cs

Tsi Minimal inter-arrival time of task τsi

Esi WCET of τsi

Dsi (Relative) deadline of τsi

Ssi Set of time instances that to determine schedulability of a task τsi

ℋsi Set of WCETs of task τsi on resources
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Symbol Description

rcsℓ Local resource ceiling of resource Rℓ

πsi Preemption level of task τsi

hsiℓ WCET of τsi's largest critical section to Rℓ

Xsiℓ Largest resource holding time of τsi to Rℓ
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