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CSV-PSO and Its Application
in Geotechnical Engineering 

Bing-Rui Chen and Xia-Ting Feng 
State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and 

Soil Mechanics, Chinese Academy of Sciences 
 China 

1. Introduction  

Since the particle swarm optimization (PSO), being a stochastic global optimization 
technique,was proposed by Kennedy and Eberhart in 1995(Kennedy & Eberhart, 1995; 
Eberhart & Kennedy, 1995), it has attracted interests of many researchers worldwide and 
has found many applications in various fields such as autocontrol, machinofacture, 
geotechnical engineering et al. (Mark & Feng, 2002; Dong et al, 2003; Su & Feng, 2005). There 
are two main reasons: one is the preferable performance of PSO, the other is its simplicity in 
operation. In order to avoid the premature and divergence phenomena often  occurring in 
optimization process by using the PSO, especially for multi-dimension and multi-extremum 
complex problems, as well as to improve the convergence velocity and precision of the PSO 
to a maximum extent, many kinds of schemes were introduced to enhance the PSO. The 
following are some representative schemes: inertia weight (Shi & Eberhart, 1998), 
constriction factor (Eberhart & Shi, 2000), crossover operation (Lovbjerg et al, 2001) and self-
adaptation (Lü & Hou, 2004). The PSO modified by introducing the inertia weight or 
crossover operation or self-adaptation technique has an excellent convergence capability 
with a decreased velocity of convergence. The PSO with a constriction factor can reach the 
global goal quickly, but the divergence phenomenon sporadically occurs in the optimized 
solutions. 
So we proposed an improved PSO, named CSV-PSO,  in which flight velocity limit and 
flight space of particles are constricted dynamically with flying of particles (Chen & Feng, 
2005). A great deal of numerical calculation indicates CSV-PSO has a faster convergence 
velocity, greater convergence probability and is a more stable. But this algorithm with a 
random number generator having time as its random seed may obtain different goal values 
at different running time. It is difficult to determine uniqueness of solution, especially for 
complicated engineering problem. So a random number generator with mixed congruential 
method is introduced to solve uncertainty of solution, and its random seed can be set 
artificially. To indicate advantage of the proposed algorithm, it is compared with other 
modified vertions and sensitivity analysis is carried out for its several important parameters, 
which the five benchmark functions are as examples. The results show CSV-PSO with a new 
random number generator is excellent. Back analysis which is based on monitoring 
information with numerical method is a very time-consuming job in geotechnical 

Source: Swarm Intelligence: Focus on Ant and Particle Swarm Optimization, Book edited by: Felix T. S. Chan and Manoj
Kumar Tiwari, ISBN 978-3-902613-09-7, pp. 532, December 2007, Itech Education and Publishing, Vienna, Austria
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engineering field. It is necessary to introduce a scheme for improving calculation efficiency. 
A parallel strategy is adopted, and a parallel CSV-PSO with master-slave mode, called 
PCSV-PSO, is proposed. Finally, rheological parameters of soft and weak rock mass, as an 
engineering practical example, are identified using back analysis of displacement based on 
PCSV-PSO, at the No. 72 experimental tunnel, left bank of Longtan hydropower station, 
China. The results show that the proposed method is feasible, efficient and robust in multi-
parameter optimization and is a new analysis tool for engineering application. 

2. PSO

In PSO algorithm, the birds are abstractly represented as particles which are mass-less and 

volume-less and extended to D dimensional space. The position of the particle i  in 

the D dimensional space is represented by a vector ),,,( 21 iDiii XXXX ⋅⋅⋅= , and the flying 

velocity is represented by a vector ),,,( 21 iDiii VVVV ⋅⋅⋅= . The vectors ),,,( 21 iDiii PPPP ⋅⋅⋅=  and 

),,,( 21 gDggg PPPP ⋅⋅⋅=  are the optimal position of the particle i  recognized so far and the 

optimal position of the entire particle swarms recognized so far, respectively. The position 

of each particle in the D dimensional space, iX , is a tentative solution in the problem space. 

The fitness of the model, representing applicability of the iX , can be obtained by 

substituting iX to the target function. Therefore, the search procedure of PSO algorithm 

depends on interaction among particles. The position and velocity of the particle i can be 

updated as Eq.(1) and (2) ( Kennedy & Eberhart,1995; Shi & Eberhart,1998) . 

)()( 2211 idgdidididid XPrcXPrcwVV −+−+=  (1) 

ididid VXX +=  (2) 

In which, w  is inertia weight; 1c  and 2c  are constants for learning, 1c >0, 2c >0; 1r and 2r  are 

random numbers in [0,1]; Dd ,,2,1 ⋅⋅⋅= .

The basic PSO algorithm has advantages of simple operation and convenient application. 
However, as other optimization algorithms such as genetic algorithms, the basic PSO 
algorithm has also the problems of premature and slow convergence, therefore, an 
improvement in accuracy is needed. 

3. CSV-PSO 

In order to improve the convergence velocity and precision of the PSO algorithm, the CSV-
PSO algorithm which can adjust inertia weight, flight velocity limit and flight space of 
particles dynamically and nonlinearly was proposed. This Algorithm has been documented 
in our early paper (Chen & Feng, 2005). Random Number Generator and parallel CSV-PSO 
algorithm (PCSV-PSO) are described in detail and CSV-PSO algorithm is briefly introduced 
in this section. 
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3.1 Random Number Generator

Random number is the crucial factor for the performance of swarm intelligence algorithms, 
and a good random number generator can always get twice the result with half the effort. A 
algorithm with random number generator that time is as its random seed always tends to 
give different results in different runtime, which brings troubles for the final determination 
of solving proposal of engineering problems. To resolve this problem, a random number 
generator with the mixed congruential method is proposed in the paper. This generator can 
generate random numbers of uniform distribution in the interval of (0, 1) and random seed 
can be set artificially. A great deal numerical results show that this technique is excellent. 
The process of the generation of random seeds is as following. 
The iterative formulae of the mixed congruential method are: 

))(mod(1 Mcxx ii +=+ λ  (3) 

Mxr ii /11 ++ =  (4) 

Where λ
0x c and M  are constants and can set beforehand, 1+ix is the remainder of M

divided by cxi +λ  and 1+ir  is a random number within the interval of (0, 1). Each random 

number generated by the mixed congruential method in accordance with an index number 
and is stored in an internal array after random number generator is initialized. If random 
number is needed, the random number generator will firstly call the computing function of 
the mixed congruential method to generate random integer used as index, then the random 
number is picked up from internal array in terms of the index, finally the random number 
generator carries out the mixed congruential method again to update the internal array. The 
random number sequences obtained by this method are much better than those obtained by 
common mixed congruential methods. The C language codes which are used to describe the 
above mentioned method are as follows: 

double CRandom::ran(long *idum) 
{
// idum is random seed 
const long M1=259200l;    
const long IA1=7141l;    
const long IC1=54773l;    
const double RM1 = (1.0/M1); 
const long M3=243000l;   
const long IA3=4561l;    
const long IC3=52349l;    
static long ix1,ix2,ix3;    
static double r[98];   
double temp;   
static int iff=0; 
long j;   //int j; 
if (*idum < 0 || iff == 0) { 
ff=1;
x1=(IC1-(*idum)) % M1; 
ix1=(IA1*ix1+IC1) % M1; 
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ix3=ix1 % M3; 
for (j=0;j<=97;j++) { 
 ix1=(IA1*ix1+IC1) % M1; 
 r[j]=ix1*RM1; 
}
*idum=1;
}
ix1=(IA1*ix1+IC1) % M1; 
ix3=(IA3*ix3+IC3) % M3; 
j=(97*ix3)/M3;
if (j > 97 || j < 0) cout<<"RAN: This cannot happen."<<endl; 
temp=r[j];
r[j]=ix1*RM1;
return (double)temp; 
}

3.2 CSV-PSO

3.2.1 Inertia Weight 

The notion of inertia weight parameter is introduced by Shi and Eherhart (Shi & Eberhart, 
1998) to control the impact of the previous history of velocities on current velocity. This 
enables to influence the tradeoff between global and local exploration abilities of the 
particles. A larger inertia weight facilitates global optimization, while smaller inertia weight 
facilitates local optimization.A decreasing inertia weight with iteration was introduced in 
terms of a linear formulation by Shi and Eherhart. A equation for ineria weight modification 
is proposed by a great deal numerical simulations here as following:  

n

k

k
ww

1
10

−

 (5) 

Where 0w  is a constant given; k  is number of fly; n  is a constant determined for fitness 

function in global optimum problem. 

3.2.2 Limit of the Flying Velocity 

The limit of the flying velocity of the particles is an important factor that affects velocity of 
convergence of the PSO (Eberhart & Shi, 2000).In fact, a good limitation is of advantage to 
both velocity and precision of convergence.Here we adopt Eq. (6) and (7) to determine limit 
of the flying velocity of the particles. 

In which, dUpmax , dDownmin , dVmax , dVmin are the upper limit and the lower limit of the 

position and the upper limit and lower limit of the velocity at d dimensional space, 

respectively, Dd ,,2,1 ⋅⋅⋅= . The parameterα can be determined using Eq. (8). 

)( minmaxmax ddd DownUpV −= α  (6) 

)( maxminmin ddd UpDownV −=α  (7) 

m

k

k 1
10

−
αα  (8) 
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Where 0α is a given constant; k  is number of fly; m is a constant determined for fitness 

function in optimum problem.

3.2.3 Compression of Search Space 

Particles approach excellent domain step by step with the “flying” of particles continuously. 
If domain for searching global goal is compressed properly in the “flying” process, 
convergence of PSO will be accelerated. So the equations for compressing search space are 
introduced as following: 

cdcddd GGpUpU +−′=′ )( max0max β  (9) 

cdcddd GGnDownDow +−′=′ )( min0min β  (10) 

Where 10 0 << β ; dpU max
′ , dnDow min

′  and cdG  are the upper limit, the lower limit and the 

geometrical center of gravity of particle swarm in the d dimensional direction of the 

compressed space, respectively; cdG  can be calculated using Eq. (11) (Clerc, 1999) as 

pop

N

i

id

cd N

x

G

pop

== 1  (11) 

Where popN  is the population of the particles; idx  is position of  the No. i particle in 

the d dimensional direction. 

3.2.4 CSV-PSO Algorithm

In process of space compressing, on the one hand the global optimum probably is out of 
searching ranges so that the global goal is unable to be found, on the other hand flying 
velocity of particles is decreased, which can be obviously by Eq. (6) and (7), and the 
performance of the algorithm jumpting out local solution is reduced. Therefore, searching 
space and flying velocity limit can’t be compressed without limitations. The compression 
should is finished when limit of flying velocity is less a small given value. Particles may fly 
to the same local value with “flying” of particles continuouly. Therefore, stagnancy 
phenominon may occur in PSO (The so called stagnancy phenominon is that best particle 
doesn’t move toward any direction during “flying” of particles).  If no measure is taken, the 
PSO may need a long time to get rid of the particle stagnancy or traps into local goal forever. 
Initializing partial particles’ position and flying velocity is an efficient method again when 
the present best particle is not move to global goal within some “flying” times. The particles 
are divided into two parts: one part are given new position and flying velocity in 
compressed space, the other is initialized in original space. These ensure that the algorithm 
have a better convergence precision and a faster convergence velocity. The whole optimized 
process of CSV-PSO is as following: 

Step 1: Initialize the inertia weight 0w , learning factors 1c and 2c , the population of 

group popN , number of stagnancy generation sN , constants 0α and 0β , and end remark of 

evolutionary process gN and 0ε , go to Step 2. 
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Step 2: The positions of the particles are randomly generated in maxmin ,UpDown . The 

limitations of flying velocity of the particles, minV and maxV , are calculated using Eqs. (6) and 

(7). And then, the flying velocity of the particles is initialized randomly in maxmin ,VV . Set 

up 0=n , go to Step 3. 

Step 3: Substitute iX  to goal function to calculate the fitness of the No. i particle )( iXf . The 

global optimal position of the particle swarm group b
gX and the best position of particle 

individual during the fly b
iX are determined according to the fitness )( iXf , go to Step 4. 

Step 4: Substitute b
gX  to goal function to calculate the best fitness of this flying b

gf . If b
gf  is 

obviously better than that of the former flying, go to Step 5. Otherwise, go to Step 6. 

Step 5:  If b
gf < 0ε or n> gN , then the optimization process ends. Otherwise, let 1+= nn , the 

position and flying velocity of the particles are updated by using Eqs. (1) and (2) and 

insured in [ ]maxmin ,UpDown  and [ ]maxmin ,VV , go to Step 3. 

Step 6: Use Eq.(5) to dynamically update w . If b
gf is not changed in all sN continuously, go 

to Step 7. Otherwise, go to Step 5
Step 7: Use Eq.(6) and (7) to modify dynamically the limit of flying velocity of the particles, 
and use Eqs. (9) and (10) to compress the search space of the particles, go to Step 8. 
Step 8: The particles are divided into two parts. One part is initialized in the compressed 

space '
max

'
min ,UpDown  and another part is renewedly initialized in the original space 

maxmin ,UpDown , go to Step 5. 

3.3 Performance Analysis of CSV-PSO

To test performance of the CSV-PSO with random numbers generated by the mixed 
congruential method, five nonlinear benchmark functions, whose basic characteristics and 
properties are listed as table 1, are used. To facilitate the description of the two CSV-PSO  
algorithms: one uses time as random seed, the other utilizes mixed congruential method to 
produce random numbers and random seed can be set artificially, the former is called CSV-
PSO1 and the latter is named CSV-PSO2.  

3.3.1 Convergence Velocity 

For comparison, in all cases and all improved PSO algorithms, the population size was set to 
30; the maximum number of iteration was set to 10,000; the factors for learning c1 and c2 are 
both set to 2.0 and five benchmark functions are set as shown in table 1. Inertia weights of 
CSV-PSO1 and CSV-PSO2 are set to 1.0 at the beginning of the run, different from that of 
Eberhart and Shi (Eberhart & Shi, 2000) and they can be decreased to a very small positive 

value by Eq. (5) .Newly introduced parameters sN , 0α and 0β are 50,0.9 and 0.8 respectively 

and the α calculated by Eq. (8) can’t be less 0.1. It is special for function Schaffer’s f6 that 
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0α was set to 0.5 in CSV-PSO1. Each version of PSO is run 20 times for each test function, 

among them the first four are run randomly and the last are run with random seed from 5 to 
950 by an increment 50 for each run. Average number of iteration and ranges of iteration 
number for five functions are listed in table 2 where each method is convergent by 20 runs. 
The result of the former three versions is gained by Eberhart and Shi (Eberhart & Shi, 2000), 
and the fourth was from our reference (Chen & Feng, 2005). 

Name Expression Dimension Ranges Optimum Goal 

Sphere

=

=
n

i

ixxf

1

2
0 )( 30 [-100,100]n 0 0.01 

Rosenbrock

−

=

+ −+−=
1

1

222
11 ))1()(100()(

n

i

iii xxxxf 30  [-30,30]n 0 100 

Rastrigrin

=

+−=
n

i

ii xxxf

1

2
2 )10)2cos(10()( π 30  [-5.12,5.12]n 0 100 

Griewank 1)cos(
4000

1
)(

11

2
3 +−= ∏

==

n

i

i

n

i

i
i

x
xxf 30  [-600,600]n 0 0.1 

Schaffer’s 
f6 22

2
2
1

22
2

2
1

6
))(001.01(

5.0)(sin
5.0)(

xx

xx
xf

++

−+
+= 2  [-100,100]n 0 10-5

Table 1. Five benchmark functions for testing 

Inertia
Weight 

Constriction 
Factor

(Vmax=100000) 

Constriction 
Factor

( Vmax=Xmax)

CSV-
PSO1 

CSV-
PSO2 

averN 1537.8 552.05 529.65 680.15 599.45 
Sphere

rN 1485-1615 503-599 495-573 456-935 473-842 

averN 3517.35 1424.1 992 203.2 297.05 Rosen-
brock

rN 2866-4506 475-4793 402-1394 108-545 130-732 

averN 1320.9 6823 213.45 215.45 707.05 
Rastr-igrin 

rN 743-1704 233-7056 161-336 86-726 100-2060 

averN 2757.7 437 312.6 510.45 622.26 Griew-
ank 

rN 2638-3035 384-663 282-366 385-707 318-3647 

averN 512.35 430.55 532.4 111.9 466.65 Schaf- 
fer’s f6

rN 339-748 105-899 94-2046 3-332 41-1981 

Table 2. Convergence velocity of several versions of PSO for the five test functions 

averN  and rN are average value and ranges of convergent iteration number among 20 runs 

respectively in the table 2. For example, averN  and rN are average value and ranges of iteration 

number of 17 runs separately when there are 3 divergent runs in 20 runs. If one run doesn’t 
reach the goal in 10000 iterations, this run is regarded as divergence. Where constriction factor 
version (Vmax=100000) and improved constriction factor version (Vmax=Xmax) have one divergence 



Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 270

of 20 runs for function Rastrigrin for respectively; Constriction factor version (Vmax=100000) has 3 
divergences, improved constriction factor version (Vmax=Xmax) has one divergence, and CSV-
PSO2 has one divergence for function Griewank among 20 runs. In comparison with other 
versions, CSV-PSO has a better convergence velocity, and is more stable. Performance of CSV-
PSO2 is a bit worse than that of CSV-PSO1, but it is better than other versions, its random seed 
can be set artificially and unique solution can be obtained at each run using CSV-PSO2. 

3.3.2 Precision of Convergence 

A 30-dimension function Rosenbrock, whose variables are in interval of [-10, 10], is taken as 
an example for analyzing convergence precision of several improved versions of PSO. For 
comparison, in all versions of PSO, the population size was set to 20; the maximum number 
of iteration was set to 2000; the factors for learning c1 and c2 are both set to 2.0; Initial inertia 
weights of CSV-PSO1 and CSV-PSO2 are 1.0, which are different from that of other versions. 

Newly introduced parameters sN , 0α and 0β are 50, 0.9 and 0.8 respectively. Each version of 

PSO is run 20 times for test function, the first five are run randomly and the last is run with 
random seed from 5 to 950 by an increment 50 for each run. Average value of 20 runs for 
each version is listed in table 3. The result of the former two columns is gained by Clerc and 
Kennedy (Clerc and Kennedy, 2002), the third and the fourth are from the literature (Ke et 
al., 2003), the fifth and the last are obtained by CSV-PSO1 and CSV-PSO2 respectively. In 
fact, when the goal of 0.4 is obtained using the proposed method in the paper, average 
iteration number of 20 runs is just 913.24. So the proposed method has a better velocity and 
precision of convergence for function Rosenbrock.

Constriction factor1 Constriction factor2 Inertia weight MPSO CSV-PSO1 CSV-PSO2 

50.193877 39.118488 40.602026 30.316998 0.048169 0.001070 

Table 3. Optimal precision of several versions of PSO for function Rosenbrock

3.4 Sensitivity Analysis of Parameters 

Sensitivity analysis of parameters, on the one hand, can make algorithm do its better, and on the 
another hand, can offer reasonable basis for parameter selection. There has been a lot of research 
about basic parameter analysis of the PSO algorithm, and now we just analyze the sensitivity of 
several parameters used by the CSV-PSO algorithm. The five benchmark functions are selected 
as testing examples, whose characteristics and properties are shown in table 1.  

3.4.1 Random Seeds 

The initial population of PSO algorithm is generated randomly, and the main operations 
(such as the updating of the position and velocity of particles etc.) of PSO contain random 
factors. So, random seed must have some effect on algorithm performance. But how does it 
affect and are there any lows to follow? Effect of Random seed on CSV-PSO is analyzed and 
discussed based on five benchmark function in table 1 as following.  
Parameters setting of CSV-PSO: the population size was set to 20; the maximum number of 
flight is 2000 times; the factors for learning c1 and c2 are both set to 2.0; initial inertia weights  

is 1.0; number of stagnancy iteration is 10; constant 0α and 0β is set to 0.9 and 0.8 

respectively the α obtained by Eq. (8) can’t be less 0.1; random seed is from 0 to 1000 by an 

increment 50 for each scheme; goal values of five functions are listed as table 1 and number 
of maximum iteration is the terminating condition of algorithm. 
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Figure 1. Effect of different random seed on precision of function Sphere
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Figure 2. Effect of different random seed on precision of function Rosenbrock 
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Figure 3. Effect of different random seed on precision of function Rastrigrin
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Figure 4. Effect of different random seed on precision of function Griewank
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Figure 5. Effect of different random seed on precision of function Schaffer’f6

The effects of random seeds on performance of algorithm for five functions are shown in 
Fig. 1 to Fig. 5.  It is obviously that random seed greatly affects the convergence velocity and 
precision of the CSV-PSO. If random seed is appropriate, convergence velocity of CSV-PSO 
is quite fast; otherwise, convergence is slower and divergence is also probable. However, 
this effect is random and doesn’t comply with any distinctive laws. 

3.4.2 Stagnancy Number Ns

In process of optimization, the best particle may not move toward any direction during a 
short-term flying before goal value is obtained. This is named stagnancy phenomenon. To 
obtained the global goal value quickly, it is necessary to initialize part of the particles once 
more to break this temporary stagnation. But no final conclusion about the how many the 
stagnancy number is has yet been reached. How to determine stagnancy number Ns will be 
discussed in this section by taking the functions in table 1 as examples.

 Sphere Rosenbrock Rastrigrin Griewank Schaffer’s f6

Optimal value 13982.13 123073.22 264.40 126.83 9.71E-3 

Table 4. Optimal value of 5 functions when stagnancy number is 1 
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Figure 6. Effect of different stagnancy number on precision of function Sphere
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Figure 7. Effect of different stagnancy number on precision of function Rosenbrock 
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Figure 8. Effect of different stagnancy number on precision of function Rastrigrin 
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Figure 9. Effect of different stagnancy number on precision of function Griewank
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Figure 10. Effect of different stagnancy number on precision of function Schaffer’f6

Most of the parameters in this section are set to be the same value as section 3.4.1 except for 
random seed and stagnancy number. Random seed is set to 100 and stagnancy number is set 
to be from 1 to 501 by an increment 10 for each solution. How the stagnancy number affects 
the convergence precision is indicated in Fig. 6 to Fig. 10. Because when the stagnancy 
number is 1, the optimal value is still very large at reaching end conditions, so these values 
are listed in table 4 separately. 
Much numerical simulation has shown that there is stagnancy during the flight of particles. 
It is concluded that it is very important what time initializing part of particles is. If part of 
particles are initialized again when stagnancy just now happens (e.g. stagnancy number is 
1.) during flight of particles, performance of CSV-PSO is least desirable and the algorithm is 
hard to converge. However, if the initializing is too late (e.g. stagnancy number is 500), the 
algorithm is also not stable and easily divergent, which are seen from table 4 and Fig. 6 to 
Fig. 10. The whole range can be divided into three intervals [1, 30), [30,120] and 
(120,501].The proposed algorithm is not easy to converge at intervals [1, 30) and (120,501] 
and has a trend that convergence becomes more and more difficult along with the increasing 
of stagnancy number at interval (120,501]. So it is suggested that initializing part of particles 
once again with stagnancy number between 30 and 120 will achieve better convergence. 
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3.4.3 Constant 0α

Constant 0α is a parameter that determines limit of flying velocity of particles, which is 

shown by Eq. (6), (7) and (8). Many numerical tests show that different 0α  result in different 

velocity and precision of convergence in CSV-PSO. Parameters of CSV-PSO different from 

section 3.4.2 are stagnancy number and constant 0α  which are set to 20 and from 0 to 3.0 by 

an increment 0.1 for each scheme separately. And the α  can be decreased without limitation 

by Eq. (8). The optimal values of each function vary with increasing of constant 0α  as 

shown in Fig. 11 to Fig. 15. As being comparatively large when constant 0α is 0, optimal 

values for five functions are listed separately in table 5. 

 Sphere Rosenbrock Rastrigrin Griewank Schaffer’s f6

Optimal value 51773.71 1690084.40 373.47 466.96 5.04 E-2 

Table 5. Optimal value of 5 functions at 0α =0
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Figure 11. Effect of different constant 0α  on precision of function Sphere
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Figure 12. Effect of different constant 0α  on precision of function Rosenbrock 

It is concluded that convergence precision of CSV-PSO for each function is very poor at 

meeting end condition of iteration when 0α  is 0 from table 5. If iteration continues, given 

goal value is also obtained hardly. This is because PSO has had no optimizing capacity 

when 0α  is 0, which is in accordance with the principle of the algorithm. Particles move 
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toward an object by mainly interaction among particles. When 0α  is 0, the upper and lower 

limits of particles’ velocity are both zero indicated by formula (6), (7) and (8), further the 
velocity of flying is also zero, and locations and velocities of particles can’t both be updated.  
So that the whole population are stagnant and the PSO finally loses optimizing capacity. 
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It is shown that the convergence capability of CSV-PSO undergoes three stages 

approximately along with the increasing of 0α by Fig. 11 to Fig. 15. The first stage is at 

interval [0, 0.5) and convergence of the algorithm is unstable. Some functions can converge 
quickly to goal value while others will not in this stage. CSV-PSO has more stable 
convergence at interval [0.5, 1] for five testing functions. Convergent capability of the 

algorithm becomes much more poor and unstable when 0α is more than 1. So interval [0.5, 

1.0] is proposed. 
In addition, numerical calculation indicates that if population scale is too small, algorithms 
may converge difficultly and the precision is bad, so enlarging the population can improve 
the convergence capability and enhance the precision of the algorithm; increasing iteration 
number can also improve the precision of the algorithm to some degree. 

4. PCSV-PSO

Although the convergence speed and precision of the CSV-PSO have been are further 
improved, it is necessary to further improve calculation efficiency for some practical 
engineering application consuming a large amount of calculation time (such as rheology 
parameters back analysis, seepage simulation, etc.). Therefore, a parallel CSV-PSO algorithm 
based on MPI(Message Passing Interface, named PCSV-PSO), is proposed in the paper. As 
the calculations for parameter recgnition are mainly consumed in evaluation of particles’ 
fitness,  global parallel strategies (master-slave mode) is adopted in CSV-PSO algorithm in 
the paper. MPI is one of the most popular parallel techniques based on message passing 
mechanism (Du, 2001). It offers a criterion of message passing programming, which has 
nothing with languages and platforms, and can be widely accepted. In addition, it  codes are 
practical, transplantable, high-efficiency and flexible. 
Operation procedure can be simply introduced as following: 
Firstly, the host computer allocates assignments for each process according to formula (12): 

m

N
N ='  (12) 

Where N is the total number of assignments produced by CSV-PSO (namely N groups of 
schemes for problems to be solved), m is the number of personal computers(PC) 

participating in parallel calculation, 'N  is the number of assignments of each process. 

Secondly, each process executes its assignments separately, and the calculation result will be 
evaluated by formula (13) (That is evaluation of solutions of problem.). 
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In which, )(Xfi and tu  are calculation value and observed object value respectively; n is the 

total number of observed object value. 
Then, the calculating result of each process is taken back, and position, velocity, velocity 
limit and searching space of particles and inertia weight are updated according to Eq. (1),(2) 
and (5) to (10) on master PC. 
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Finally, determine whether the result can meet the requirement of calculation. If so, 
terminate the parallel calculation; otherwise, allocate new assignments to slave computers, 
and begin new iteration.Repeat the above processes until the requried optimization solution 
is obtained. 
By using the above proposed method, fitness calculation of particles (one group of solved 
schemes for problems) is independent in each PC, wherears evaluation of all particles and 
all operation(such as updating of position, velocity, velocity limit and search space of 
particles and inertia weight, etc) are executed only by master PC. The host PC communicates 
with slave PCs only when allocating assignments and taking back result. Thus reduces the 
communication overhead prominently. Hence, the efficiency of parallel calculation is high.  

5. Application of PCSV-PSO in Geotechnical Engineering

Rock is a typical complex anisotropic natural geological material including all kind of 
fissures, joints and defects, so mechanical characteristic and physical property are obviously 
different for different rocks, even if for the same rock. Hard brittle rock buried deeply under 
high ground stress has a greater chance of rockburst when surrounding condition of rock is 
changed by excavation, artificial blasting or other factors. While soft and weak rock shows 
another mechanics property, which deformation increases under constant stress condition 
or stress decreases under constant deformation condition gradually with time in long-term 
run of rock engineering, named time dependant characteristic. For accurate describing 
physical and mechanical property and learning deformation laws in situ of studied rock, 
back analysis based on measured information in situ is used widely in geotechnical field and 
many achievements have been obtained (Wang & Yang, 1987; Gavrus et al., 1996; Deng et 
al., 2001; Liu et al., 2005).  Measured displacement regarded as the goal, back analysis 
method for rheological parameters of rockmass based on FLAC3D codes using PCSV-PSO is 
introduced firstly. Then this method is used for inversing rheological parameters of argillite 
at the No. 72 testing tunnel of left bank slope, Longtan Hydropower station, China. 

5.1 Back Analysis of Rheologcial Parameters of Rockmass Based on PCSV-PSO 

It is essential for inversing analysis method that searching a set of parameters makes 
calculated response accord with actual response in the whole space using an optimal 
technique. So for time dependant engineering problem, goal function used as back analysis 
can be written as following: 
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Where X is a set of parameters required for inversing analysis; )(Xfit and itu are calculated 

displacement and measured displacement of the No. i monitoring site at t time respectively; 
n is total number of monitoring sites and T is total time for monitoring. 

The back analysis method which is based on FLAC3D solver with PCSV-PSO can be 
described as following (also seen from Fig. 16): 
Step 1: Initializing parameters of PCSV-PSO and ranges of parameters requiring to be 
analyzed inversely;  
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Step 2: Initializing position and velocity of particles, population size N, namely N sets of 
parameters requiring to be analyzed inversely; 
Step 3: Host PC allocates missions to m-1 slave PC and itself. N/m missions are allocated to 
each PC; 
Step 4: Invoking FLAC3D solver and calculating displacement of key points; 
Step 5: Calculating fitness of particles by formula (14), and return the result to host PC; 
Step 6: If the fitness is less than given value or iteration number is larger than maximum  
iteration number given, a set of optimal  parameters is selected out by rheology mechanics 
characteristic of rock and some engineering experiences and back analysis is finished; 
otherwise, go to step 7; 
Step 7: Updating limit of velocity, searching space and position and velocity of each particle 
inertia weight and so on, then go to step 3. 
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Figure 16. Flow chart of back analysis of parameters based on FLAC3D using PCSV-PSO 
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5.2 An application in Geotechnical Engineering

5.2.1 Introduction of Longtan Hydropower Project

The Dam

No. 72 TunnelCreep 

 Region A

Creep Region B

Ichnography of 

Longtan 

 Hydropower Project

Creep Region B1

Figure 17. Distributing of creep regions of left slope at Longtan Hydropower Project

Longtan Hydropower Project, which is an important one in the implementation of national 
Great Western Development and the Power Transmission Project from West to East, is 
located in Tian’e county of Guangxi Autonomous Region, upstream of Hongshui River. It is 
the second largest hydropower project under construction in China, next to Three Gorges 
Project. The height of mountains is about 600m at both sides of the dam site. Slope on the 
left bank is 420m high and the slope angle is between 28 to 37 degrees, with a thickness of 
residual diluvial layer between 0.5 and 2m and locally from 8 to 25m. More than 500 faults 
are exposed in the Dam Area and about 50 ones of them are bigger.  There are two big creep 
regions with sandstone and shale of Middle-lower Triassic Formation near dam site in the 
left of whole reservoir region, named creep regions A and B, which is shown as Fig. 17. 

72

No. 6 monitoring section

No. 3 monitoring section

No. 1 monitoring section

No. 2 monitoring section

No. 72 testing tunnel

Shale 

Figure 18. Engineering geological profile at location of No.72 testing tunnel 
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Figure 19. Disposal of monitoring sections at No.72 testing tunnel 
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Figure 20. Disposal of survey lines at each monitoring section 

As the geological conditions are quite complicated in this region, in order to know the 
geological conditions, rockmass physical and mechanical property, deformation 
characteristics and strike variation, the No.72 exploratory testing tunnel was excavated in 
one of  the two creep regions on the left bank. Its location is shown in Fig. 17 and the main 
faults and strata which it passes through are shown in Fig. 18. 
The No.72 test tunnel locates in the core of the left bank high slope, which is surrounded by 
shale and all of its 6 monitoring sections are also surrounded by shale mainly. The main tunnel 

is 180m long, and the branch tunnel is 136m far from the opening. The monitoring sections ,

,  and , whose size is 2m width and 3m height, are located at 83.9, 132.4, 139.4 and 172m 

far from the opening of main tunnel and the monitoring sections  and , having 2 m×2m 
sizes, are 3.7 and 6.5m far away from the opening of branch tunnel as shown as Fig. 19. The 
shape of all profiles is city gate. The measuring method is that the six convergent survey lines 
are fixed on four points of each profile. The survey lines are disposed as Fig. 20. 

5.2.2 Numerical Calculation Model 

To eliminate the boundary effect as much as possible, calculation ranges in which width is 
100m at X direction, length is 280m at Y direction and height is from 240m yellow sea height 
to slope surface at Z direction is determined. The calculation region is shown in Fig. 21 in 
horizontal plane. 3D Meshes are generated in terms of the calculation region determined 
above, which contain 37343 elements and 8601 nodes of meshes. Local mesh refinement 
technique is used near six monitoring sections. Solid elements are used to simulate faults 
having some thickness. The model of calculation mesh of the whole ranges is shown in Fig. 
22. Distribution of faults and test tunnels in calculation range is displayed in Fig. 23. 
Initial stress fields adopt 3D initial stress fields regressed by Hu et al. (Hu et al., 2005). 
Bottom surface, planes vertical to X-axis and Y-axis are all constrained at normal direction 
and natural slope surface is free. According to deformation monitoring data in situ, testing 
tunnels go through instant elastic, attenuation and relatively stable deformation three 
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stages. Therefore, the combined model of Kelvin-Voigt model for viscoelastic property of 
rock and Mohr-Coulomb model which is used to express plastic characteristic of material is 
adopted to describe viscoelastic plastic property of shale as Fig. 24. 

x

y
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100m 

No. 72 tunnel

Axis of dam

Figure 21. Calculation region for numerical model of the No.72 testing tunnel 
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Figure 22. Three-dimension mesh model for calculation 
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Figure 23. Distribution of faultages and testing tunnels 
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Figure 24.  Combined model for describing viscoelastic-plastic characteristic 

According to excavation schemes, monitoring data and the feasibility of numerical 
simulation, 180m-long NO.72 testing tunnel is excavated by 13 stages and each stage is 
finished once. As displacement monitoring is later than excavation and instant deformation 
of surrounding rock can’t be reflected in displacement monitoring, proper measure must be 
taken to make process of numerical simulation agree with that of monitoring in situ.
FLAC3D of the ITASCA company is used as a solver when numerical simulation starts. For 
each excavation, elastic and plastic analysis is carried out at first followed by rheological 
calculation. Strong weathered, weak weathered, slightly weathered shale and fresh 
sandstone interbedded with fresh shale four kinds material are considered for elastic and 
plastic calculation. Fully weathered and strong weathered shale are regarded as the same 
material and weak weathered and fresh shale are regarded with the same property in 

viscoelastic plastic numerical simulation. Several large faults F1 F4 F63 and F119 crossed by 
the No.72 testing tunnel are taken into concern in elasticplastic and viscoelastic plastic 
simulations. 

5.2.3 The goal of back analysis 

As excavation and all kind of artificial factors, monitoring data are not full and have big 

variations in profiles  and . In addition, the distance of profiles and  and location of 

profiles  and  are very close and profiles  and  are in the branch tunnel, therefore,  

only monitoring data of profiles , , and  are selected as the goal of back analysis, 
where only suvey lines AD,BD and CD of the first profile, suvey lines AC,CD and BD of the 
third profile, suvey lines AB,CD,AC and BC of the fifth profile and suvey lines AD and CD 
of the sixth profile are used as effective survey lines. The goal function of back analysis is 
described by formula (14). 

5.2.4 Identification of Parameters of Constitutive Model 

For Mohr-Coulomb model, mechanical property parameters of strong weathered, weak 
weathered, slightly weathered shale, fresh sandstone interbedded with fresh shale and the 
four faults are determined as listed in table 6 based on geological conditions and mechanical 
testing, in which elastic modulus are the same as elastic modulus of each rock in series 
branch of viscoelastic model and is gained by latter inversing analysis. 
For Kelvin-Voigt model, its parameters are recognized using displacement back analysis 
method with PCSV-PSO as mentioned in section 5.1. Total eight PCs which are equipped 
with 2.8GHz CPU, 512MB memory, 10MBps/100MBps net card and 80GB hard disk 
participate in this parallel calculation of inversing analysis. Other equipments include a 
HUB with 16 interfaces, a 17 inch terminal, a manual control switch and some net wires, etc.  

Sorts of rockmass Unit Tensile Shear strength Poisson's 
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weight
(kN·m-3)

strength 
(Mpa)

Friction 
angle(°)

C(Mpa)
 ratio 

Strong weathered shale 25.5 0.08 36.9 0.49 0.34 
weak weathered shale 26.5 0.8 50.2 1.18 0.28 
slightly weathered shale 26.8 0.8 47.7 1.48 0.26 
fresh sandstone with fresh 
shale

26.9 1.3 52.4 1.96 0.25 

Faults F1 F4 F63 and F119 21 0 18 0.04 0.34 

Table 6. Property of several rockmass for Mohr-Coulomb model 

Before the parameters are identified using swarm intelligence method, they must have 
ranges themselves. The ranges of parameters of Kelvin-Voigt model are determined by 
engineering experience, geology investigation, rock testing in laboratory and in field and a 
small amount of numerical calculation, as shown in table 7. 

Fully and strong weathered shale Weak weathered and new shale 

E1(GPa) 1 (GPa.d) E2 (GPa) E1(GPa) 1 (GPa.d) E2 (GPa) 

20-40 5-20 1-15 80-110 5-20 5-20 

Table 7. Ranges of parameters of Kelvin-Voigt model for the two rockmass 

The parameters of PCSV-PSO are set as follows: the maximum number of iteration is 20, the 
population size is 16, learning factors c1 and c2 are both 2.0, initial inertia weight is 1.0, 

constants 0α  and 0β  are set to be 0.9 and 0.8 respectively, random seed is set to be 100 and 

the maximum stagnancy number is 10.  

Fully and strong weathered shale Weak weathered and new shale 

E1(GPa) 1 (GPa.d) E2 (GPa) E1(GPa) 1 (GPa.d) E2 (GPa) 

31.90 9.02 5.82 92.52 78.41 12.98 

Table 8. Recognized parameters of Kelvin-Voigt model for the two rockmass 
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Figure 25. Comparison calculated deformation with monitored it at profile
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Figure 26. Comparison calculated deformation with monitored it at profile 

As numerical simulation of rock rheology is a time-consuming job, although maximum 
number of iteration and the population size are set to smaller values, it still consumes 
almost two days until the final parameters of the two rocks are obtained using the proposed 
method in section 5.1. If finishing a scheme needs 50 minutes averagely, it will consume 
about 10 days that parameters are identified in single PC. So efficiency is improved highly 
using the PCSV-PSO algorithm. When iteration is executed 20 times, the final identified 
parameters are obtained in table 8 and the residual sum of squares of the calculated 
deformation and actual deformation is 9.36×10-5 m2. The calculated deformation is 
compared with actual deformation, as shown in the Fig. 25 to Fig. 28. It is concluded that the 
calculation result of all survey lines of the four profiles is acceptable for practical 
engineering, the simulating trend of deformation with the above identified parameters 
accords with that recorded in the field from Fig. 25 to Fig. 28 and the proposed algorithm is 
a faster and more efficiency back analysis method for identifying parameters. 
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6. Conclusion 

Two modified versions of PSO are introduced: one is CSV-PSO algorithm in which 
random numbers are generated by the mixed congruential method, and another is PCSV-
PSO algorithm for recognizing rheological parameters of rockmass. A great deal of 
numerical simulations show that the CSV-PSO algorithm has better convergence 
performance and  more accurate convergence precision, its run is more stable and it can 
provide certainty solution in different runtime. Sensitivity analysis of the CSV-PSO 

algorithm indicates that random seed, stagnancy number and constant 0α  determining 

flying velocity of particles have a great effect on performance of the algorithm. Proper 
random seed can accelerate convergence of the algorithm; while bad random seed can not 
only slow convergence velocity but also possibly result in divergence. However, no 
obvious law can be followed. If the stagnancy number is too small or too large, the 
algorithm is hard to converge and unstable. The interval in which the algorithm 

converges more easily is [30,120]. If the constant 0α  is smaller in interval [0, 0.5], the 

optimizing capability of the algorithm is poorer and if the constant 0α  is zero, the 

algorithm loses optimizing capability. However, if constant 0α  is too large, the velocity of 

particles will be large so that the algorithm can’t also unstably converge. That interval 
[0.5, 1.0] is suggested is proper for convergence of the algorithm. Based on monitoring 
information in situ, identifying mechanical parameters of rockmass using back analysis 
technique is a time-consuming task. Rheological parameters of the two rocks at the No.72 
testing tunnel of left bank slope, Longtan Hydropower Station, China, as an example, are 
identified using the PCSV-PSO algorithm. The results indicate PCSV-PSO algorithm is a 
new feasible and high efficient analytical tool for solving geotechnical engineering 
problem. 
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