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Abstract

Deep brain stimulation (DBS) has been demonstrated as a treatment option to alleviate
patient  symptoms  in  movement  disorders,  such  as  Parkinson’s  disease  (PD)  and
dystonia,  and  has  emerged  as  an  alternative  treatment  for  medically  intractable
epilepsy. However, complete understanding of the mechanism of DBS remains elusive
despite recent human and nonhuman studies that have provided mechanistic clues.
The precise mechanisms of action for DBS remain unclear. This review provides an
up-to-date overview of the detailed procedures of DBS and reviews the actions of DBS
on brain networks. Studies regarding the structural and functional connectivity of the
brain are also reviewed.

Keywords: Deep brain stimulation, Mechanism, Structural brain connectivity, Func‐
tional brain connectivity, brain network

1. Introduction

In previous decades, the function of deep brain stimulation (DBS) has been demonstrated as
the activation or inhibition of specific brain regions, which are the targets of DBS [1, 2]. It has
been suggested that the mechanism of DBS must be an inhibition of an area of a pathologi‐
cal network in the brain because the clinical results for DBS are similar or better than classi‐
cal ablation therapy. However, we soon had to admit that it is not an activation/inhibition
problem of a specific brain region, but rather the neuromodulation of brain networks [3–5].
The concepts of brain network neuromodulation were based on the idea that DBS repre‐
sents not only remarkable therapeutic benefits for patients but also an amazingly powerful
research tool to interrogate brain networks. Specifically, the underlying brain function may
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be demonstrated if DBS is used in conjunction with noninvasive neuroimaging methods, such
as magnetoencephalography (MEG), electroencephalography (EEG), and functional imaging
modalities.

In previous decades, studies regarding the structural and functional brain networks have
nourished us in terms of how DBS works. Nevertheless, the knowledge regarding the struc‐
tural networks of the brain was cruel and so were the functional networks. The structural
networks of the brain have been investigated with various modalities [3, 5–8]. Furthermore,
studies have been extended toward functional brain connectivity via investigations with
models based on MEG and EEG [9, 10]. Recently, an emerging trial has been attempted to
connect structural and functional brain connectivity and understand the genuine brain
networks [4, 11].

This review provides us an up-to-date overview of the detailed procedures of DBS and
monitoring during surgery, as well as reviews the actions of DBS on brain networks based on
human and nonhuman studies. Furthermore, studies regarding the structural and functional
connectivity of the brain are also reviewed.

2. Deep brain stimulation

2.1. Historical review

DBS is a surgical option that has not arisen de novo. It has resulted from a gradual evolution.
The first trial reported to modulate brain function via electrical brain stimulation was in 1870
[12]. Electrical stimulation of the motor cortex in a dog provoked limb movement. Sir Victor
Horsley, the father of functional neurosurgery, first performed intraoperative brain stimula‐
tion in 1884 [13]. He demonstrated conjugational eyeball movement via electrical stimulation
of the corpora quadrigemina within an occipital encephalocele. Modern style stereotactic
electrical stimulation in humans was conducted by Spiegel et al. [14] in 1947, which was
approximately 30 years after the invention of the first animal stereotactic apparatus in 1908 by
Horsley and Clark [15]. The first human case exhibited Huntington’s disease. The authors used
brain stimulation to identify the correct position of the lesion within the brain. Stereotactic
brain stimulation subsequently continued to be used in nearly every stereotactic surgery
because its purpose was to ensure the position of the lesioning electrode.

As stereotactic brain surgery progressed, it was recognized that brain stimulation within the
target may have a mimicking effect with the target lesioning. Hassler et al. [16] reported that
the stimulation of the ventral lateral (subsequently referred to as the ventral intermediate
nucleus of thalamus (VIM)) nucleus of the thalamus during stereotactic localization may
terminate the tremor. Furthermore, Alberts et al. [17] reported that dystonic symptoms
improved following stimulation during stereotactic surgery. Delgado et al. [18] introduced
electrode implantation in human brains as a technique for chronic recording and brain
stimulation, and Heath [19] initiated depth electrode studies for psychotic patients in the 1950s.
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Mortimer and Shealy became involved in an implantable stimulator in Medtronics in 1965,
and the base of the DBS system was founded [20]. Shealy et al. [21] implanted the first dorsal
column stimulator in 1967, and, thereafter, the neuromodulation for pain was actively
performed. The early stimulators at this time comprised two parts, including an implantable
passive receiver and a battery-controlled external device. The two parts were coupled by
radiofrequency and transmitted both control and power. In 1981, Medtronic released a
completely implanted stimulator. In the mid-1970s, Cooper et al. [22, 23] introduced cerebellar
cortical stimulation for the treatment of epilepsy and cerebral palsy.

In 1973, Hosobuchi et al. [24] stereotactically implanted a DBS electrode in the somatosensory
thalamus to treat denervation pain. It had previously been recognized that stimulation during
surgery could mimic the effects of lesioning from the early era of stereotactic surgery; however,
the mechanism was not fully understood [25]. The target of DBS to treat movement disorders
naturally originated from the target of ablation surgery. Brice and McLellan [26] first reported
DBS for movement disorder in 1980. The patient was suffering intentional tremor with no pain
because of multiple sclerosis. They implanted the electrode in the thalamus to control the
tremor. In 1986, Siegfried [27] demonstrated an improvement of dyskinesia in a patient with
pain caused by Dejerin-Roussy syndrome, which had undergone DBS implantation to treat
the pain. Benabid et al. [1] introduced the use of chronic VIM stimulation for the treatment of
Parkinsonian tremor. Finally, high-frequency stimulation was used at any targets that were
used for lesioning in the 1980s.

Hesitation remained to implement DBS for Parkinson’s disease (PD) at this time because
physicians preferred medical management with L-dopa and related drugs. However, the
surgical management of PD was reborn following the reintroduction of pallidotomy in 1992
[28]. DBS was also reintroduced with the same target in 1994, and several neurosurgeons
subsequently popularized it [29–31]. Benabid has attempted to elucidate the mechanisms of
DBS for movement disorders and to make it widely accepted. He also reported bilateral
subthalamic nucleus (STN) stimulation for PD [32]. Forel’s field and zona inserta have been
suggested as novel targets, in addition to the STN and globus pallidus internus (GPi). To date,
DBS has returned toward the era of brain lesioning for psychological conditions and epilepsy.
Moreover, it has not only accepted all old targets with the fundamentals obtained through
human and nonhuman investigations but has also expanded new targets from vigorous
investigation.

2.2. Surgical indication

DBS is most commonly used to alleviate the motor symptoms of PD despite initial implemen‐
tation to treat intractable pain. It may be used for the treatment of dystonia and essential
tremor. Furthermore, it is in limited use or under investigation to treat various neurological
and psychological conditions, including epilepsy, obsessive-compulsive disorder (OCD), and
major depression. DBS has opened new horizons for the surgical treatment of various neuro‐
logical and psychiatric conditions [33]. The spark to extend the clinical indications has
expanded to investigational research on neurological, psychological, cognitive, and behavioral
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conditions. Table 1 comprises a summary of the surgical indications for DBS according to the
symptoms that require treatment.

Indications Medical conditions

Parkinsonism (tremor, bradykinesia,
and rigidity)

Idiopathic Parkinson’s disease

Tremors Parkinson’s disease (only tremor dominant), Essential tremor, Rubral tremor,
posttraumatic tremor

Dystonic movement Primary dystonia, Secondary dystonia

Dyskinesia Parkinson’s disease (Dopamine-induced dyskinesia), Tardive dyskinesia

Chorea Huntington’s chorea

Seizures Intractable epilepsy as a result of many cause

Mood Major depression

Obsession Obsessive compulsive disorder

Tics Tourette’s syndrome

Pain Chronic pain, Cluster headache

Obesity Eating disorder

Anorexia nervosa Eating disorder

Cognitive failure Alzheimer’s disease, Severe traumatic brain injury

Addiction Psychological cause

Tinnitus Uncontrollable otological problem

Limited use or investigational state in italics.

Table 1. Summary of symptoms for treatment via DBS.

2.3. Optimal targets of DBS

Successful surgical results of DBS definitely originated from the optimal target according to
the specific symptoms or disease entities. For example, the classical target for tremor has been
the VIM of the thalamus since the era of stereotactic brain lesioning. However, Parkinsonian
tremor has also been controlled with other Parkinsonian symptoms via STN stimulation.
Moreover, many surgeons have often targeted the GPi to treat patients with predominately
dopamine-induced dyskinesia with minimal tremor [34]. Some authors recommend the GPi
better than the STN for patients with postural instability and gait disturbance as indicated by
a meta-analysis [35]. Randomized controlled studies have not concluded which target is better
for PD patients [36–38]. Moreover, there is no general consensus regarding the best target, the
STN or GPi. Consequently, the choice of best target for an individual patient may depend on
the conditions the patient has suffered.
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As DBS widened its clinical indications, new targets have continuously emerged. Ethical
problems have been associated with new targets; however, vigorous investigation regarding
the new targets has been performed through nonhuman experiments to prove its efficacy and
safety. Table 2 shows the targets published to date regarding whether they are established or
investigational.

Indications Targets

Parkinsonism (tremor,

bradykinesia, and rigidity)

STN, GPi, and PPN

Tremors VIM

Dystonic movement GPi

Dyskinesia GPi

Chorea GPi

Seizures ANT, DMT, Hippocampus, Cerebellum

Mood GPi (anteromedial), NA, Anterior capsule, Medial thalamic structure, Prefrontal cortex,

Cingulum, Dorsolateral prefrontal cortex, Inferior thalamic peduncle, Prefrontal cortex,

Ventral striatum, Zona inserta (medial part)

Obsession NA, Anterior capsule, Bed nucleus of stria terminalis, interior thalamic peduncle, STN (limbic

part), ventral striatum

Tics GPi (posterovental), STN, NA, Anteromeidal pallidus internus, CMpf, Voi, Ventral striatum

Pain Vpm/Vpl, Motor cortex, PAG/PVG, posteromedial hypothalamus

Obesity Lateral hypothalamus

Anorexia nervosa Subgenual cingulum

Cognitive failure Nucleus basalis of Meynert, fornix, entorhinal area, medial thalamus

Addiction NA

Tinnitus VIM

Limited use or investigational state in italics. ANT, anterior nucleus of thalamus; CMpf, centeromedin parafasciculus
of thalamus; DMT, dorsomedial nucleus of thalamus; NA, nucleus accumbens; PAG/PVG, periaqueductal gray/
periventricular gray; STN, subthalamic nucleus; GPi, globus pallidus internus; PPN, pedunculopontine nucleus; VIM,
ventral intermediate nucleus of thalamus; Vpm/Vpl, ventral posteromedian/ventral posterolateral thalamus.

Table 2. DBS targets previously published.

2.4. Surgical procedures of DBS

Advanced surgical skills are not necessary to perform DBS. However, the flow of surgical
procedures should be well acquainted. The author would like to divide the flow of surgical
procedures into five steps because there are common steps of all DBS procedures and different
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steps depending on the specific target of DBS. Moreover, the author would like to introduce
what the author is doing and include several tips that other authors have recommended in the
literature.

2.4.1. Preoperative step

The clinical decision regarding whether DBS may be helpful for a specific patient is critical.
Prior to this decision, an exact diagnosis is necessary using a multidisciplinary approach. Most
movement disorders are clinically diagnosed, which implies a small portion of uncertainty.
Nevertheless, an exact diagnosis may inform the surgeons, as well as the patients and their
families regarding the expected results of DBS. The author highly recommends organizing a
team that comprises a neurologist, neuropsychiatrist, neuropsychologist, anesthesiologist, and
special nurse (may vary from institute to institute) in your institute to discuss and confirm the
diagnosis and clinical indications. In the case of PD, an L-dopa challenge test is necessary to
confirm DBS. The PD patient may need to be hospitalized for this test for several days.

Once the decision is made, the patient undergoes the surgical procedures. Patients considered
for DBS must be hospitalized for several days. In the case of PD, antiparkinsonian medication
should be terminated for 4–12 h according to the duration of the on-time prior to the start of
surgery. Too early cessation of antiparkinsonian medication will cause substantial discomfort.
On the day of surgery, the stereotactic frame was applied following a local anesthesia injection
at four pinning sites. The author uses a Leksell G stereotactic frame. Cosman-Roberts-Wells
(CRW) or other stereotactic frames may also be used. The stereotactic frame should be applied
parallel to the line from the nose ring to the tragus. The author recommends that the accuracy
of the stereotactic frame should be checked regularly as recommended by the manufacturer.
Frameless DBS is currently performed in some institutes with reported results and accuracy
[39–41]. These authors have indicated that the accuracy is the same as previous frame-based
DBS, and the choice should be based on surgeon preference.

The patient is subsequently transferred to the MRI room. The patient’s head with frame is fixed
to the adaptor of a 1.5 T MRI. The MRI scan is performed, including 1 mm T1-weighted axial
images with gadolinium enhancement (recommend double-dosed enhancement) and 2 mm
T2-weighted axial images. If the condition is allowed, 2 mm T2-weighted coronal images may
be obtained (may be optionally fused with T2 axial images, described later in the Targeting
step). In some institutes, MRI is performed on the day prior to surgery, and computed
tomography (CT) is conducted after frame application on the day of surgery. MRI is subse‐
quently performed on the previous day and is fused before targeting [42]. Some authors
recommend contrasted CT because of the vessel visualization issue [43, 44]. This approach is
completely based on surgeon preference. The patient is transferred to the operating room to
prepare for the surgical step.

2.4.2. Targeting step

All MRI images are transferred to a Leksell Surgiplan workstation (Elekta, Sweden). The
author also uses FrameLink (Medtronics, Minneapolis, USA) and believes that there is no
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specific difference that affects the surgical results. There may be other planning stations de‐
pending on the institutes. First, the anterior commissure (AC) and posterior commissure
(PC), which are the anterior and posterior extremes, respectively, of the third ventricle,
should be identified in T1 axial and sagittal images. The AC–PC line-based target coordi‐
nates are defined in the T2-weighted images, depending on the target at the time of surgery
decision. At this time, T2-weighted axial and coronal images are fused if these are available.
The author feels that this work may minimize the distortion error of the MRI images even
though the distortion error of a 1.5 T MRI image is within the acceptable boundary [45]. The
targets, such as the STN and GPi, may be easily visualized on T-2 weighted MRI images
(Figure 1). However, the author first defines the target using formulated coordinates and
subsequently adjusts it in the case of the STN and GPi. After the target is defined, trajectory
from the cortical entry point will be defined. The recommended entry point is the middle
frontal gyrus, and the visualized vessels should be avoided. Furthermore, the trajectory
through the ventricle should be avoided. At this point, adjustment of the target may be nec‐
essary because a different trajectory may modify the optimal penetration of the target. Maxi‐
mal options may be used for the stimulation sites, and optimal results may be expected
when the electrode covers the maximal area of the target. Some authors have first defined
the trajectory, followed by the target. The author thinks that the order between the trajecto‐
ry and target does not matter because some adjustment should be followed according to the
vessel positions and the best penetration of the target. Table 3 shows the common target
coordinates of DBS.

Figure 1. T2-weighted axial MR image indicates red nucleus and subthalamic nucleus.
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STN GPi VIM Vpm/Vpl NA

AC–PC line 50% 50% 28.5% anterior 33.4% anterior 100% anterior

Vertical 2–4 mm inferior 4 mm inferior 0 0 1–3 mm inferior

Lateral 11–13 mm 20–22 mm 12–15 mm 11–14 mm 6–9 mm

Axial 1–3 mm posterior 1–2 mm anterior 0 0 7–9 mm anterior

NA, nucleus accumbens; STN, subthalamic nucleus; GPi, globus pallidus internus; VIM, ventral intermediate nucleus
of thalamus; Vpm/Vpl, ventral posteromedian/ventral posterolateral thalamus.

Table 3. Decisions regarding common targets of DBS.

2.4.3. Operative step

The patient is positioned supine, and a stereotactic frame is fixed to a special headrest. The
patient’s head and upper body may be elevated, and the knees are slightly flexed on the
pillows. This sitting-like position is for the patient’s comfort and is helpful to minimize the
flowing out of cerebrospinal fluid (CSF) through the burr holes during surgery. Prior to
draping, special monitoring may be needed, for example, EEG for an epilepsy case and EMG
for a movement disorder case. Absolute separation of the sterile area from the nonsterile area
is critical. The author uses a transverse metal bar and a large transparent drape that exposes
only the upper area of both sidebars of the stereotactic frame. A double-check of the target
coordinates by two neurosurgeons are highly recommended. A neurologist or special nurse
should be present during surgery by the patient’s side, in the opposite area from the surgical
field. The intracranial electrode implantation is performed under local anesthesia. A local
anesthetic injection is administered around the skin incision marks after the trajectory is set
with the correct target coordinates. The author prefers curvilinear skin incisions to avoid skin
erosion complications [46]. A burr hole is made with a pneumatic perforator, and bleeding
was completely controlled. An incision on the dura mater is subsequently performed and
completely coagulated. A corticotomy follows with specific attention on avoiding the vessels
and sulcus. At this point, when the dura mater is opened, normal blood pressure and normal
intracranial pressure should be confirmed. If the patient is not calm, brain-penetrating
procedures may be extremely harmful. Once the outer cannula is inserted, the burr hole should
be sealed to avoid CSF outflow [47]. Prior to the introduction of the microelectrode recording
(MER) electrode, the patient should be neurologically examined by a neurologist or a special
nurse.

The MER electrode is descended 10 mm above the target. The MER was checked every 1 mm
and should be 0.5 mm or less than 5 mm above the target. In the case of PD, a typical MER
finding of the STN may be identified, and the MER is typically descended to the substantia
nigra pars reticulate (SNr). In the case of dystonia, a typical GPi firing may be identified, and
the descent of the MER continued to the optic tract. The length of the target that the MER
electrode penetrates is checked, and the selection of the current trajectory and the depth of
intracranial electrode contact are subsequently decided. The author prefers a single track MER
rather than a multichannel (e.g., Ben gun) MER system and believes that there is no difference
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in the results [48]. A test-stimulation is subsequently conducted via the MER electrode. The
author checked the clinical effect during the stimulation and the side effects related to the
stimulation. In the case of epilepsy, EEG changes, i.e., driving response or recruiting rhythm,
may be identified during low frequency stimulation of the thalamus during test-stimulation
[49, 50]. If the test-stimulation is satisfactory, a permanent electrode is introduced toward the
previously decided depth under fluoroscopy. The final trajectory and position of the electrode
should be decided by three aspects; first, the exact image-guided target; second, the proper
MER finding; and third, an adequate physiological response to the test-stimulation. After the
electrode is introduced, test-stimulation via the permanent electrode is performed to confirm
the correct position. If it is satisfactory, the electrode is fixed with a special fixing system of the
DBS system with attention paid to the depth of electrode under fluoroscopy. The same
procedure would be performed on the other side.

The patient is transferred to the CT room without removing the stereotactic frame. A CT scan
is performed at 1 mm without enhancement to confirm the position of the electrode and
intracranial hemorrhage. The CT images are transferred to the same workstation used for the
target planning. After the exact electrode position is confirmed with an image fusion technique,
the patient’s frame is removed. Implantable pulse generators (IPG) were subsequently inserted
into the bilateral subclavian area under general anesthesia. There are several options to
perform DBS, i.e., bilateral simultaneous intracranial electrode insertion and IPG insertion on
the same day, unilateral intracranial electrode insertion and same side IPG insertion on the
same day, bilateral intracranial electrode insertion on one day and subsequent IPG insertion
on another day, and unilateral intracranial electrode insertion on one day and subsequent IPG
insertion on another day. These options are all successful and may be different depending on
the surgeon’s preference, patient’s condition, and other various health system logistics [42, 51–
56].

2.4.4. Postoperative step

The patient is transferred to the recovery room following the insertion of the IPG ends.
Following recovery from anesthesia, the patient is transferred to the neurological ward.
Surgery-related issues are considered during hospitalization. First, surgical infection related
to hardware may be an issue. Prophylactic antibiotics are initiated from the preoperative stage
to postoperative 2–3 days. The surgical wound should be closely followed thorough the wound
healing course. The author recommends that stitches are removed 9–10 days after surgery.
Hospitalization is not required for this entire period. The inpatient period depends on the
condition of the patient. Second, a microlesional effect of DBS (transient and irregular symp‐
tomatic improvement after DBS) may be an issue. Most patients who underwent DBS experi‐
ence an improvement of preoperative symptoms without stimulation. The period of
microlesional effect varies by patient; however, it typically lasts from days to weeks. Medica‐
tions, especially anti-parkinsonian medications, should be decreased according to the patient’s
symptom improvement during this period. Third, the timing of stimulation may be an issue.
The author recommends that the stimulation is initiated 4–6 weeks after surgery. The reasons
are that stable effects of stimulation cannot be expected without full recovery of the patient’s
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condition and microlesional effects disturb the tuning of the stimulation parameters. Fourth,
delirium or other psychological symptoms in limited patients, such as old aged PD, may be
an issue [57]. These symptoms typically last 3–7 days after surgery and may result in an
extension of the hospital period. The symptoms are easily controlled with tranquilizers;
however, a special psychological consultation may be needed.

2.4.5. Outpatient follow-up step

During the outpatient follow-up step, the most important issue is the initiation of stimulation.
As the author previously mentioned, stimulation will be initiated 4–6 weeks after surgery. The
author recommends that the patient may require hospitalization for 1–2 days unless the
outpatient department provides sufficient room to check the patient’s walking and whole
movements with trial-and-error based stimulation and sufficient time to wait for patient’s
symptom changes with stimulation. The author prefers a shorter follow-up (1–2 weeks) during
the early simulation period for fine-tuning of the stimulation with an adjustment of medication.
Regular follow-up may subsequently be continued with the neurologist or the neurosurgeon
every 6–8 weeks. Neuropsychological tests and other special studies, such as EEG and video
movement evaluation, may be conducted every 1–2 years. The institute where DBS is per‐
formed should construct a system (via telephone or in person) for the patients to contact any
time if they have concerns related to DBS.

2.5. Clinical results

Essential tremor is the most common movement disorder. VIM DBS is the most commonly
used target for this condition. Long-term follow-up studies have demonstrated a 40–80%
reduction in the tremor severity and corresponding improvement in the quality of life [58–65].
Table 4 shows the results of 1 year and longer follow-up studies on VIM DBS for essential
tremor [63, 65–68]. Approximately 10% of patients do not have adequate tremor control with
VIM DBS. Furthermore, approximately 15% of patients initially improve, but subsequently
lose efficacy within one year after surgery [69].

PD is the most well-published disease entity. All publications have used the medically
validated unified Parkinson’s disease rating scale (UPDRS), which comprises four compo‐
nents: Part I assesses changes in mentation and cognition (including behavior and mood); Part
II assesses changes in daily living activities; Part III assesses motor symptoms; and Part IV
assesses therapeutic complications [70]. Hoehn and Yahr [71] have also been used to assess the
disease stage, as well as a PD questionnaire (the 39-item PD questionnaire, PDQ-39) to
determine the quality of life [72]. The mainstay of PD management is medical therapy in the
early stage and surgical therapy in the later stage of the disease. The goal of the therapy is to
increase the dopamine level in the brain and/or prolong the effect of dopamine [73]. DBS and
medical therapy have been compared in large controlled trials as showed in Table 5 [74–76].
Most studies have reported that DBS is superior to medical therapy in improvements; however,
DBS has more serious adverse events. The long-term results of DBS have also been reported
[77–79]. Table 6 shows the long-term results of STN DBS.
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No. of
patients

Follow-
up

Tremor improvement Publication
year

Authors

37 (28 bilateral, 9 unilateral) 1 year General 55%; head (bilateral
only) 85%; arm 80%; leg 75%;
ADL 80%; voice none

1999 Limousin et al.

27 (14 bilateral, 13 unilateral) 1 year Unilateral: arm 82%; head 38%;
voice none Bilateral: head 95%;
voice 83%

2000 Obwegeser et al.

25 40.2
months

Overall tremor 50% at last
follow-up

2001 Koller et al.

19 6–7 years Upper extremity tremor
reduction: 100% of patients at 2
years, 84% of patients at 6–7
years

2003 Rehnerone et al.

19 (12 bilateral, 7 unilateral) 6.5 years General 41%; arm 50%; head
(bilateral only) 85%; voice none

2003 Sydow et al.

Table 4. One year or more follow-up studies regarding VIM DBS for essential tremor.

No. of

patients

Follow-

up

Improvement Adverse

events

Publication

year

Authors

124 STN DBS

127 Medical

2 years DBS>Medical 54.8% DBS,

44.1%

Medical of

serious

adverse

events

2013 Schuepbach et al.

174 STN DBS

183 Medical

1 year DBS>Medical 20 patients

DBS, 13

patients

Medical of

serious

adverse

events

2010 Williams et al.

78 STN DBS

78 Medical

6 months DBS>Medical 13% DBS,

4%

Medical(p < 0.04)

of serious adverse

events

2006 Deuschl et al.

Table 5. Comparison of DBS and medical therapy.
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No. of
patients

Follow-up Motor improvement L-dopa equivalent
dose reduction

Publication
year

Authors

14 9 years UPDRS motor
score: 42%
ADL: no
improvement
Motor
complication: 59%

39% 2011 Zibetti et al.

18 10 years UPDRS motor
score: better than
baseline
(p = 0.007)

significant 2011 Castrioto et al.

20 8 years UPDRS motor
score: better than
baseline
(p < 0.001)

60.3% 2010 Fasano et al.

Table 6. Long-term results of subthalamic nucleus DBS.

DBS for dystonia is also well published. The severity of dystonia is quantified by several rating
scales, including the Burk–Fahn–Marsden dystonia rating scale (BFMDRS) for generalized
dystonia, and the Toronto–Western Spasmodic Torticollis Rating Scale (TWSTRS) for cervical
and craniocervical dystonia [80, 81]. Bilateral GPi DBS for generalized primary dystonia results
in a 60–80% improvement in the BFMDRS in open-label studies and 40–50% improvement in
prospective, double-blind, randomized trials with 6–12 months of follow-up [82–87]. Tardive
dystonia, which represents secondary dystonia, has a favourable outcome with DBS in several
small, open-label studies that indicate a 50–70% improvement [88, 89]. Primary cervical and
craniocervical dystonias have fair results following DBS, with a 40 > 70% improvement in the
TWSTRS [90–93].

2.6. Complications

2.6.1. Surgical procedure-related complications

The surgical procedure-related complications are more or less similar regardless of the dis‐
eases and targets of DBS. In general, the most devastating complication is intracerebral hem‐
orrhage (ICH). The overall incidence of ICH during DBS, regardless of the amount of ICH,
has been reported as 1–9% [94–99]. The condition of patients with ICH during surgery de‐
pends on the location and the amount of ICH. The author believes that symptomatic ICH
accounts for less than 1% of all procedures, and the occurrence of permanent deficits is low‐
er [100]. The author recommends that several variables should be completely considered;
first, a careful evaluation of blood coagulation; second, the avoidance of visualized vessels
during trajectory planning; third, blood pressure control during surgery; and four, the

From Bench to Bedside - Trauma, Tumors, Spine, Functional Neurosurgery28



maintenance of patient calmness during surgery. There is no general consensus regarding
whether the MER is related to ICH [101, 102]. Cerebral infarction occurs; however, it is ex‐
tremely rare [103–106]. Other complications associated with permanent neurological deficits
are postoperative delirium, seizures, and other complications in the patient’s general state.
These surgical procedure-related complications have not been correlated with the duration
of surgery or the electrode passing number [96, 107–110].

2.6.2. Hardware-related complications

There are many reports regarding hardware related complications, and the incidence is quite
high, i.e., 2.7–50% [86, 94, 95, 98, 99, 111–121]. Most complications are infections, and their
occurrence rate is 1.1–15% of published cases. The infections are predominantly superficial,
and only approximately 1% are severe. They typically occur within 3 months after surgery,
and IPG sites are more common [97, 98, 108, 111, 114, 115]. Other hardware-related problems
include erosions of skin, lead fracture, IPG malfunction, and premature IPG drain-out [97, 99,
108, 113, 122, 123]. These problems cause additional procedures or surgeries; however, they
may be managed without permanent deficits. Minor hardware-related problems include
discomfort around the extension lead and thickening of scars. Although it is extremely rare,
head trauma may occur in patients with the DBS system. This issue has been reported, and
there was no stimulation failure problem if the electrode location was maintained [124, 125].

2.6.3. Stimulation-related complications

Stimulation-related complications are common; however, permanent neurological problems
induced by these complications are rare. Complications often occur if the electrode placement
is suboptimum. The current through the electrode spreads to the neural tissue around the
target if the electrode location is not separate from the eloquent tissue, and the stimulation
provokes wanted neurological symptoms that vary according to the anatomical location [118,
120, 126, 127]. Common complications include dysarthria, dysphonia, paresthesia, motor
contraction, eyeball deviation, visual flushes, nausea, dizziness, eyelid opening apraxia,
sweating, and dyskinesia. The major advantage of DBS is the changeability of the stimulation
parameters and contacts. Most stimulation-related problems are managed with an adjustment
of stimulation. Some patients initially have no problem and subsequently develop stimulation-
related complications as the stimulation parameters are progressively increased. This occurs
in the optimal placement of the electrode; thus, the stimulation, drugs or both should be
adjusted [75, 127, 128].

Alterations in higher brain functions have been reported in PD patients. Most patients who
have cognitive or behavioral deterioration after surgery had similar symptoms prior to surgery
[129]. Common symptoms include transient hypomania, acute sadness, impulsive aggressive
behavior, hilarity, or mania, and these symptoms occur as a result of both drugs and STN DBS
[75, 128, 130–133]. Suicide is an emerging concern in PD patients who underwent STN DBS [94,
129, 134]. However, depression and suicide are multifactorial, related to treatment change or
related to social issues and are not specifically related to the procedure [135]. Mood changes
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after STN DBS may represent abnormal behaviors caused by abrupt changes in limbic STN
activity [131].

3. Mechanism of DBS

To date, it is clear that DBS represents functionally reversible lesioning [136]. DBS has different
clinical effect times according to the indications and targets [137]. For example, VIM DBS for
essential tremor resulted in the disappearance of tremor within seconds [138]. STN DBS
exhibited an improvement of tremor within seconds, an improvement of bradykinesia and
rigidity within minutes to hours, and an improvement of axial symptoms within hours to days
[139, 140]. Similar phenomena in which the clinical effect time varies were demonstrated when
we turned on/off the stimulation and when we stimulated other targets for psychological
problems and intractable epilepsy [140–145]. These different responses to DBS suggest that its
mechanisms are complicated, i.e., immediate neuromodulation and synaptic plasticity and
anatomical remodeling [137, 140].

3.1. Acute responses: immediate neuromodulation

Stimulation through the DBS electrode inserted into the target inhibits neurons near the
electrode. This finding was classically demonstrated clinically and was also supported by the
determination that neurochemical inhibition improved Parkinsonian signs in animal models
[146, 147]. The inhibitory effect of DBS was explained via in vitro studies. High-frequency
stimulation induced a depolarization block, i.e., a sustained depolarization of neuronal
membranes, inactivation of sodium channels, and increase of potassium currents [148, 149].
Furthermore, DBS activates inhibitory presynaptic terminals on the afferents to the cell body.
The inhibitory action occurs through the release of the inhibitory neurotransmitter gamma-
aminobutyric acid (GABA) [150].

Axons and dendrites around the electrode are predominantly affected rather than the soma
because of the substantially high threshold of the soma [151]. Consequently, neurons whose
dendrites or axons are close to the electrode may be more readily activated [152]. The action
potentials of the affected neurons propagate away from or toward the soma. Clinical physi‐
cians may identify the effects of DBS when they change the stimulation parameters, for
example, by adjusting the number and configuration of the anode or cathode electrode contacts
and the voltage or current of the stimulation. Furthermore, evidence suggests that DBS induces
action potentials in the passing afferent fibers around the target [153, 154].

3.2. Chronic responses: plasticity and remodeling

DBS effects that emerge over a long period of time (days to months) may suggest that it changes
neural networks. There is a report that STN stimulation in the rat brain induced various forms
of synaptic plasticity in the STN neuronal subpopulation [155]. In dopamine-depleted rats,
short-term depression and long-term depression were induced by high-frequency stimulation,
and the effects of stimulation were abolished with the administration of dopamine agonist
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[156]. This phenomenon suggested that stimulation-induced synaptic changes were sensitive
to the dopaminergic state. A recent addiction animal model demonstrated that low-frequency
stimulation of the nucleus accumbens reversed cocaine-evoked plasticity [157]. In clinical
research, DTI and fMRI before DBS and after 5 months of DBS (at this time, the patient’s DBS
system was extracted because of other problems) indicated shifted images toward more typical
images of a normal healthy control [11]. Although this study comprises a single human report,
these changes induced by DBS will be reproducible in the future. A substantial number of PET
studies have previously demonstrated that DBS in OCD, dystonia, depression or PD reversed
the metabolic activity or cerebral blood flow toward the normal baseline [158–164].

The neuroprotective or neuroregenerative effects of DBS remain uncertain. However, there are
limited reports regarding the neuroprotective effects of DBS. A Parkinsonian rat model
subjected to STN DBS or STN lesioning exhibited an improvement in the survival of substantia
nigra pars compacta neurons [165–167]. It has been suggested that this effect was result of a
reduction of glutamatergic excitation from STN hyperactivity [168]. STN DBS has been
demonstrated to induce the neuroprotective growth factor brain-derived neurotrophic factor
(BDNF) in the substantia nigra, GPi, and primary motor cortex [169]. Furthermore, GPi DBS
altered glial-derived neurotrophic factor (GDNF) expression in the basal ganglia (BG) in an
animal model [170]. The potential neuroprotective effects of DBS remain under vigorous
investigation.

4. Brain connectivity and DBS

4.1. Modalities used to investigate brain connectivity

Researchers have used several modalities to investigate brain connectivity. Classical imaging
modalities have demonstrated structural connectivity that indicates the morphometric
properties of the brain, such as the volume of grey matter and connecting fibers through white
mater. High-resolution T1-weighted MRI has been used to investigate structural connectivity
via voxel-based morphometry [171]. DTI comprises a well-known method to identify brain
structures by measuring the directional diffusion of water molecules. Recently, diffusion-
weighted imaging (DWI) and fiber tractography have been used to assess the white mater
microstructure and pathways of the whole brain [172, 173]. DWI uses the passive diffusion of
water molecules to infer the properties of the surrounding tissue.

Functional imaging modalities include fMRI, PET, and SPECT, which indicate dynamic
changes in hemodynamics or metabolism in the brain and are related to neural activity. These
modalities have provided a window into the global and long-term changes in network activity
as a result of DBS [174, 175]. They are unique to obtain system-level data in brain network
activity; however, the data represent the indirect effects of neural activities and changes in
afferent input to the activated region, not output [176]. Functional connectivity has been
defined as the temporal correlations between spatially remote neurophysiological events [177,
178]. One of the prevalent modalities used to assess functional connectivity is EEG, which has
been used to assess the brain electrical activities using electrodes placed on the scalp. The high
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temporal resolution of EEG provided the benefit of estimating the changes in functional
network connectivity [8]. MEG is also an option to evaluate the electrical activities of the brain.
EEG and MEG data have provided valuable information regarding diseased brains, such as in
Alzheimer’s disease, epilepsy, schizophrenia, Parkinson’s disease, and other neurological
conditions [9, 179–182].

Structural and functional imaging modalities have their own specific spatial and temporal
scales, and they are primarily evaluated independently. Recently, a multimodal approach has
been attempted to better understand the structure–function associations. EEG–fMRI, EEG–
DTI, fMRI–DTI, and other fusion applications have been reported [183].

4.2. Brain connectivity

The most common clinical form of DBS comprises the stimulation of the subthalamic region
for PD patients. Currently, the most common research form of functional connectivity is based
on studies of the BG stimulation. The author would like to briefly review the BG anatomy and
neuromodulation of DBS via BG stimulation.

Four core nuclei compose the BG, which include the striatum (caudate nucleus and putamen),
globus pallidus (internus (GPi) and externus (GPe)), substantia nigra (pars compacta (SNc)
and pars reticulate (SNr)), and the STN [184–186]. The striatum and the STN receive inputs
from the cortex, and the GPi and SNr provide BG output to the thalamus and brainstem. Striatal
neurons comprise the direct (D1) and indirect (D2) pathways. The direct pathway is a mono‐
synaptic inhibitory pathway (GABA-ergic), and the indirect pathway is a polysynaptic and
net excitatory pathway that involves the GPe and STN. Additional input originates from the
thalamic intralaminar nuclei. GABA-ergic projections from the striatum inhibit thalamocorti‐
cal projection neurons on the ventral anterior, ventrolateral, and intralaminar nuclei of the
thalamus and brain stem neurons. Indirect projections from the striatum result in a net
excitatory effect on the GPi and SNr, whereas direct projections exert an inhibitory effect on
these output nuclei (Figure 2).

Figure 2. Connections of basal ganglia motor circuit. Solid arrows indicate excitatory (glutamatergic neurons) and dou‐
ble stranded arrows indicate inhibitory (GABA-ergic neurons). GPe, globus pallidus externus; GPi, globus pallidus in‐
ternus; SNc, substantia nigra pars compacta; SNr, substantia nigra pars reticulata; STN, subthalamic nucleus; PPN,
pedunculopontine nucleus
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There has been an increasing interest in the use of functional imaging to investigate the global
brain effects of STN DBS in PD patients [187–191]. The functional imaging of PD patients
indicated hypermetabolism in the pons, globus pallidus, and thalamus and hypometabolism
in the premotor cortex, supplementary motor area, and parietal association area [192, 193]. In
an fMRI study of STN DBS patients, activations were identified in a broad sensorimotor
network, including the sensorimotor, supplementary motor and cingulate cortices, insula,
caudate nucleus, pedunculopontine nucleus (PPN), and cerebellum [175].

Experimental recordings have also demonstrated the phenomena of functional connectivity.
An animal extracellular recording demonstrated increased neuronal activity in the GPi during
clinically effective STN DBS, which is consistent with an increase in excitatory output from the
STN [194]. Intracellular recording in rodents demonstrated STN DBS elicited antidromic action
potentials to the cortex [195]. Microdialysis performed in humans during the implantation of
a clinically effective DBS system resulted in increased extracellular cyclic guanosine 3′: 5′-cyclic
monophosphate (cGMP) concentrations in the putamen, GPi, and SNr [196–199]. Extracellular
cGMP is an indirect marker of local glutamatergic synaptic input, which is consistent with
stimulation increasing STN output [200].

In a case of dystonia, the connection of the GPi to the ventral oralis posterior nucleus (Vop) of
the thalamus was reported via microelectrode monitoring of the Vop during GPi DBS for
generalized dystonia [201]. In this report, GPi stimulation provoked the activation of axons to
the Vop and the antidromic activation of Vop axons; however, this was a case report.

5. Future of DBS

DBS is a well-established therapeutic option for various conditions. The surgical procedures
are standardized but differ across centers. The complications are acceptable based on previous,
well-designed studies. However, new targets and clinical indications are continuously
emerging, and vigorous investigations are ongoing. The technical advancement of implantable
devices is amazingly rapid. The author has confidence that a closed circuit system, as well as
a more advanced technological system, will be invented in the near future.

To date, DBS is not only a clinical treatment option but is an amazingly powerful research tool;
however, its mechanism and effects on the brain network continue to be investigated. Func‐
tional connectivity within the brain may be validated by the use of multimodal approaches
using various tools.
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