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Abstract

Coal is a heterogeneous mixture containing large quantities of organic and inorganic
matter, including carbon, hydrogen, oxygen, sulfur, nitrogen, and organometallic forms.
The presence of mineral matter in coal may result in a number of environmental and
human health problems related to its mining, preparation, and combustion. During coal
mining activities, large quantities of coal dust, ashes, polycyclic aromatic hydrocarbons
(PAHs), and heavy metals are released into the environment, forming a complex mixture.
This mixture becomes one of the most important occupational risks for the health and
safety of workers due to its synergistic, additive, and enhancing effects. Once inside the
organism, this cocktail-like mixture can interact with cellular mechanisms related to the
production of reactive oxygen species (ROS) and can cause damage in important
macromolecules such as DNA, lipids, and proteins. In this review, human populations
exposed to coal and coal burning were analyzed. Data from different studies were
evaluated in relation to the effect of complex mixture exposure on DNA damage and
mechanisms, and the background factors, such as gender, age, or smoking habit. The high
temperatures that occur in combustion processes affect the characteristics of the resulting
particles. The coal fly ash is released by combustion and its composition varies depend-
ing on the coal type and the method of collection used such as electrostatic precipita-
tors. Compounds such as PAHs once activated by the organisms have been shown tohave
mutagenic and carcinogenic activity due to its ability to form adducts with purines.
Moreover, metals that commonly are evaporated during the cooling process increase its
toxicity. The particles when inhaled can pass from the alveoli into the bloodstream and
affect extrapulmonary organs. Several studies have described the inflammatory cascade
that triggers exposure to coal and coal fly ash particles; they have a complex composi-
tion capable of generating a persistentinflammatory process, resulting in diseases widely
describedasemphysema, bronchitis, pneumoconiosis,asthma, and cancer.Severalhuman
biomonitoring studies have been conducted evaluating the inflammatory process and
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therelease of cytokines, polymorphismsinvolved in detoxification mechanisms, different
biomarkers associated with occupational exposure, DNA damage, and the influence of
oxidative stress in disease development. The relationship between chronic exposure to
coal and coal ash particles and cancer is still widely debated. This review gave us abroad
assessment about the associated mechanisms between cancer and exposure to coal and
different findings around the world.

Keywords: coal, biomonitoring, DNA damage, ROS, PAHs, diseases

1. Introduction

In thelast decades, the human population genetics integrity has been compromised by the great
industrial activity, which exposes people to a variety of chemicals and genotoxic agents. As a
result, itisimportant to determine whatis considered as an “acceptable” level of geneticdamage
in a concrete population, carry out assay genotoxicity as a routine and also monitor those who,
by their occupation or lifestyle, are more exposed or with a bigger risk of having alterations on
their genetics stability [1].

One method to quantify the exposure to those substances, as well as its possible impact on the
organism, is the use of biological monitoring procedures, or biomonitoring, through biomark-
ers. Biomonitoring studies try to establish a connection between the environmental factors and
the diseases. They detect first alterations in nonmalignant phases, so as to prevent health
problems by recognizing the environmental cause of them.

The biological markers, or biomarkers, are the measurable changes (biochemical, physiologi-
cal, or morphological) that associate to a toxic exposure or any early biochemical alteration,
whose study on the biological fluids, tissues, or exhaled air that allow to assess the health risk
exposure intensity. The identification of genotoxicity markers believed to cause genome
damage is useful, since it can define a prepathogenesis state, such as cancer. It is of vital
importance for different diseases prevention, which is the final goal of biomonitoring. In order
to achieve it, there must be two stages: 1) detecting human exposure to environment carcino-
genic agents; 2) determining genotoxic effects in vivo [2].

The combined use of genetic biomarkers and classic epidemiology tools (clinic history and
questionnaires) has enabled the identification of early effects to the occupational exposure to
distinct pollutant around the world [2—4]. Many biomarkers are used to assess genotoxic effects
on human populations exposed to complex mixtures of chemicals. Although there are different
possibilities, micronuclei (MN) frequency, chromosomal aberrations (CAs), and comet assay
are the most commonly chosen biomarkers. MN originates from chromosome fragments or
whole chromosomes that are not included in the main daughter nuclei during nuclear division
[5, 6]. MN induction reflects clastogenic and aneugenic damage and is a predictive biomarker
of cancer risk [7]. Comet assay detects DNA lesions in individual cells obtained under a variety
of experimental conditions; the technique can also be used to evaluate DNA repair [8, 9].
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The large inter-individual variability in the capacity to activate or inactivate potential geno-
toxic and carcinogenic compounds is probably influenced by polymorphisms of the genes
encoding the metabolizing enzymes. Genes and proteins involved in metabolization/detoxi-
fication of xenobiotics, as well as those involved in DNA repair, are usually used as potential
markers of susceptibility for the development of several diseases in which the etiology is
related to exposure to environmental hazards. Polymorphisms in such genes have been linked
with an increased risk of cancer in several case-control studies [10].

Biomonitoring studies in populations exposed to complex mixtures of chemicals considering
individual susceptibility are quite complicated due to inadequate toxicity data, and the
unpredictable nature of interaction effects that may be synergistic, additive, or enhancers.

2. Occupational exposure to coal

The coal reserves in a worldwide level is up to 847.5 billion of tons, enough amount to serve
the current production for 119 years. This prediction is different from the ones related to oil
and gas, which have available supplies for less time [11]. According to data from the Interna-
tional Energy Agency (IEA), coal is the most used resource for energy generation in the world,
responsible for 41% of the total production. Nowadays, the main application of mineral coal
is to generate energy through thermal power plants. These reserves are considered to have a
109-year lifespan and their coalfields are located in 75 countries. The main world coal pro-
ducers are China, the United States, India, Australia, Indonesia, Russia, South Africa, Germa-
ny, Poland, and Kazakhstan, which are responsible for 91% of the world’s production [12]. If
those projections are right, the consequences of coal mining and combustion will have large
effects in the environment. Thus, the exposed populations monitoring is fundamental with the
aim of contributing to the state of knowledge about the health risk and motivate the estab-
lishment of control, hygiene, and prevention strategies.

It is well known that coal mining activities are one of the biggest resources of contamination
due to the large quantity of substances liberated in the environment. The content of the coal
dust and ashes produced by burning are not always homogeneous and this depends on the
source and rank of the coal [13, 14]. Coal dust is constituted from carbon, hydrogen, oxygen,
nitrogen, quartz (crystalline silica), and inorganic minerals, such as beryllium, cadmium,
cobalt, chromium, iron, boron, copper, nickel, antimony, zinc, aluminum, titanium, magnesi-
um, manganese, mercury, and lead [15]. As observed, coal is a mixture of a variety of chemicals,
including hydrocarbons, which may raise polycyclic aromatic hydrocarbons (PAHs). All
technological processes associated with open fire or temperatures between 400 and 600°C, that
may lead to PAHSs, should be considered potentially hazardous [16, 17].

In relation to coal mining residues exposure, studies in which biomarkers of effect, suscepti-
bility, and exposure are used as epidemiological tools remain rare and a big part of them come
from studies on underground coal mining [18, 19]. The effects generated by open coal mining
are little explored, though. In open coal mining, the residues pass directly to the atmosphere,
where complex mixtures are formed, and the coal exposure to environmental factors such as
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sunlight facilitates the processes of spontaneous combustion and, therefore, the release of
PAHs [20].

Studies about the coal exposure and its harmful effects have been conducted around the world
[21-23]. The main way for exposure of the coal mining workers to the potentially dangerous
residues is through the inhaling of coal dust particles from mining and manipulation. It is a
known fact that the coal mining continuous exposure can cause a variety of diseases, such as
coal workers pneumoconiosis (CWP), silicosis, cancer, and chronic obstructive pulmonary
disease (COPD), as emphysema and chronic bronchitis [24].

Many studies have established that some of those diseases could have been originated from
the genotoxic damage generated by the inhalation of those mineral particles, able to interact
with macrophages, epithelial cells, and other cells generating the production of large amount
of reactive oxygen species (ROS) [24-26]. The continuous inhalation of coal dust and fly ashes
particles is an important cell and non-cell source of ROS in the lung. This may be associated
to the damage of target cells of that tissue and other cell lines, after spreading through the
bloodstream [27].

Coal-induced DNA damage is related to macrophage activation and the recruitment of
polymorphonuclear cells. This cell activation induces the release of inflammatory mediators,
such as cytokines, ROS and reactive nitrogen species (RNS). The proinflammatory properties
of ROS and RNS include endothelial cell damage, lipid peroxidation and oxidation, the release
of chemostatic factors, the recruitment of neutrophils, and DNA damage [26, 28]. Interaction
of ROS with DNA can result in DNA structural and transcriptional errors [29, 30]. Damage
caused by ROS is recognized by DNA glycosylases, apurinic/apyrimidinic endonucleases of
the base excision repair (BER) mechanism, and in some cases, by the nucleotide excision repair
(NER) machinery, leading to DNA strand-breaks [31, 32].

Although chronic exposure may continue to damage the DNA, it has been suggested that
inorganic elements can induce DNA single-strand breaks, possibly via the generation of ROS
and that this type of damage is soon repaired. Metals are also known to modulate gene
expression of enzymes [33]. In addition, PAHs can induce DNA lesions as single-strand breaks
via DNA repair mechanisms, related with increased adduct formation and electrophilic
metabolites [34-36]. Electrophilic metabolites covalently interact with the DNA [37, 38], and
adducts are formed with purines, especially guanine, after metabolic activation by enzymatic
complex P450 [39]. The International Agency for Research on Cancer (IARC) classified quartz,
main constituent of coal, into JARC Group 1 (carcinogen), due to sufficient evidence for
carcinogenicity in experimental animals and in humans [40, 41]. The other factor that could
lead to different results in coal dust exposure, with positive and negative results, might be
explained by the possible differences in composition, in which the proportion of the metals,
PAHs, and silica (quartz) content may have an influence on the genotoxicity. Despite those
findings, coal dust remains classified as non-carcinogen for human (Group 3) in IARC [40,
41]. The importance of coal as an energy source makes its characterization and estimation of
risks of extreme importance to the safety of those individuals and the environment.
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Several factors may explain conflicting results among different studies with human exposed
to coal, e.g. cigarettes smoked, age, gender, nutritional status, and individual polymorphisms
[6, 42]. Susceptibility is critical to an understanding of coal diseases, including cancer, and
many xenobiotic agents act to alter susceptibility. Unknown individual susceptibility, inade-
quate toxicity data, and the unpredictable nature of interaction effects make the implementa-
tion of a human biomonitoring assessment for complex mixtures of chemicals extremely
complicated.

3. Oxidative stress and genotoxic damage related with coal exposure

One important aspect to consider about the coal exposure is the amount of products generated
during the coal combustion. The burning of coal, in order to generate electricity, produces flue
gasses and particulate materials like coal fly ashes and residues as scoria and bottom ash. The
finer particles (coal fly ash) are obtained by mechanical or electrostatic precipitation of the dust
in suspension in the gases produced by combustion, while the coarser particles fall to the
bottom by gravity and are removed at the bottom of the boiler [43, 44].

The combustion temperature is an important factor that determines the physical properties of
the particles. In the combustion of conventional high temperature (>1400°C), the main
aluminosilicate melts and condenses to form spherical particles. The coal fly ash particles
produced are mostly irregularly shaped and contain a complex mixture consisting of unburned
carbon; oxides; quartz; elements such as aluminum, silicon, calcium, iron, nickel, arsenic,
chromium, copper, lead, cadmium, zinc [45, 46], and PAHs [47].

The coal fly ash has a relatively low toxicity as compared with coal or quartz [45]. Studies have
determined the role of coal fly ash particle size and the release of iron, which leads to generation
of radicals and oxidative stress. In this context, it was demonstrated the ability of coal fly ash
release of bioavailable iron, which triggers processes and redox oxidant production [48]. In
addition, it was shown that interleukin 8 (IL-8) levels in human lung epithelial cells are
increased in response to coal fly ash and vary with the bioavailability of iron, as a function of
source of coal and particle size [49]. The smaller size fraction had more stimulatory activity,
which may be related to the fact that iron is more concentrated in this fraction. Particle size is
a critical factor because a larger surface area allows more significant transport of metal and
other adsorbed components, increasing the pulmonary toxicity of particulate matter (PM) [50].

The particles are classified according to their aerodynamic diameter (in micrometer) in coarse
(PM 10), fine (PM 2.5), ultrafine (PM 0.1) [51]. The smaller particles are more harmful with
respect to health effects because of their very high alveolar deposition fraction, large surface
area, chemical composition, ability to induce inflammation, and potential to translocate to the
circulation to extrapulmonary organs [52-54]. These particles could trigger persistent lung
inflammation compared to the coarse particles in addition to the exposure to genotoxic
compounds, which are contained in the particles [26, 55].

Depending on the toxicity, the chemical properties, and the concentration in air, coal and coal
fly ash particles can constitute a risk to exposed workers. When these particles are inhaled and
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deposited in the lungs, they canlead to health risks due to the leaching of genotoxic compounds
and altered immunological mechanisms affecting the lung parenchyma causing diseases [56].
These nanometric particles are very small, which allows them to penetrate the biological organs
and affect its normal function. More specifically, as the particle load in the lung increases the
alveolar macrophages and epithelial cells are activated, leading to the release of inflammatory
mediators, ROS, enzymes (elastases, proteases, collagenases), cytokines [tumor necrosis factor
alpha (TNF-a), interleukins], and growth factors (TGF-P) that control and stimulates the
fibrosis, genotoxic events, and cell death [45, 57, 58].

Persistent inflammatory processes have been accepted as a crucial factor in the pathogenesis.
In Zhai et al. [59], was investigated whether systemic TNF-a, soluble TNF-a receptors (p55,
p75), IL-6, and soluble IL-6 receptor could be markers of biological activities of Chinese CWP.
Interestingly, those results suggest that serum levels of TNF receptors and IL-6 are associated
with the fibrotic process of CWP and serum cytokine levels may be correlated with the severity
of CWP. In the pathogenesis of these respiratory diseases related with coal exposure, oxidative
damage plays a key role. Either acting in association or independently, the chemical and
physical characteristics can lead to the generation of ROS and oxidative stress [60, 61].

These particles are chemically heterogeneous and can be a source of oxidants by themselves
(“acellular” mechanisms), due to their composition, such as oxides, metals, and PAHs [26].
Soluble metals (transition) associated to the particle can increase the generation of ROS by
Haber-Weiss reactions. PAHs may be metabolically activated and induce ROS and oxidative
stress, also forming bulky adducts or strand breaks on DNA [50, 62, 63].

Another way of generating oxidants is via cellular. Once in the lungs, alveolar macrophages
are activated and generate large amounts of ROS, and chemoattractant factors of other
inflammatory cells such as monocytes and neutrophils are released, which amplify this
response generating more oxidants [64]. The particle size is a critical factor, because very large
particles are difficult to phagocytose, leading to the process of incomplete or “frustrated”
phagocytosis aggravating the response [65, 66].

Considering three different scenarios with respect to exposure to particles, the generation of
oxidative stress, inflammation, and oxidative DNA damage, several authors questioned
whether the lung inflammation may be related to secondary genotoxic effects. They also
questioned if phenomena of oxidative stress, inflammation and DNA damage are independent
or interrelated, whether oxidative stress stimulates inflammatory processes, or inflammation
mediated by particles cause oxidative stress, or even if it is possible that particles may cause
both phenomena of oxidative stress and inflammation but for different mechanisms of action
[26, 61].

Innormal physiological conditions, there is a balance between ROS generation and antioxidant
defenses. However, the continuous inhalation of particles may interfere in this equilibrium
leading to oxidative stress process in the lung. Consequently, a high loading of particles alters
the oxidant-antioxidant balance, leading to oxidative damage and the beginning of patholog-
ical processes [67]. The most important effects of ROS in the lung include damage to cell
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membranes by lipid peroxidation process, protein oxidation, and DNA damage in target cells
[27].

As seen in Figure 1, oxidative DNA damage can have many consequences, from cell death and
tissue destruction to cell proliferation. Furthermore, ROS can also act as regulators in signaling
pathways intracellularly and transcription factors of a variety of genes including those of
proinflammatory cytokines, adhesion molecules, and proto-oncogenes [68].

In vitro effects induced by coal exposure have been described in different cells such as murine
alveolar type Il epithelial cells (C10) [69] and in 7TD1 cells [70]. ROS generation and oxidative
damage by coal fly ash particles have been described in different cell lines, in human peripheral
blood mononuclear cells [71], in rat alveolar macrophages (NR8383) [72], in BEAS-2B human
lung epithelial cells [73], and in rat lung epithelial (RLE) cells [74].

Exposure to coal or coal
fly ash particles

\ *

Release of inflammatory mediators

w—‘h ROS « 2 Genetic susceptibility

pi |

= " J PT— DNA repair
Membrane damage [ Protein dvsfunctlon

|
A “
Carcinogenesis Cell death

Figure 1. Main pathways associated with the generation of oxidative damage and the development of diseases induced
by coal and coal fly ash particles.

ROS induce point mutations and CAs in cells. Many inhaled toxic substances contained in the
particles contribute to oxidative modification that has as target of attack specific components
of the cytoplasm and the nucleus. Such changes include DNA breakage, DNA oxidative
modification, base modifications, alterations in the DNA sequence, poly-ADP ribosylation,
activation of kinases, activation of proto-oncogenes, and inactivation of tumor suppressor
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genes. Persistent generation of ROS generated by mineral particles indestructible or engulfed
incompletely leads to damage to organelles keys [59, 61, 75]. The oxidation of C8 deoxygua-
nosine (dG), resulting in 7-dihydro-8-oxo-2’-deoxyguanosine (8-oxodG), is the most common
oxidative lesion generated by ROS. The proportion of 8-oxodG/dG has been considered as a
biomarker of oxidative stress and has been studied in relation to exposure to mineral particles
in vitro and in vivo [76].

Human biomonitoring studies about the effects of exposure to coal and residues using different
biomarkers have been conducted around the world. In this context, our group has obtained
interesting findings in workers exposed to coal mining in Colombia and Brazil. In Rohr et al.
[77], was found that Brazilian workers with occupational exposure to coal had significantly
increased genetic damage in peripheral blood lymphocytes compared with unexposed
individuals. Exposed workers presented lower average levels of thiobarbituric acid reactive
substances (TBARS) and catalase activity (CAT). In addition, DNA damage evaluated by
human buccal micronucleus cytome (BMCyt) assay was observed in mine workers, which
could be a consequence of oxidative damage resulting from exposure to coal residue mixtures
[78].

In Colombia, DNA damage in lymphocytes of coal open-cast mining workers using the
cytokinesis-blocked micronucleus test and the comet assay were observed [79]. Also, in buccal
mucosa samples, the micronucleus frequencies and nuclear buds were significantly higher in
the exposed group than in non-exposed control group. Interestingly, blood samples of
Colombian mining workers analyzed showed higher values of silicon and aluminum charac-
teristic elements of coal particles, compared with the control group [80]. All these studies
converge to a point: the compounds contained in the particles may be related to ROS genera-
tion, DNA damage, and formation of pro-mutagenic adducts.

These are important findings if we consider that oxidative DNA damage can lead to long-term
risk of cancer and other diseases caused by air pollution by these particles. In Table 1, can be
observed an overview of key studies on the genotoxicity in human population exposed to coal
and coal combustion products. These studies demonstrated DNA damage using different
methods, related with inorganic elements and oxidative stress.

References Country Exposure(s) Biomarker Outcome(s)

[81] Slovenia _ Sister-chromatid exchanges Significantly higher levels of
(SCE), unstable chromosome chromosomal aberrations, SCE and
and chromatid aberrations  micronuclei in exposed group
and micronuclei in compared with the control group.

blood lymphocytes

[82] Brazil = Underground Oxidative stress The results showed that subjects
workers biomarkers (TBARS, GSH/  directly and indirectly exposed to coal
directly GSSG, a-tocopherol, dust face an oxidative stress
exposed, GST, GR, GPx, SOD, condition. They also indicate

surface CAT). that people living in the
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References Country Exposure(s) Biomarker Outcome(s)

[22] Turkey Coal Chromosomal aberrations  Significantly higher levels of CA,
combustion  (CAs), polyploidy, sister- polyploidy, SCE, and MN in peripheral
products chromatid exchanges (SCEs), blood lymphocytes of workers compared

and micronuclei (MN) with controls.

in blood cells.

[21] China  Indoor smoky GSTM1 and GSTT1 The GSTM1 null genotype may enhance
coal emissions genotypes. Expression susceptibility to lung cancer due to
that contain  of p53 protein in these indoor coal combustion emissions.
high levels  sputum samples. Smoky coal use was strongly
of polycyclic associated with overexpression of p53
aromatic in tumor cells among highly
hydrocarbons exposed women.
(PAHs)

[80] Colombia Open cast Micronucleus (MN) MN frequencies and nuclear buds in
mining frequencies, nuclear buccal mucosa samples were significantly

buds, karyorrhectic higher in the exposed group than in
and karyolytic the non-exposed control group.
cells in buccal In addition, karyorrhectic and karyolytic
mucosa samples and cells were also significantly higher
content of inorganic in the exposed group (cell death).
elements in blood Blood samples showed higher
samples by PIXE. values of silicon (Si) and

aluminum (Al) in the exposed group.
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References Country Exposure(s) Biomarker Outcome(s)

[77] Brazil ~ Open coal MN and nucleoplasmic Increased MN and nucleoplasmic bridge
mining bridge frequencies frequencies in peripheral lymphocytes,
in peripheral increased damage index and damage
lymphocytes, damage frequency (comet assay). Lower
index and damage average levels of TBARS and
frequency (comet assay). catalase activity (CAT), while

the mean superoxide dismutase

activity (SOD) levels were higher in

the exposed group.

[19] Peru Underground Chromosomal aberrations  Miners occupationally exposed to underground
coal in peripheral lymphocytes ~ mining activity have an increased frequency
mining of chromosomal aberrations compared with

the controls.

[86] Germany Underground Structural chromosomal Coal miners had significantly higher
coal aberrations in frequencies of chromosomal aberrations compared
mining peripheral lymphocytes with controls.
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References Country Exposure(s) Biomarker Outcome(s)

mining micronucleus (MN) in coal workers and unexposed groups.
frequency in
lymphocytes of
Turkish CWP patients.

Table 1. Overview of key studies on the genotoxicity in human population exposed to coal and coal combustion
products.

4. Conclusions

The coal mining activities generate different types of compounds that are released into the
environment. Once into the atmosphere, these compounds form a complex mixture that
consists of metals, oxides, and PAHs. These compounds can interact with “acellular” and
cellular mechanisms related with ROS production. The metals found in the coal fly ash and
coal particles by different ways lead to the ROS formation. Important macromolecules as DNA,
proteins, and lipids can suffer oxidative modifications. The PAHs contained in the particles
also influence the particles toxicity. A second indirect way for excessive ROS formation is
related to cellular mechanisms, which is consequence of oxidative burst of macrophages and
neutrophils during phagocytosis of particles and inflammation produced.

If we think in exposed populations, we cannot ignore the social and environmental impact
associated with coal mining. The continuous inhalation, the high load of particles in phagocytic
cells, the oxidant-antioxidant imbalance which are linked to the origin of pathological
processes; this whole scenario is worrisome to biologic level for these populations. In addition,
in recent years, coal mining had a remarkable increase in demand; international mining
companies have increased their investments in exploration around the world. For this reason,
human biomonitoring studies in exposed populations become really necessary to contribute
to knowledge state about the risk for those people in order to motivate the design of control,
hygiene, and prevention strategies, besides epidemiological surveillance.
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