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Abstract

This chapter summarizes studies that examine remodelling of extracellular matrix (ECM)
and role of regulatory factors of ECM during unloading and reloading. Hypokinesia has
a catabolic effect on both the contractile apparatus and ECM of the skeletal muscle, causing
the formation of muscle atrophy, the decrease of the synthesis of contractile proteins and
disturbance of the collagen metabolism. The metabolism of fibrillar and non-fibrillar
collagens in ECM plays a crucial role in exercise and sport, influencing the strength
development through transmission of contractile force in skeletal muscle. The impair‐
ment of motor activity and muscle strength is accompanied by the muscle atrophy. The
muscle  atrophy caused by inactivity  and recovery from atrophy demonstrates  the
plasticity of muscle. Muscle mass and volume increase in a relatively short time, but the
recovery of strength takes much longer and is related with the regeneration of the muscle
structures. The recovery period of the contractile apparatus and ECM structures is different
in slow-and fast-twitch skeletal muscle.

Although the muscle tissue’s response to inactivity is more pronounced than the response
of ECM, important changes occur in the connective tissue structures during unloading,
causing the impairment of the functional characteristics of the skeletal muscle.

Keywords: ECM, regulatory factors of ECM, unloading, reloading, functional charac‐
teristics of skeletal muscle

1. Introduction

The intramuscular connective tissue accounts for 1–10% of skeletal muscle and has multiple
functions [1,2]. It provides a basic mechanical support for vessels and nerves. The connective
tissue ensures a passive elastic response of the muscle [1,3,4 ].
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It is important to accept that both the tendon and the intramuscular connective tissue interact
closely with the contractile elements of the skeletal muscle to transmit force [5–7]. The force
transmission from the muscle fibres is not only transformed to the tendon and the subsequent
bone via the myotendinous junctions, but also via the lateral transmission between neigh‐
bouring fibres and fascicles within the muscle [1,6]. The tension developed in one part of the
muscle can be transmitted via shear links to other parts of the muscle. The perimysium is
especially capable of transmitting tensile force [3,7].

The extracellular matrix (ECM) is formed by complex molecular networks, which determine
the architecture of a tissue and regulate various biological processes [6,8]. The skeletal muscle
ECM is organized in three levels: the epimysium surrounds the entire skeletal muscle, the
perimysium surrounds muscle bundles consisting of a variable number of muscle cells, and
the endomysium outlines the individual muscle fibres [2,7]. The ECM consists of various
substances, of which collagen fibrils and proteoglycans are the most widespread [3,9]. The
most abundant protein of the extracellular matrix is collagen, accounting for 20–25% of all
protein in the whole body and forming more than 90% of the organic mass of bone [2,6]. At
present, 26 different collagen types have been identified [2,10]. Although the impact is not well
established, various isoforms of collagen exist, and they have varying strength and functional
characteristics [6]. Muscular flexibility is partly provided by collagen. For this purpose the
organization of fibrils and fibres is critical, because individual collagen molecules, fibrils, and
fibres are intrinsically inextensible [2,11]. The extensibility of collagen results from the
straightening of curved fibrils and fibres [2]. In addition to the proteoglycans, the hydrophilic
ECM includes several other proteins such as noncollagen glycoproteins [9].

2. Functions and composition of ECM in skeletal muscle

2.1. Fibril forming collagen types in skeletal muscle

Type I and III collagen are the most abundant fibril forming collagens in the skeletal muscle.
Type I collagen dominates in the intramuscular collagen content – reported from 30% up to
90% of total collagen [10,12]. The epimysium consists mainly of type I collagen with minor
amounts of type III collagen [9–11]. Equal amounts of both collagen types are found in the
perimysium. In the endomysium, type III collagen is the predominant form and only small
amounts of type I collagen are found [2,11]. The smaller average diameter of oxidative muscle
fibres should result in a higher endomysial connective tissue content in slow-twitch muscles,
as the surface area/volume ratio of each fibre is greater than the average glycolytic fibre in fast-
twitch muscle [3]. Slow muscles contain more type I collagen than type III collagen, the
proportion of type III collagen is greater in fast muscles [13].

Type I collagen is the major stress-tolerant fibrillar collagen in the muscle. It has a high tensile
strength and limited elasticity and is thus well-suited for force transmission [1,2]. Type III
collagen, the other main fibrillar collagen, has a structure and arrangement similar to that of
type I collagen, but it forms thinner and more elastic fibres. The fibres of type III collagen can
also form copolymers with those of type I collagen [7]. Collagens I and III are fibril forming
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and serve as a supportive structure in the muscle tissue. They attach myocytes and muscle
bundles to each other [1,2,11]. Also nerves and capillaries are surrounded and attached to
muscle by collagen [11]. Type V collagen is also fibril forming and can be found in the endo-
and perimysium in smaller amounts than the collagen types I and III [2,10]. Collagens III and
V are known to copolymerize with type I collagen and they may have a role in collagen fibre
diameter regulation [6,10]. Type V collagen is considered to form the core of the fibrils, and
collagens I and III copolymerize around this core [2,3]. Type II and XI collagens are also fibril
forming and have been detected in the skeletal muscle only at mRNA level [3,10]. Type V and
XI collagens form heterotypic molecules and can be considered as a single kind of collagen [2,
10]. Fibril associated collagens with interrupted helix (FACIT) types XII and XIV are located
only in the perimysium [2,14]. These FACIT collagens associate with the surface of interstitial
collagen fibrils and possibly act as molecular bridges among or between fibrils and other
components of the ECM [2,9]. Although mRNAs of the other members of FACIT subfamily
(IX, XVI, XIX, XXI) are detected in the skeletal muscle, the respective proteins have not been
found [14,15]. The formation process of fibrillar collagen is depicted on Figure 1.

Figure 1. The formation process of fibrillar collagen.

2.2. Nonfibrillar collagen types of skeletal muscle.

Nonfibrillar collagens of the skeletal muscle are mainly located in the basement membranes.
The basement membrane (BM) is a highly specialized sheet of the connective tissue surround‐
ing individual muscle fibres, blood vessels, Schwann’s cells and the spindle capsule cells. The
components of the BM are the regulators of many biological activities such as cell growth,
differentiation and migration which influence tissue development and repair [2,6,16]. Integrins
attach muscle cells to ECM and serve as the force-transmitters between ECM and the con‐
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tracting components inside the muscle cells. They connect laminin to the cell membrane to
form the inner layer of basement membrane [3,17].

Type IV collagen is a major component in the basement membrane and therefore plays a critical
role in the cellular arrangement in the muscle tissue. It is an integral component of basement
membrane and forms a covalently stabilized polymer network around the muscle fibres [2,10].
Type IV collagen molecules form a mesh-like structure outside the laminin layer and give
stability to the BM [18]. Laminin and type IV collagen are connected to each other by nidogen-1
in the muscular basement membranes [2,19]. As a part of the flexible basement membrane,
type IV collagen network is interconnected with other extracellular matrix compounds and
sarcolemmal proteins, being consequently exposed to stretching effects during muscle
contraction [20,21]. The formation process of type IV collagen is demonstrated in Figure 2.

Figure 2. The formation process of type IV collagen.
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Type VI collagen interacts with type IV and type I collagens [2,10], providing a link between
the basement membranes and the surrounding matrix. Collagens XV and XVII belong to the
multiplexin subfamily of nonfibrillar collagens [16] and are located in the basement membrane
zone [2,10,16]. Collagens XV and XVIII may have a role in stabilizing the muscle cells [2,10].
Type XIII collagen is the transmembrane protein which is capable of binding certain basement
membrane proteins [2,22]. It probably provides a link between the muscle cell and its basement
membrane [10]. Type XIII collagen is concentrated in the myotendinous junctions [10,22].

3. Collagen synthesis in skeletal muscle

The synthesis of collagen is similar to other proteins, consisting of genetic transcription with
messenger ribonucleic acid (mRNA) and ribosomal translation of the mRNA to prepro α-
chains. In the skeletal muscle, collagens are expressed principally by fibroblasts, and their
biosynthesis is characterized by the presence of an extensive number of co- and posttransla‐
tional modifications of the polypeptide chains [10,23]. Gross fractional synthesis rate for
collagen is about 5% a day in the skeletal muscles of young adult rats (), whereas the fractional
synthesis rate for total protein is about 11–15% /day [24].

Collagen is a protein with three polypeptide chains where each chain contains at least one
stretch of the repeating amino acid sequence (Gly-X-Y)n and X and Y can be any amino acid
(often proline and hydroxyproline, respectively). Both fibrillar and non-fibrillar collagens
consist of three long polypeptide chains, which may or may not be identical and combine
together via their (Gly-X-Y)n sequences to form a collagen triple helix. The molecular organi‐
zation of different collagen types differs so that type I collagen is a heterotrimer of two identical
α1(I)chains and one α2(I) chain, whereas type III collagen is a homotrimer with α1(III) chains
[2,6]. The repeating unique amino acid sequence Gly-X-Y, where the glycine is in every third
position, has no interruptions in the fibril-forming collagen types, whereas a considerable
number of interruptions occurs in the nonfibrillar collagens [2,10]. The Gly-X-Y repeat unit
gives requirements for coiling the three α-chains tightly around one another. Proline and 4-
hydroxyproline residues appear frequently at the X- and Y positions, respectively, and
promote the stability of the triple-helix and the structure of collagen as a whole. The structure
of type IV collagen genes is distinctly different from those of fibril forming collagens. The most
common form of type IV collagen consists of two α1(IV) chains and one α2(IV) chain, although
the combinations of α3(IV) and α4(IV) as well as α5(IV) and α6(IV) are found in some basement
membranes [2,10].

3.1. Modifications of the polypeptide chains

An exception to the synthesis of other proteins is that collagen synthesis is characterized by
an extensive number of co- and posttranslational modifications of the polypeptide chains. The
intracellular modifications of polypeptide chains involve hydroxylation and glycosylation
reactions to form the procollagen. Hydroxylation of proline, the reaction catalyzed by prolyl
4-hydroxylase (P-4-H), influences the stability of the triple-helical structure of collagen [20].
The triple-helix formation of the pro-α-chains prevents any further hydroxylation. Intracellu‐
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lar events of collagen synthesis include also 3-hydroxylation of proline residues, hydroxylation
of lysine residues and glycosylation of certain hydroxylysine residues of propeptides. The
assay of prolyl-4-hydroxylase activity has been commonly used to estimate the changes in the
rate of collagen synthesis [20]. Fibrillar collagens are secreted as soluble procollagens, which
are converted to collagen by the cleavage of C- and N terminal propeptides by procollagen N-
and C-proteinases. Extracellular modifications in the collagen synthesis involve an ordered
self-assembly for the formation of collagen fibrils and the crosslink formation to make the
fibrils stable. The stabilization of the fibrils is provided by covalent cross-links generated by
the conversion of some of the lysine and hydroxylysine residues to aldehyde derivates by lysyl
oxidase [2,25]. Lysyl oxidase (LO) is a key enzyme in the extracellular modification of collagen
[25]. LO, an amine oxidase expressed and secreted by fibrogenic cells, plays a critical role in
the formation and repair of the ECM by oxidizing lysine residues in elastin and collagen,
thereby imitating the formation of covalent crosslinkages which stabilize these fibrous proteins
[25]. Type IV collagen molecules form their network with different processes. A tight mesh‐
work is formed by irregularly branching lateral associations of the triple helical regions [2,10].
The formation steps of collagen is demonstrated in Table 1.

NUCLEUS Collagen gene → RNA processing → mRNA

CYTOPLASM Rough
endoplasmic reticulum

Pre-procollagen chain → cleavage of signal peptide

Golgi apparatus Procollagen α chain →
hydroxylation – glycosylation – association of the
C-terminal propeptides - disulfide bond
formation → procollagen molecule

EXTRACELLULAR MATRIX Cleavage of propeptides → collagen
fibril self assembly → crosslinking

Table 1. The formation steps of collagen.

4. Degradation of collagens in skeletal muscle

Degradation of collagen represents the obligatory step of a turnover and the remodelling of
the connective tissue and during the mechanical loading of fibroblasts and extracellular matrix
structures. Both intracellular and extracellular degrading pathways are present, using either
lysosomal phagocytosis or ECM proteinases, respectively [26,27]. Collagens can be degraded
prior to or after their secretion from the cell. Secreted collagen is degraded mainly by two
different routes: proteolytic and phagocytotic. Proteolytic degradation occurs mainly through
matrix metalloproteinase (MMP) activity. Macrophages remove ECM components, although
also fibroblasts are able to the phagocytosis and degradation of collagen fibrils [27]. Degrada‐
tion is continued by specific proteinases and the collagen fragments are phagocytosed by cells
and processed by lysosomal enzymes [28]. About 26% of newly synthesized collagen is
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degraded per day in young adult rats [24]. The most recently synthesized collagen seems to
be more susceptible to degradation than mature collagen [10,24]. The main steps of collagen
degradation are depicted in Figure 3 and 4.

Figure 3. Degradation of collagens in skeletal muscle.

Figure 4. Degradation of secreted collagens.

4.1. Role of matrix metalloproteinases

Collagen degradation is initiated extracellularly by MMPs or matrix metalloproteinases, which
are presented in tissues mostly as latent proMMPs [29,30]. MMPs are a family of zinc-
dependent proteolytic enzymes that function mainly in the ECM [30,31]. The activation of
specific matrix metalloproteinases has been implicated in degradative and atrophic changes
in the ECM after muscle injury or in various myopathic conditions. These matrix metallopro‐
teinases may cause structural and physiological alterations to the basal lamina and sarcolemma
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of myofibres, leading to uncontrolled influx and efflux of ions and subsequent myopathy [31,
32]. Because of their ability to degrade ECM components, MMPs are considered to be important
components in many biological and pathological processes [30–32]. They have regulatory roles
in muscle growth and development and are also important in repair processes after traumatic
injury or disuse myopathy [30,31]. MMPs are mainly produced from endotendon fibroblasts
and intramuscular matrix fibroblasts [30,31], although some level of expression has been found
to occur also in satellite cells [33]. MMPs are secreted or released in latent form and become
activated in pericellular environments [23,34]. The activities of MMPs are also under the
control of enzyme tissue inhibitors of matrix metalloproteinases (TIMPs). Disturbances in the
ratio of specific MMPs and their inhibitors may be manifested by physiological dysfunction,
resulting in clinical disorders [31,35].

Up until now, 24 different vertebrate MMPs have been identified, of which 23 have been found
in humans. MMPs are usually divided according to their main substrate into collagenases,
gelatinases, stromelysins, matrilysins, membrane-type MMPs and others, although many of
them have wide and overlapping substrate specificity [36].

MMP-1, MMP-8, MMP-13 and MMP-18 are collagenases, which have the ability to cleave the
native helical structure of collagens I, II and III. Cleavage products are then susceptible to the
action of other MMPs [36,37].

Gelatinases MMP-2 and MMP-9 degrade denatured collagen, gelatin, native type IV, V and
VII collagens as well as other ECM components [36]. One of the most important MMPs
associated with the function and dysfunction of the skeletal muscle appears to be MMP-2, also
known as gelatinase A, or 72-kDa type IV collagenase. MMP-2, by regulating the integrity and
composition of the ECM in skeletal muscle, plays essential role in myofibre proliferation and
differentiation, the fibre healing after injury, and maintenance of the surrounding connective
tissue [38]. MMP-2 also digests fibrillar type I and II collagens. MMP-2 and –9 are known to
be overexpressed and present in higher amounts in patients with inflammatory myopathies,
which may increase ECM degradation and thus facilitate lymphocyte adhesion [32,38,39].

MMP-3 and MMP-10, or stromelysin-1 and –2, both digest ECM components and activate
proMMP-1. The third stromelysin, MMP-11, differs from other stromelysins by its sequence
and substrate specificity [36].

Matrilysins- MMP-7 and MMP-26 are the smallest MMPs. MMP-7 can also process cell surface
molecules [36].

Six membrane-type MMPs (MT-MMPs) have been characterized. Except the MT4-MMP, they
all are all capable to activate proMMP-2 [36,40]. For their pericellular fibrinolytic activity, MT-
MMPs have an important role in angiogenesis [36,40].

Six MMPs – MMP-12, MMP-19, MMP-20, MMP-22, MMP-23, MMP-28 are currently classi‐
fied into the group of “other MMPs” [34,36].
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4.2. Inhibition of matrix metalloproteinases by tissue inhibitors of metalloproteinases

MMPs and tissue inhibitors of metalloproteinases (TIMPs) have an important role in the
adaptive changes in the muscle in response to local developmental, physiological, surgical,
and pathological conditions [31,39]. TIMPs are the major cellular inhibitors of the MMP sub-
family, exhibiting varying efficacy against different members, as well as different tissue
expression patterns and modes of regulation [36,41]. Four mammalian TIMPs have been
characterized and considered to regulate MMP activity during tissue remodelling [41,42]. All
four TIMPs (TIMP-1, -2, -3 and –4) can inhibit all MMPs, except TIMP-1, which is a poor
inhibitor of MMP-19 and most of the MT-MMPs [41,42]. Although TIMP-2 inhibits MMP-2 in
high concentrations, it has an important role in activating proMMP-2 in a complex with MT1-
MMP, which demonstrates an integrated response of MMPs and TIMPs [43]. In skeletal muscle,
TIMP-1, TIMP-2 and TIMP-3 are expressed [33,39]. TIMP-4 appears to be cardiac-specific and
has not been detected in the skeletal muscle [37].

The increased MMP activity and thus the enhanced degradation of collagen often parallels the
stimulated activation of collagen synthesis. TIMPs are often activated together with MMPs in
response to physical activity, indicating a simultaneous stimulation and the inhibition of
degradation [44,45]. MMP activity precedes TIMP activity and thus TIMP serves as the
regulator of degradation termination to ensure a limited amount of degradation [39,43].

In addition to MMP-binding activities, TIMPs have many important biological functions.
TIMPs can promote or inhibit cell growth, depending on the type of the cell and the inductor
[36,41].

5. Effect of unloading on the skeletal muscle

The inactivity of the skeletal muscle leads to the loss of muscle contractile proteins and
strength [46,47]. The weakening of the muscle is accompanied by the loss of the muscle mass
and the reduction of the size of the muscle cell [46,48]. The decrease in the protein synthesis
and the increase in protein degradation appear both in the contractile apparatus and in the
ECM [8,46]. The skeletal muscle atrophy attributable to the muscular inactivity has signifi‐
cant adverse functional consequences, nevertheless the tight connections between the con‐
tractile machinery and the ECM are still unknown [27]. Changes in the intramuscular
collagen protein fraction have been shown to significantly impact mechanical properties of
skeletal muscle in non-loading conditions [27,49]. Events in skeletal muscle during unload‐
ing are shown in Figure 5.
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Figure 5. Events in skeletal muscle during unloading.

5.1. Effect of unloading on the extracellular matrix

The ECM of connective tissues enables links to other tissues and plays a key role in force
transmission and tissue structure maintenance in tendons, ligaments, bone and muscle [18].
ECM turnover is influenced by physical activity [50,51]. Immobilization causes a marked
relative increase in the endo- and perimysial connective tissue, which results in changes of the
mechanical properties of skeletal muscle [11].

Fibrillar type I and III collagens are most abundant in the skeletal muscle epi- and perimysium.
Non-fibrillar type IV collagen is present only in basement membranes and has a critical role
in the cellular arrangement of muscle tissue [2,11]. There are differences in the collagen
metabolism and the content between muscles. Slow-twitch muscles contain 40–50% more
collagen than fast-twitch muscles [13].

A reduced muscular activity decreases the collagen synthesis rate in the skeletal muscle, the
immobilization down-regulates the collagen synthesis at the pretranslational level, mainly
among I and III collagens [18,20]. Unloading also induces a shift in the relative proportion of
collagen isoform type I to III [13]. Decrease of collagen I mRNA level in slow-twitch Soleus
(Sol) and fast-twitch gastrocnemius (GM) muscle during the three-week hindlimb suspension
shows that the fibrillar type I collagen is more sensitive to unloading and the effect is much
more long-lasting than that of fibrillar type III collagen. This finding shows that hindlimb
unloading induces reduction of collagen type I [52].

Lysyl oxidase which plays an important role in the formation and regeneration of ECM by
oxidizing lysine residues in elastin and collagen, initiates the formation of covalent cross-
linkages which stabilize fibrous proteins [25]. From this standpoint it is understandable that a
significant decrease in LO mRNA level was registered only in Sol muscle [25].
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Matrix metalloproteinases are providing degradation of ECM compounds [31,36]. MMP-2
level did not change significantly during three weeks of hindlimb suspension. TIMPs are
proteins which inhibit ECM degradation [35,53,54]. The mRNA level of TIMP-1 decreased in
slow-twitch muscle after one-week hindlimb suspension. As both intracellular (lysosomal
phagocytosis) and extracellular degrading pathways (ECM proteinases) are present in the
degradation of the skeletal muscle during the unloading, it is complicated to put all the role
to the MMPs in this process [6].

The biggest changes in the specific mRNA level of type I, III and IV collagen were registered
in Sol and GM muscle during the three weeks of unloading mRNA level of LO decreased also
in Sol muscle [52]. Changes in TIMP-1 mRNA level during first week of hindlimb suspension
were contradictory in Sol and GM muscle [52].

The metabolism of fibrillar and non-fibrillar collagens in ECM plays a crucial role both in
decreased locomotory activity and in exercise and sport, influencing the strength development
through transmission of contractile force in skeletal muscle. Events in ECM during unloading
are shown in Figure 6.

Figure 6. Events in the ECM during unloading.

5.2. Effect of unloading on the synthesis of collagen

Several quantitative and qualitative changes in the intramuscular connective tissue contribute
to the deteriorated function and biomechanical properties of the immobilized skeletal muscle
[6,11,51]. Muscle and tendon collagen and the connective tissue network are known to respond
to altered levels of physical activity [51,55]. In contrast to physical loading, immobilization of
rat limb leads to a decrease in the activities of collagen synthesizing enzymes both in skeletal
muscle and tendon [20,56].

Along with the increased amount of intramuscular connective tissue, the number of capillaries
decreases dramatically [57,58]. Each capillary is surrounded by a dense layer of the connective
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tissue fibres, isolating the capillary from the adjacent muscle fibre, which disturbs the blood
supply of the muscle fibres and further increases the muscle fibre atrophy [57,58].

During immobilization, the normal three-dimensional orientation of the collagen fibres is
disrupted. The normal orientation constitutes of the fibres running parallel to the muscle fibres
on their surface, preventing muscle cells from over-elongation and –contraction. In addition,
thin perpendicular fibres connect adjacent muscle fibres to each other [7,10,11]. As a result of
decreased loading, the number of longitudinal fibres increases, the crimp angel of the collagen
decreases and this diminishes the ability of the muscle to elongate [2,11] and because of that
the skeletal muscle shows significantly decreased tensile strength [1,3]. In addition to changes
in collagen abundance, alterations in the degree of collagen cross-linking would have a
profound effect on the mechanical properties of skeletal muscle, causing a decrease in muscle
stiffness [10,17].

In contrast to physical loading, immobilization leads to the decrease in the enzyme activities
of collagen biosynthesis, which suggests that the biosynthesis of the collagen network
decreases as a result of reduced muscular and tendinous activity [8,56]. The rate of the total
collagen synthesis depends mostly on the overall protein balance of the tissue, but it seems to
be positively affected by stretch in both muscle and tendon [55].

Collagen expression during immobilization has been shown to be at least partially down-
regulated at the pretranslational level [55]. Although the relative amount of the connective
tissue increases during immobilization, the gene expression of type I and III collagens
decreases during the first three days of immobilization [20]. The content of type IV collagen
was also reduced as a result of immobilization [23]. The activities of prolyl 4-hydroxylase (P
4-H) and galactosylhydroxylysyl glucosyltransferase (GGT) decrease from the first three days
of immobilization up to at least three weeks, suggesting decreased collagen biosynthesis
during that time [20,59]. The degradation of collagens has been found to be enhanced during
immobilization, as the expression of both MMP-2 and MMP-9 increased after 30 days of
immobilization [30]. The quantity of TIMP-1 was also increased after 30 days of immobilization
[30].

The collagen concentration increases when expressed both as a function of muscle dry weight
or muscle cross-sectional area, but this increase in muscle collagen is primarily due to the
muscle atrophy induced by immobilization [13].

5.3. Effect of unloading on the contractile apparatus of skeletal muscle

As the skeletal muscle is a highly plastic tissue, the conditions associated with the disuse are
accompanied by adaptation. A period of time without weight bearing cause modifications of
structure and the function of skeletal muscles, of which atrophy and a slow-to-fast transition
are the most prominent [60,61]. Many animal models such as the kind limb suspension,
immobilization in shortened and lengthened position, spaceflight and denervation show that
the removal of a mechanical load produces atrophy and contractile alterations, more evident
in the slow muscle soleus than in fast muscles as extensor digitorum longus [60,62,63]. Besides
space flight and bed rest experiments, long periods of muscle disuse in relation to a disease or
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traumatic injuries of the joints or of the bones are relatively common experience for human
beings [62,63]. The inactivity causes only small increases in contractile speed and myofibrillar
adenosine triphosphatase (ATPase) activity and slight elevations in the percentage of the fast
type myosin heavy chain (MyHC) isoforms in fast-twitch muscles, as compared to slow-twitch
muscle [64,65].

5.4. Slow-to-fast transition in skeletal muscle during unloading

The different response can be explained, considering the fact that skeletal muscles in different
parts of the body are subjected to different patterns of recruitment and activity [66,67]. The
anti-gravitational Sol muscle is recruited for prolonged periods at a moderate level of intensity,
whereas the extensor digitorum longus muscle is less frequently recruited, performing short,
high-force contractions [68,69]. It is commonly known that inactivity affects the functional and
biochemical properties of antigravity muscles, causing a significant decrease in both contrac‐
tion and relaxation times [66,70] and a significant increase in the maximal shortening velocity
and myofibrillar ATPase activity [71]. The above-mentioned changes are considered to be a
result of the gene expression, especially the genes involved in the fibre type transformation
[71–73]. The co-ordinated changes in the gene expression are particularly apparent for myosin
and consequently the disuse induces a slow-to-fast transition, as reflected by an increase in
fast MyHC isoforms at the expense of slow MyHC in the Sol and a fast-to-faster MyHC shift
in the GM muscle [74,75]. An increase in fast MyLC isoforms, an increased proportion of fast
troponin subunits and hybrid fibres co-expressing fast and slow MyHC and MyLC appears
during slow-to-fast transition in Sol muscle [64,71,76]. The fibre type transition results in a
change in muscle metabolism, fuel use, and more fatigable muscle [77]. Several histochemical
analyses have also suggested that the functional changes in immobilized muscles are due to
an increase in fast-twitch IIa fibres [64]. In addition to above-mentioned facts, the increased
sarcoplasmic reticulum calcium-ATPase activity and the preferential loss of thin filaments all
contribute to faster contractile properties of the Sol muscle [78]. The increased shortening
velocity may be an attempt to compensate for the loss of power generating capacity during
unloading caused by weakening [79].

Muscle disuse is often accompanied by increased fatigability, which is caused by the reduced
oxidative capacity of disused muscles [65,80,81]. Capillary loss and reduction in blood flow
might contribute to the increased fatigability by an impaired supply of energy substrates and
oxygen to the muscle [82].

5.5. Formation of muscle atrophy during unloading

While immobilization at shortened length induces atrophy, immobilization in lengthened
position induces hypertrophy, which is largely attributable to addition of sarcomeres in the
longitudinal direction [26,83]. Immobilization in the shortened position, e.g. hindlimb
suspension, induces preferential transcription of fast MyHC isoforms, reminiscent of the slow-
to-fast transition observed in other models of disuse [26,84]. The disuse atrophy is character‐
ized by the loss of muscle mass and decrease of muscle diameter. In the case of muscle atrophy,
there some noticeable changes in the muscle cell at the cellular level including sarcomere
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dissolution and endothelial degradation, a marked reduction in the number of mitochondria,
the accumulation of the connective tissue, the elimination of apoptotic myonuclei and a
decrease in capillary density [85–87]. Selective susceptibility of fibre types to immobilization
seems to exist, while the red muscle fibres show the greatest atrophy. The decreased synthesis
of protein and increased protein degradation are characteristic features to muscle atrophy. At
least half of the total muscle protein is myofibrillar protein, and this fraction is lost at a faster
rate than other muscle proteins during atrophy [84]. Three major proteolytic systems to skeletal
mass protein loss are the cytosolic calcium-dependent calpain system, the lysosomal proteases
and the ATP-dependent ubiquitin-proteasome system, which work as partners during muscle
proteolysis rather than one system being used exclusively during atrophy [88]. Recent
advances in cellular biology show the oxidative stress to be an important regulator of pathways
leading to muscle atrophy during periods of disuse, increasing the expression of the key
components of the proteasome proteolytic system. This proteolytic system is a prominent
contributor to protein breakdown in skeletal muscle during periods of inactivity [37,84,86].

5.6. Effect of unloading on the skeletal muscle MyHC composition

Prolonged periods of time spent with a diminished or no-weight bearing have a deleterious
effect on skeletal muscle with the decreased protein synthesis, the loss of muscle mass and
alterations of biochemical parameters [74,77]. The main findings confirmed that the proportion
of slow MyHC isoforms decreased and the proportion of MyHC fast isoforms increased in
consequence of altered functional conditions [46,64,89].

Clinical observations show that the atrophy of the skeletal muscle occurs as a result of
immobilization and is caused by the changed functional conditions in the muscular system.
Skeletal muscle function depends on the intact proprioceptive activity, motor innervation,
mechanical load, and joint mobility. If one of these factors is altered, the muscle will undergo
adaptation. As an increased muscular activity leads to the enhancement of the structures
involved in contraction, inactivity or disuse is followed by the reduction of the muscle mass
[8,77].

Alterations of biochemical parameters and changes at the ultrastructural level of the contractile
apparatus are considered to be characteristic of atrophied muscles. The effect of disuse on the
skeletal muscle depends on the fibre type composition of the muscle. The degenerative changes
in disused muscles at the ultrastructural level have been shown to be most severe in slow
oxidative muscle fibres. It is suggested that the most vulnerable muscles were antigravity
muscles crossing a single joint [90].

The properties of muscle contraction which depend on the MyHC isoform composition
decrease in atrophied skeletal muscle [46,89,91]. Contractile activity can induce differential
expression of myosin protein isoforms in skeletal muscle. MyHC composition has an important
regulatory role in myosin ATPase activity and muscle fibre shortening velocity [92]. A
prolonged activity causes alterations in the MyHC composition. A decrease in the mechanical
load stimulates the conversion of slow myosin in muscles of mixed fibre type composition,
whereas a decrease in the weight-bearing load results in a decrease in slow myosin content
[46,92].
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Comparing the changes of proportion of MyHC isoforms in the contractile apparatus during
unloading among human subjects and experimental animals, we can see that they are similar
in their direction and amplitude. In conclusion, the adaptation of the mammalian skeletal
muscles to the unloading depends on the contractile and metabolic characteristics of skeletal
muscle and is not dependent on the species of the mammal. As the certain connections exist
between the contractile and metabolic characteristics of skeletal muscle it is understandable
why the specific atrophy causes the decrease of the main function of the skeletal muscle.

6. Effect of reloading on the skeletal muscle

The plasticity of muscle is apparent in the phenomena such as muscle atrophy caused by
inactivity, and recovery from atrophy. When atrophic muscles once again become active, the
muscle mass and the volume reportedly increase in a relatively short period of time, but the
recovery of the muscle strength takes much longer [93]. The recovery of motor activity after
the hindlimb suspension is as fast as the recovery of the muscle strength. It is probably related
with the regeneration of the muscle structures from disuse atrophy [89]. The fact that the
increases in the muscular strength lag behind those in the muscular mass suggests the presence
of functionally immature muscle fibres during the recovery process following disuse atrophy
[89]. Several studies have shown that the increases in the muscle mass soon after reloading are
attributable to oedema and do not actually represent recovery [89]. The recovery of the muscle
mechanical properties depends also on the metabolism of the skeletal muscle. The two-week
reloading period has shown that the Sol muscle metabolism can be restored [94]. Full recovery
of slow-twitch muscle function via cross-sectional area and myonuclear domain size has been
shown to need more time for restoration of neural and mechanical properties of muscle [81].

Disuse muscle atrophy can be experimentally induced by suspending animals by their tails
[89,95], immobilizing joints, severing tendons or conducting muscle denervation [96]. Muscle
atrophy in tail suspension is caused by hindlimb unloading, conserving the functions of nerves
and joints. Reloading is thus possible after tail suspension and is suitable for investigating the
recovery process following disuse muscle atrophy caused by sports injuries [89].

The reloading after hindlimb suspension shows that collagen III mRNA level at the end of the
second week is higher than in control group. It has been found that in response to reload, the
skeletal muscle expression of collagen I and III was markedly induced from the second day of
reloading [4].

It has been shown that non-fibrillar type IV collagen mRNA level is decreasing in both, slow-
twitch and fast-twitch muscles during the three weeks of hindlimb suspension, but two weeks
of reloading period is obviously not enough to restore the metabolic states of this collagen in
the basal lamina of the muscle fibre [26]. It was demonstrated that the reorganization of the
basement membrane compounds needs certain time [97]. As type IV collagen plays a role in
the regenerative process on ECM, including the matrix-associated receptors that underline
muscle fibre-matrix interactions, it shows how complicated is the evaluation of the functional
significance of type IV collagen metabolism [5].
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The recovery of the collagen degradation markers during reloading period is different in slow-
and fast-twitch skeletal muscles. MMP-2 level increased in slow-twitch soleus muscle during
two weeks of reloading and in fast-twitch gastrocnemius muscle after one week reloading. The
mRNA level of TIMP-1 increased in fast-twitch GM muscle after two weeks of reloading. A
significant increase in mRNA level for MMP-2 was registered in Sol muscle during the
reloading, showing that the reaction of MMP-2 on the pretranslational level is not fast in all
muscles [52].

Concomitant to atrophy, numerous molecular events testify of a slow-to-fast transition of
muscle properties [47,74]. The recovery of muscle properties effectively occurs on return to
normal load [98]. It is also known that muscle fibre damage occurs during reloading, likely
due to the inability of the muscle fibres to bear eccentric contractions and the consequent
inflammation process [94,99]. Natural recovery seems to be most effective after reloading while
several investigations show the delayed recovery of rats during running exercise [100].

The muscle tissue response to unloading seems to more pronounced than the connective tissue
response. The connective structures are protected from rapid changes in tissue mass, while
muscle, which is known to act as a protein store for the organism, is subject to substantial and
fast changes in tissue mass. However, it should be considered that important changes occur
in the connective tissue structures during unloading despite the small changes in tissue mass.

Author details

Eva-Maria Riso*, Priit Kaasik and Teet Seene

*Address all correspondence to: eva-maria.riso@ut.ee

Institute of Sports Sciences and Physiotherapy, University of Tartu, Tartu, Estonia

References

[1] Trotter JA. Structure-function considerations of muscle-tendon junctions. Comp
Biochem Physiol 2002; Part A: 1127-33. doi: 10.1016/S1095-6433(02)00213-1

[2] Gelse K, Pöschl E, Aigner T. Collagens – structure, function, and biosynthesis. Ad‐
vanced Drug Delivery Reviews 2003; 55: 1531-46. doi: 10.1016/j.addr.2003.08.002

[3] Purslow PP. The structure and functional significance of variations in the connective
tissue within muscle. Comp Biochem Physiol 2002; Part A: 947-66. doi: 10.1016/
S1095-6433(02)00141-1

[4] Heinemeier KM, Olesen JL, Haddad F, Schjerling P, Baldwin KM, Kjær M. Effect of
unloading followed by reloading on expression of collagen and related growth factors

Composition and Function of the Extracellular Matrix in the Human Body60



in rat tendon and muscle. J Appl Physiol 2009; 106: 178-86. DOI: 10.1152/japplphysiol.
91092.2008

[5] Sanes JR. The Basement Membrane/Basal Lamina of Skeletal Muscle. J Biol Chem 2003;
278: 12601-604. DOI: 10.1074/jbc.R200027200

[6] Kjær M. Role of extracellular matrix in adaptation of tendon and skeletal muscle to
mechanical loading. Physiol Rev 2004; 84: 649-98. DOI: 10.1152/physrev.00031.2003

[7] Grounds MD, Sorokin L, White J. Strength at the extracellular matrix-muscle interface.
Scand J Med Sci Sports 2005; 15: 381-91. DOI: 10.1111/j.1600-0838.2005.00467.x

[8] Haus JM, Carrithers JA, Carroll CC, Tesch PA, Trappe TA. Contractile and connective
tissue protein content of human skeletal muscle: effects of 35 and 90 days of simulated
microgravity and exercise countermeasures. Am J Physiol Regul Integr Comp Physiol
2007a; 293: R1722-27. DOI: 10.1152/ajpregu.00292.2007

[9] Heinegård D. Proteoglucans and more – from molecules to biology. Int J Exp Path 2009;
90: 575-86. doi: 10.1111/j.1365-2613.2009.00695.x

[10] Ricard-Blum S, Ruggiero F. The collagen superfamily: from the extracellular matrix to
the cell membrane. Path Biol 2005; 53: 430-42. doi: 10.1016/j.patbio.2004.12.024

[11] Järvinen TA, Józsa L, Kannus P, Järvinen TLN, Järvinen M. Organization and distri‐
bution of intramuscular connective tissue in normal and immobilized skeletal muscles.
J Muscle Res Cell Motil 2002; 23: 245-54.

[12] Eyre DR. Collagen of articular cartilage. Arthritis Res 2002; 4: 30-35. doi: 10.1186/ar.380

[13] Miller TA, Lesniewski LA, Muller-Delp JM, Majors AK, Scalise D, Delp MD. Hindlimb
unloading induces a collagen isoform shift in the soleus muscle of the rat. Am J Physiol
2001; 281: R1710-17.

[14] Listrat A, Lethias C, Hocquette JF, Renard G, Messinier P, Geay Y, Picard B. Age-related
changes and location of types I, III, XII and XIV collagen during development of skeletal
muscles from genetically different animals. Histochem J 2000; 32: 349-56.

[15] Chou YC, Li HC. Genomic organization and characterization of the human type XXI
collagen (COL21A1) gene. Genomics 2002; 79: 395-401. doi: 10.1006/geno.2002.6712

[16] Erickson AC, Couchman JR. Still more complexity in mammalian basement mem‐
branes. J Histochem Cytochem 2000; 48: 1291-306. doi:10.1177/002215540004801001

[17] Wiberg C, Heinegård D, Wenglen C, Timpe R, Morgelin M. Biglycans organize collagen
VI into hexagonlike networks resembling tissue structures. J Biol Chem 2002; 277:
49120-126. doi:10.1074/jbc.M206891200

[18] Takala TES, Virtanen P. Biochemical composition of muscular extracellular matrix: the
effect of loading. Scand J Med Sci Sports 2000; 10: 321-25. DOI: 10.1034/j.
1600-0838.2000.010006321.x

Remodelling of Skeletal Muscle Extracellular Matrix: Effect of Unloading and Reloading
http://dx.doi.org/10.5772/62295

61



[19] Salmivirta K, Talts JF, Olsson M, Sasaki T, Timpl R, Ekblom P. Binding of mouse
nidogen-2 to basement membrane components and cells and its expression in embry‐
onic and adult tissues suggest complementary functions of the two nidogens. Exp Cell
Res 2002; 279: 188-201. doi: 10.1006/excr.2002.5611

[20] Han XY, Wang W, MyllyläR, Virtanen P, Karpakka J, Takala TES. MRNA levels for α-
subunit of prolyl 4-hydroxylase and fibrillar collagens in immobilized rat skeletal
muscle. J Appl Physiol 1999b; 87: 90-96.

[21] Ahtikoski AM, Riso EM, Koskinen SOA, Risteli J, Takala TES. Regulation of type IV
collagen gene expression and degradation in fast and slow muscles during dexame‐
thasone treatment and exercise. Pflügers Arch Eur J Physiol 2004; 448: 123-30. DOI:
10.1007/s00424-003-1226-5

[22] Tu H, Sasaki T, Snellman A, Göhring W, PiriläP, Timpl R, Pihlajaniemi T. The type XIII
collagen ectodomain is a 150-nm rod and capable of binding to fibronectin, niddogen-2,
perlecan, and heparin. J Biol Chem 2002; 277: 23092-99. DOI: 10.1074/jbc.M107583200

[23] Trackman PC. Diverse biological functions of extracellular collagen processing
enzymes. J Cell Biochem 2005; 96: 927-37. doi:10.1002/jcb.20605

[24] Mays PK, McAnulty RJ, Campa JS, Laurent GJ. Age related changes in collagen
synthesis and degradation in rat tissues. Biochem J 1991; 276: 307-13.

[25] Kagan HM, Li W. Lysyl oxidase: Properties, specificity, and biological roles inside and
outside of the cell. J Cell Biochem 2002; 88: 660-72. DOI: 10.1002/icb.10413

[26] Ahtikoski AM, Koskinen SOA, Virtanen P, Kovanen V, Risteli J, Takala TES. Synthesis
and degradation of type IV collagen in rat skeletal muscle during immobilization in
shortened and lengthened position. Acta Physiol Scand 2003; 177: 473-81. DOI: 10.1046/
j.1365-201X.2003.01061.x

[27] Gianelli G, DeMarzo A, Marinosci F, Antonaci S. Matrix metalloproteinase imbalance
in muscle disuse atrophy. Histol Histopathol 2005; 20: 99-106.

[28] Holm L, van Hall G, Rose AJ, Miller BF, Doessing S, Richter EA, Kjær M. Contraction
intensity and feeding affect collagen and myofibrillar protein synthesis rates differently
in human skeletal muscle. Am J Physiol Endocrinol Metab 2010; 298: 257-69. DOI:
10.1152/ajpendo.00609.2009

[29] Balbin M, Fueyo A, Knäuper V, Lopez JM, Alvarez J, Sanchez LM, Quesada V, Bordallo
J, Murphy G, Lopez-Otin C. Identification and enzymatic characterization of two
diverging murine counterparts of human interstitial collagenase (MMP-1) expressed
at sites of embryo implantation. J Biol Chem 2001; 276: 10253-262. doi:10.1074/
jbc.M00767400

[30] Reznick AZ, Menashe O, Bar-Shai M, Coleman R, Carmeli E. Expression of matrix
metalloproteinases, inhibitor, and acid phosphatase in muscles of immobilized
hindlimbs of rats. Muscle Nerve 2003; 27: 51-59.

Composition and Function of the Extracellular Matrix in the Human Body62



[31] Carmeli E, Moas M, Reznick AZ, Coleman R. Matrix metalloproteinases and skeletal
muscle: A brief review. Muscle Nerve 2004; 29: 191-97.

[32] Choi YC, Dalakas MC. Expression of matrix metalloproteinases in the muscles of
patients with inflammatory myopathies. Neurology 2000, 54: 65-71.

[33] Balcerzak D, Querengesser L, Dixon WT, Baracos VE. Coordinate expression of matrix-
degrading proteinases and their activators and inhibitors in bovine skeletal muscle. J
Anim Sci 2001; 79: 94-107. doi: /2001.79194x

[34] Chen X, Li Y. Role of matrix metalloproteinases in skeletal muscle: migration, differ‐
entiation, regeneration and fibrosis. Cell Adh Migr 2009; 3: 337-41.

[35] Carmeli E, Kodesh E, Nemcovsky C. Tetracycline therapy for muscle atrophy due to
immobilization. J Musculoskelet Neuronal Interact 2009; 9: 81-88.

[36] Visse R, Nagase H. Matrix metalloproteinase and tissue inhibitors of metalloprotei‐
nases: Structure, function and biochemistry. Circ Res 2003; 92: 827-39. doi:
10.1161/01.RES.0000070112.80711.3D

[37] Li YY, McTiernan CF, Feldman AM. Interplay of matrix metalloproteinases, tissue
inhibitors of metalloproteinases and their regulators in cardiac remodelling. Cardio‐
vasc Res 2000; 46: 214-24. DOI: http://dx.doi.org/10.1016/S0008-6363(00)00003

[38] Liu X, Lee DJ, Skittone LK, Natsuhara K, Kim HT. Role of gelatinases in disuse-induced
skeletal muscle atrophy. Muscle Nerve 2010; 41: 174-78. doi:10.1002/mus.21463

[39] Koskinen SOA, Heinemeier K, Olesen JL, Langberg H, Kjær M. Physical exercise can
influence local level of matrix metalloproteinases and their inhibitors in tendon-related
connective tissue. J Appl Physiol 2004; 96: 861-64. DOI: 10.1152/japplphysiol.00489.2003

[40] Hernandez-Barrantes S, Bernardo M, Toth M, Fridman R. Regulation of membrane
type-matrix metalloproteinases. Semin Cancer Biol 2002; 12: 131-38. doi: 10.1006/scbi.
2001.0421

[41] Baker AH, Edwards DR, Murphy G. Metalloproteinase inhibitors: biological actions
and therapeutic opportunities. J Cell Sci 2002; 115: 3719-27. doi: 10.1242/jcs.00063

[42] Stetler-Stevenson WG, Krutzsch HC, Liotta LA. Tissue inhibitor of metalloproteinase
(TIMP-2). J Biol Chem 1989; 264: 17374-8.

[43] Wang Z, Juttermann R, Soloway PD. TIMP-2 is required for efficient activation of
proMMP-2 in vivo. J Biol Chem 2000; 275: 26411-415. doi:10.1074/jbc.M001270200

[44] Koskinen SOA, Kjær M, Mohr T, Biering Sørensen F, Suuronen T, Takala TES. Type IV
collagen and its degradation in paralysed human muscle: effect of functional electrical
stimulation. Muscle Nerve 2000; 23: 580-89. DOI: 10.1002/(SI‐
CI)1097-4598(200004)23:4<580::AID-MUS18>3.0.CO;2-4

[45] Koskinen SOA, Ahtikoski AM, Komulainen J, Hesselink MKC, Drost MR, Takala TES.
Short-term effects of forced eccentric contractions on collagen synthesis and degrada‐

Remodelling of Skeletal Muscle Extracellular Matrix: Effect of Unloading and Reloading
http://dx.doi.org/10.5772/62295

63



tion in rat skeletal muscle. Pflügers Arch 2002; 444: 59-72. DOI: 10.1007/
s00424-002-0792-2

[46] Riley DA, Bain JL, Thompson JL, Fitts RH, Widrick JJ, Trappe SW. Thin filament
diversity and physiological properties of fast and slow fiber types in astronaut leg
muscles. J Appl Physiol 2002; 92: 817-25. DOI: 10.1152/japplphysiol.00717.2001

[47] Baldwin KM, Haddad F. Skeletal muscle plasticity. Cellular and molecular responses
to altered physical activity paradigms. Am J Physiol Med Rehabil 2002; S1: 40-51.

[48] Akima H, Ushiyama J, Kubo J, Fukuoka H, Kanehisa H, Fukunaga T. Effect of unload‐
ing on muscle volume with and without resistance training. Acta Astronaut 2007; 60:
728-36.

[49] Lemoine JK, Haus JM, Trappe SW, Trappe TA. Muscle proteins during 60-day bedrest
in women: impact of exercise or nutrition. Muscle Nerve 2009; 39: 463-71. doi: 10.1002/
mus.21189

[50] Kjær M, Langberg H, Miller BF, Boushel R, Crameri R, Koskinen S, Heinemeier K,
Olesen JL, Døssing S, Hansen M, Pedersen SG, Rennie MJ, Magnusson P. Metabolic
activity and collagen turnover in human tendon in response to physical activity. J
Musculoskeletal Neuronal Interact 2005; 5: 41-52.

[51] Kjær M, Magnusson P, Krogsgaard M, Møller JB, Olesen J, Heinemeier K, Hansen M,
Haraldsson B, Koskinen S, Esmarck B, Langberg H. Extracellular matrix adaptation of
tendon and skeletal muscle to exercise. J Anat 2006; 208: 445-50. doi: 10.1111/j.
1469-7580.2006.00549.x

[52] Riso EM. The effect of glucocorticoid myopathy, unloading and reloading on the
skeletal muscle contractile apparatus and extracellular matrix. [thesis] Dissertationes
Kinesiologiae Universitatis Tartuensis. Tartu University Press; 2007. p. 9-50.

[53] Jaworsky DM, Soloway P, Catesina J, Falls WA. Tissue Inhibitor of Metalloproteinase-2
(TIMP-2) Deficient Mice Display Motor Deficits. Int J Neurobiol 2006; 66: 82-94. doi:
10.1002/neu.20205

[54] Lluri G, Langlois GD, Soloway PD, Jaworsky DM. Tissue inhibitor of metalloprotei‐
nase-2 (TIMP-2) regulates myogenesis and β1 integrin expression in vivo. Exp Cell Res
2008; 314: 11-24. doi: 10.1016/j.yexcr.2007.06.007

[55] Ahtikoski AM, Koskinen SOA, Virtanen P, Kovanen V, Takala TES. Regulation of
synthesis of fibrillar collagens in skeletal muscle during immobilization in shortened
and lengthened positions. Acta Physiol Scand 2001; 171: 131-40. DOI:10.1046/j.
1365-201X.2001.00848.x

[56] Martinez DA, Vailas AC, VanderbyRJr, Grindeland RE. Temporal extracellular matrix
adaptations in ligament during wound healing and hindlimb unloading. Am J Physiol
Regul Integr Comp Physiol 2007; 293: R1552-60. DOI: 10.1152/ajpregu.00423.2007

Composition and Function of the Extracellular Matrix in the Human Body64



[57] Tyml K, Mathieu-Costello O. Structural and functional changes in the microvasculature
of disused skeletal muscle. Front Biosci 2001; 6: D45-52. dx.doi.org/10.2741/A592

[58] Desaki J, Nishida W. A further observation of the structural changes of microvessels in
the extensor digitorum longus muscle of the aged rat. J Electron Micros (Tokyo) 2007;
56: 249-55. doi:10.1093/jmicro/dfm032

[59] Karpakka J, Virtanen P, Väänänen K, Orava S, Takala TES. Collagen synthesis in rat
skeletal muscle during immobilization and remobilisation. J Appl Physiol 1991; 70:
1775-80.

[60] D’Antona G, Pellegrino MA, Adami R, Rossi R, Carlizzi CN, Canepari M. The effect of
ageing and immobilization on structure and function of human skeletal muscle fibres.
J Physiol 2003; 552: 499-511. doi:10.1113/jphysiol.2003.046276

[61] Narici MV, Maganaris CN. Plasticity of the muscle-tendon complex with disuse and
ageing. Exerc Sport Sci Rev 2007; 35: 126-34. doi:10.1097/jes0b013e3180a030ec

[62] D’Antona G, Pellegrino MA, Rossi R, Carlizzi CN, Reggiani C, Bottinelli R. Disuse
induced atrophy and contractile impairment of human skeletal muscle fibres. Basic
Appl Myol 2000; 10: 27-32.

[63] Belavý DL, Miokovic T, Armbrecht G, Richardson CA, Rittweger J, Felsenberg D.
Differential atrophy of the lower-limb musculature during prolonged bed-rest. Eur J
Appl Physiol 2009; 107: 489-99. doi: 10.1007/s00421-009-1136-0

[64] Oishi Y. Relationship between myosin heavy chain IId isoform and fibre types in soleus
muscle of the rat after hindlimb suspension. Eur J Appl Physiol 1993; 66: 451-54.

[65] Degens H, Always SE. control of muscle size during disuse, disease, and ageing. Int J
Sports Med 2006; 27: 94-99. DOI: 10.1055/s-2005-837571

[66] Alkner BA, Tesch PA. Efficacy of a gravity –independent resistance exercise device as
a countermeasure to muscle atrophy during 29-day bed-rest. Acta Physiol Scand 2004a;
181: 345-57. DOI:10.1111/j.1365-201X.2004.01293.x

[67] Trappe TA, Burd NA, Louis ES, Lee GA, Trappe SW. Influence of concurrent exercise
or nutrition countermeasures on thigh and calf muscle size and function during 60 days
of bed rest in women. Acta Physiol (OXF) 2007b; 191: 147-59. DOI:10.1111/j.
1748-1716.2007.01728.x

[68] Mendis MD, Hides JA, Wilson SJ, Grimaldi DL, Belavý DL, Stanton W, Felsenberg D,
Rittweger J, Richardson C. Effect of prolonged bed rest on the anterior hip muscles.
Gait and Posture 2009; 30: 533-37. doi:10.1016/j.gaitpost.2009.08.002

[69] Schuenke MD, Reed DW, Kraemer WJ, Staron RS, Volck JS, Hymer WC, Gordon S,
Koziris LP. Effects of 14 days of microgravity on fast hindlimb and diaphragm muscles
of the rat. Eur J Appl Physiol 2009; 106: 885-92. doi:10.1007/s00421-009-1091-9

Remodelling of Skeletal Muscle Extracellular Matrix: Effect of Unloading and Reloading
http://dx.doi.org/10.5772/62295

65



[70] Adams GR, Caiozzo VJ, Baldwin KM. Skeletal Muscle unweighting: spaceflight and
ground-based models. J Appl Physiol 2003; 95: 2185-2201. DOI: 10.1152/japplphysiol.
00346.2003

[71] Stevens L, Bastide B, Bozzo C, Mounier Y. Hybrid fibres under slow-to-fast transfor‐
mations: expression of myosin heavy and light chains in rat soleus muscle. Pflügers
Arch 2004; 448: 507-14. DOI:10.1007/s00424-004-1287-0

[72] Isfort RJ, Wang F, Greis KD, Sun Y, Keough TW, Farrar RP, Bodine SC, Anderson NL.
Proteomic analysis of rat soleus muscle undergoing hindlimb suspension-induced
atrophy and reweighting hypertrophy. Proteomics 2002; 2: 543-50.

[73] Wittwer M, Flück M, Hoppeler H, Muller S, Desplanches D, Billeter R. Prolonged
unloading of rat soleus muscle causes distinct adaptations of the gene profile. FASEB
J 2002; 16: 884-86. doi:10.1096/fj.01-0792fjc

[74] Stevens L, Firinga C, Gohlsch B, Bastide B, Mounier Y, Pette D. Effects of unweighting
and clenbuterol on myosin light and heavy chains in fast and slow muscles of rat. Am
J Physiol 2000; 279: C1558-63.

[75] Talmadge RJ. Myosin heavy chain isoform expression following reduced neuromus‐
cular activity: potential regulatory mechanisms. Muscle Nerve 2000; 10: 321-25. DOI:
10.1002/(SICI)1097-4598(200005)23:5<661::AID-MUS>3.0.CO.2-J

[76] Stevens L, Bastide B, KischelPPette D, Mounier Y. Time-dependent changes in expres‐
sion of troponin subunit isoforms in unloaded rat soleus muscle. Am J Physiol 2002;
282: C1025-30. DOI: 10.1152/ajpcell.00252.2001

[77] Trappe T. Influence of aging and long-term unloading on the structure and function of
human skeletal muscle. J Appl Physiol Nutr Metab 2009; 34: 459-64. doi: 10.1139/
H09-041

[78] Fisher JS, Hasser EM, Brown M. Effects of ovaryectomy and hindlimb unloading on
skeletal muscle. J Appl Physiol 1998; 1316-21.

[79] Fitts RH, Riley DR, Widrick JJ. Functional and structural adaptations of skeletal muscle
to microgravity. J Exp Biol 2001; 204: 3201-08.

[80] Ohira M, Hanada H, Kawano F, Ishihara A, Nonaka I, Ohira Y. Regulation of the
properties of rat hindlimb muscles following gravitational unloading. Jpn J Physiol
2002; 52: 235-45. doi.org/10.2170/jphysiol.52.235

[81] Ohira Y, Yoshinaga T, Ohira M, Kawano F, Wang XD, Higo Y, Terada M, Matsuko Y,
Roy RR, Edgerton VR. The role of neural and mechanical influences in maintaining
normal fast and slow muscle properties. Cells Tissues Organs 2006; 182: 129-42. DOI:
10.1159/000093963

Composition and Function of the Extracellular Matrix in the Human Body66



[82] Kano Y, Shimegi S, Takahashi H, Masuda K, Katsuta S. Changes in capillary luminal
diameter in rat soleus muscle after hindlimb suspension. Acta Physiol Scand 2000; 169:
271-76. DOI:10.1046/j.1365-201x.2000.00743.x

[83] Pontén E, Fridén J. Immobilization of the rabbit tibialis anterior muscle in a lengthened
position causes addition of sarcomeres in series and extracellular matrix proliferation.
J Biomech 2008; 41: 1801-4. doi:10.1016/j.jbiomech.2008.03.006

[84] Zhang P, Chen X, Fan M. Signaling mechanisms involved in disused muscle atrophy.
Med Hypothesis 2007; 69: 310-21. doi:10.1016/j.mehy.2006.11.043

[85] Mujika I, Padilla S. Muscular characteristics of detraining in humans. Med Sci Sports
Exerc 2001; 33: 1297-1303.

[86] Adhihetty PJ, Irrcher I, Joseph AM, Ljubicic V, Hood DA. Plasticity of skeletal muscle
mitochondria in response to contractile activity. Exp Physiol 2003; 88: 99-107.

[87] Smith HK, Maxwell L, Martyn JA, Bass JJ. Nuclear DNA fragmentation and morpho‐
logical alterations in adult rabbit skeletal muscle after short-term immobilization. Cell
Tissue Res 2000; 302: 235-41.

[88] Jackman RW, Kandarian SC. The molecular basis of skeletal muscle atrophy. Am J
Physiol 2003; 287: C834-C843. DOI:10.1152/ajpcell.00579.2003

[89] Itai Y, Kariya Y, Hoshino Y. Morphological changes in rat hindlimb muscle fibres
during recovery from disuse atrophy. Acta Physiol Scand 2004; 181: 217-24. DOI:
10.1111/j.1365-201X.2004.01271.x

[90] Lieber RL, Friden JO, Hargens AR, Danzig LA, Gershuni DA. Differential response of
the dog quadriceps muscle to external skeletal fixation of the knee. Muscle Nerve 1988;
11: 193-201.

[91] Carroll CC, Carrithers JA, Trappe TA. Contractile protein concentrations in human
single muscle fibres. J Muscle Res Cell Motil 2004; 25: 55-59.

[92] Pette D, Staron RS. Transition of muscle fiber phenotypic profiles. Histochem Cell Biol
2001; 115: 359-72.

[93] Pottle D, Gosselin LE. Impact of mechanical load on functional recovery after muscle
reloading. Med SciSports Exerc 2000; 32: 2012-17.

[94] Desaphy JF, Pierno A, Liantonio A, DeLuca A, Didonna MP, Frigeri A, Nicchia GP,
Svelto M, Camerino C, Zallone A, Camerino DC. Recovery of the soleus muscle after
short- and longterm disuse induced by hindlimb unloading: effects on the electrical
properties and myosin heavy chain profile. Neurobiol Dis 2005; 18: 356-65. doi: 10.1016/
j.nbd.2004.09.016

[95] Morey-Holton ER, Globus RK. Hindlimb unloading rodent model: technical aspects. J
Appl Physiol 2002; 92: 1367-77. DOI:10.1152/japplphysiol.00969.2001

Remodelling of Skeletal Muscle Extracellular Matrix: Effect of Unloading and Reloading
http://dx.doi.org/10.5772/62295

67



[96] Oishi Y, Ishihara A, Talmadge RJ. Expression of heat-shock protein 72 in atrophied rat
skeletal muscle. Acta Physiol Scand 2001; 172: 123-30. DOI:10.1046/j.1365-201X.
2001.00847.x

[97] Koskinen SOA, Wang W, Ahtikoski AM, Kjær M, Han XY, Komulainen J, Kovanen V,
Takala TES. Acute exercise induced changes in rat skeletal muscle mRNAs and proteins
regulating type IV collagen content. Am J Physiol 2001; 280: R1292-300.

[98] Thomason DB, Herrick RE, Surdyka D, Baldwin KM. Time course of soleus muscle
myosin expression during hindlimb suspension and recovery. J Appl Physiol 1987; 62:
2180-86.

[99] Kasper CE, Talbot LA, Gaines JM. Skeletal muscle damage and recovery. AACN Clin
Issues 2002; 13: 237-47.

[100] Lee K, Lee YS, Lee M, Yamashita M, Choi I. Mechanics and fatigability of the rat soleus
muscle during early reloading. Yonsei Med J 2004; 45: 690-702. doi:org/10.3349/ymj.
2004.45.4.690

Composition and Function of the Extracellular Matrix in the Human Body68


