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Abstract

Colorectal cancer (CRC) is one of the most common cancers in the world. Around 90%
of CRC deaths are caused by metastasis, and systemic chemotherapy is the last hope for
patients with unresectable metastases of CRC. Although recent systemic chemothera‐
py advances have prolonged survival in patients with unresectable CRC, the effective‐
ness, cost, and side effects of the chemotherapeutic agents still need to improve. The use
of plant-, microbial-, or fungal-derived natural products for medical benefits is playing
an important role globally, such as in anti-cancer drugs and antibiotics.

The cancer cells are different from normal cells in many points. In contrast to normal
cells, most of the fatty acids in malignant cells are derived from de novo lipogenesis that
emphasizes  the  importance  of  up-regulation  of  endogenous  lipid  biosynthesis  in
malignant transformation.

Several anti-cancer drugs available on the market today, such as Taxol, Oncovin,
Navelbine, and Vumon, trace their origins to plants. Monoterpenes of several essen‐
tial oils from plants possess medical benefits. Various monoterpenes such as d-
limonene, geraniol, 1,8-cineole, and perillyl alcohol (POH) are effective for CRC in in
vitro and animal experiments.

Fatty acid synthase (FASN), the key enzyme of de novo lipogenesis, is significantly up-
regulated in many cancers including CRC. In normal adults, FASN is mainly ex‐
pressed in cells with lipid metabolisms such as liver and adipose tissues. The expression
of FASN has been found to be up-regulated in various human cancer cells including
CRC. Lipogenesis by cancer cells provides proliferative and survival advantages and
drug resistance against chemotherapeutic agents. Inhibition of lipogenesis targeting
FASN induces apoptosis selectively in human cancer cells both in vitro and in vivo. The
differential expression of FASN between cancer cells and normal cells makes FASN a
suitable target for cancer treatment. The pharmacological FASN inhibitors are cerulenin,
C75, C93, orlistat, luteolin, epigallocatechin-3-gallate (EGCG), triclosan, capsaicin,
curcumin, and so on.

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



In this chapter, we discuss the usefulness of monoterpenes and FASN inhibitors against
CRC for the novel chemotherapeutic agents.

Keywords: fatty acid synthase inhibitor, monoterpene, colorectal cancer, chemothera‐
py, cerulenin

1. Introduction

Colorectal cancer (CRC) is one of the most common cancers in the world, and about 90% of
CRC deaths are caused by metastasis, not by primary solid tumors [1]. Despite recent advances,
systemic chemotherapy for metastatic disease is considered palliative, and long-term survivors
are rarely seen treated only by chemotherapy [2]. Natural products are the most successful
strategy to discover new agents used in anti-cancer therapy and more than two-thirds of the
drugs used in cancer treatment [3]. A large number of studies have focused on the efficacy of
essential oils and their chemical constituents as bioactive new products [4], especially cancer
treatment [5, 6]. The essential oils are a mixture of volatile lipophilic substances: monoterpenes,
sesquiterpenes, and phenylpropanoids. These substances have many biological activities such
as analgesic, anti-convulsant, anti-inflammatory [6, 7, 9], and anti-tumor activities [10–14].
Monoterpenes of several essential oils from plants possess medical benefits. The various
monoterpenes, such as limonene, geraniol, 1,8-cineole, and perillyl alcohol (POH), are effective
for CRC in in vitro and animal experiments [15].

2. Monoterpenes

Terpenes are the largest class of plant-derived secondary metabolites, and they are the main
component of essential oils [16, 17]. Monoterpenes are the largest class of terpenes [18]. The
therapeutic properties of monoterpenes are anti-allergic, anti-inflammatory, anti-cancer, and
so on [19]. The basic structure of monoterpenes consists of two isoprene units (C5H8)2.
Monoterpenes exist in many forms in nature, such as hydrocarbons, alcohols and their
glycosides, ethers, aldehydes, ketones, carboxylic acids, and esters [15]. Monoterpenes are
classified as acyclic, monocyclic, and bicyclic according to the ring formation. The important
acyclic monoterpenes, which have anti-tumor effects, are myrcene and geraniol [20]. The
important monocyclic monoterpenes with anti-tumor effects are linalyl acetate, camphor,
thymol, carvacrol, POH, d-limonene, and many others. POH and d-limonene are said to inhibit
the development of several types of carcinomas as they were in Phase I and II clinical testing,
respectively [21, 22]. The bicyclic monoterpenes that have anti-tumor effects are 1,8-cineole
(eucalyptol), and α- and β-pinene [23, 24].
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3. Monoterpene and colorectal cancer

In this chapter, we reviewed monoterpenes with anti-CRC activity. The monoterpenes
presented in this chapter were selected with reference to effects shown in specific experimental
models for evaluation of anti-tumor activity and/or by complementary studies aimed to
elucidate mechanisms of action shown in Table 1.

Compound Mechanism Animal/cell line tested IC50, etc Reference

Acyclic

Geraniol Cell cycle arrest/5FU
synergy

Caco-2 200 μM (Caco-2 IC30) [26]

Cell cycle arrest Caco-2 400 μM(70% inhibition) [27]

ERK1/2 inactivation Caco-2 400 μM(60% reduction of PKC
activity)

[28]

Synergistic with 5FU TC-118/Swiss nu/nu
mouse

5FU 20 mg/kg, geraniol
150 mg/kg

[29]

Thymidylate synthase
reduction

53% tumor reduction

Monocyclic

Alpha
terpineol

Cell cycle arrest,
apoptosis

HCT-116 (p53+/+, −/−) 1 mM [30]

Linalyl acetate Alpha terpineol + linalyl acetate +
camphor

Camphor

Carvacrol Anti-oxidant activity Caco-2, K562, HepG2 150–200 μM (IC50 of K562) [31, 32]

Cytotoxic effect Caco-2 600 μM (IC50) [34]

Anti-oxidant activity DMH/DSS
carcinogenesis rat

50 mg/kg [35]

Thymol Cytotoxic effect Caco-2 700 μM (IC 50)) [34]

Apoptosis HL60 75 μM(12 h), 50 μM(24 h) [36]

Thymoquinone 
(TQ)

Apoptosis, Wnt
signal

ApcMin rat 375 mg/kg BW 12 w
(polyp decrease)

[38]

Apoptosis HCT-116 xenograft 5 mg/kg (3 times/week ip) [39]

ERK JNK, apoptosis
by ROS

Caco-2 15.0 μM (IC50 24 h) [40]

HCT-116 30 μM (IC50 24 h)

LoVo 38 μM (IC50 24 h) [40]

DLD-1 42 μM (IC50 24 h)
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Compound Mechanism Animal/cell line tested IC50, etc Reference

HT-29 110 μM (IC50 48 h)

Nanoparticle with
poly(sodium N-
undecylenyl-valinate)

MDA-MB-231 viability 16.0 ± 5.6%(96 h) [41]

Protection from
Doxorubicin

Mouse with DOX(20
mg/kg)

TQ (8 mg/kg p.o.) protect
cardiotoxicity

[42]

Synergistic with
Doxorubicin

HT-29 46.8 μM to 39.0 μM (with DOX) [43]

D-limonene Blood orange volatile SW480, HT-29 100 ppm, 74.2% reduction
of SW480

[44]

Ornithine decarboxylase
(ODC)

Azoxymethane,
F344 rat

0.5% d-limonene decreases ACF
formation

[45]

Apoptosis by Akt
inactivation

colon cancer (LS174T) 3.2 mM viability 30% decrease [46]

Clinical trial phase
I and II

CRC patients 0.5 mg/m2/day [47, 48]

Perillyl
alcohol

Protein isoprenylation HT-29 50 μM (IC50) [49]

Apoptosis Azoxymethane 2 g/kg decrease cancer
incidence to 1/3

[50]

G1 arrest HCT-116 0.5 mM (IC50) [51]

Clinical trial CRC patients 1200–1600 mg/m2/day [52–56]

Bicyclic

1,8-cineole Akt inactivation RKO 50 mg/kg reduced tumor
weight as 1/3

[24]

Table 1. Monoterpene and colorectal cancer.

3.1. Geraniol

Geraniol is an acyclic monoterpenes. Geraniol is one of the main components of geranium oil,
and its content is about 20% [25]. Geraniol shows a cytotoxic effect in Caco-2 colon cancer cells
[26–28]. Geraniol decreases the expression of p44/p42 ERK and has an anti-tumor effect in
Caco-2 cells [28]. In addition, geraniol has a synergistic anti-tumor effect combined with 5-
fluorouracil in TC-118 human colorectal tumors [29].

3.2. Alpha terpineol, linalyl acetate, and camphor

Alpha terpineol, linalyl acetate, and camphor are monocyclic monoterpenes, and they are the
bioactive components of Lebanese sage (Salvia libanotica) essential oil [30]. Linalyl acetate is
found in many flowers and spice plants. Camphor is found in the wood of the camphor laurel.
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These three components cause inhibition of the growth of the human colon cancer cell lines
(HCT-116 p53+/+ and p53−/−) and were inactive on FHs74 Int normal human intestinal cell
lines [30]. It has been demonstrated that alpha terpineol, linalyl acetate, and camphor synergize
to induce cell cycle arrest and apoptosis, mainly through mitochondrial damage (cytochrome
c release), caspase activation, and PARP cleavage in human CRC cells [30].

3.3. Carvacrol

Carvacrol is a monocyclic monoterpene constituent of essential oils produced from the
aromatic plant Oreganum vulgarea sp. Carvacrol has a cytotoxic effect in K562, HepG2, and
Caco-2 cells [31, 32]. It inhibits the proliferation and migration of the two-colon cancer cell lines
HCT-116 and LoVo. Cell invasion was suppressed after carvacrol treatment by decreasing the
expression of matrix metalloprotease-2 (MMP-2) and MMP-9. Carvacrol treatment also caused
cell cycle arrest in the G2/M phase and decreased cyclin B1 expression. Finally, carvacrol-
induced cell apoptosis in a dose-dependent manner [33]. Carvacrol promotes the endogenous
anti-oxidant system and suppresses inflammation in DMH/DSS-induced rats and reduces the
tumor formation of colitis-associated CRC [34].

3.4. Thymol

Thymol is a monocyclic monoterpene and can be found in the oil of thyme. Thymol presents
a cytotoxic effect in several cell lines, such as HepG2, V79, and Caco-2 human colon cancer
cells [35]. The cytotoxic effect of thymol on human leukemia cell HL-60 appears to be associated
with induction of cell cycle arrest at sub G0/G1 phase and apoptotic cell death. Thymol induced
apoptosis in HL-60 cells involves both caspase-dependent and caspase-independent pathways
[36].

3.5. Thymoquinone

Thymoquinone (2-methyl-5-isopropyl-1,4-benzoquinone) is a monocyclic monoterpene
present in the seed oil of the plant Nigella sativa L. (Renunculaceae family), commonly known
as black cumin or black seed that is widely consumed as a condiment in many societies [37].
Thymoquinone possesses anti-proliferative and pro-apoptotic activities in several cancer cell
lines [37]. Thymoquinone decreased the number of large polyps in the intestine, activated
GSK-3-β, increased membrane localization of β-catenin, and reduced nuclear expression of c-
myc in in vivo experiments of ApcMin+ mice [38]. Thymoquinone reduced the size of xenograft
tumors, induced apoptosis, and inhibited tumor cell proliferation in HCT-116 human colon
cancer cell xenograft tumor growth in NMRI mice [39]. Reactive oxygen species and activation
of ERK and JNK signaling were involved in thymoquinone-induced apoptosis in a panel of
human colon cancer cells (Caco-2, HCT-116, LoVo, DLD-1, and HT-29) [40]. Encapsulation of
thymoquinone into nanoparticles enhances the anti-proliferative effect in HT-29 cells [41].
Thymoquinone boosted the effect of doxorubicin by reducing its cardiotoxicity in several
cancer cell lines including the CRC cell line HT29 [42, 43].
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3.6. D-limonene

Limonene is a monocyclic monoterpene, and it is a major constituent of citrus oils. It has optical
isomers, d-limonene and l-limonene, and d-limonene has a more lemon-like odor and
therapeutic effects. D-limonene is contained in citrus volatile oil, and the citrus volatile oil
induces apoptosis and has an anti-angiogenic effect against colon cancer SW480 and HT-29
[44]. D-limonene also inhibited the development of colonic aberrant crypt foci (ACF) induced
by azoxymethane in F344 rats, which suggests that this monoterpenoid might be a chemopre‐
ventive agent for colonic carcinogenesis in rats [45]. D-limonene suppressed the viability of
LS174T colon cancer cells in a dose-dependent manner and caused a dose-dependent apoptotic
cell death. D-limonene decreased the levels of Akt pathway, activated caspase-3 and caspase-9
and PARP cleavage in a dose-dependent manner [46]. A group of 32 patients with solid tumors
registered and completed Phase I study of administration of d-limonene orally. The maximum
tolerated dose was 8 g/m2 per day, and nausea, vomiting, and diarrhea were dose-limiting
factors [47]. Three individuals with colorectal carcinoma with d-limonene suspended pro‐
gression of the disease for over 6 months [47]. D-limonene at a dosage of 0.5 g/m2/day was able
to halt progression of cancer for 9 months in a patient diagnosed with locally advanced
mucinous cystadenocarcinoma of the appendix. A patient with presacral recurrence of an
adenocarcinoma in the sigmoid colon experienced a minor reduction (<50%) in tumor size at
a dose of 0.5 g/m2/day for 12 months. Another patient with local retrovesical recurrence of
colorectal adenocarcinoma remained stabilized on 1 g/m2/day (2 g/day) for 7.5 months [47, 48].

3.7. Perillyl alcohol (POH)

POH is a monocyclic monoterpene, and it is derived from limonene. POH is a naturally
occurring dietary monoterpene isolated from the essential oils of lavender, peppermint, and
other plants. It has an anti-tumor effect in several cancer cell lines including the HT-29 colon
cancer cell line [49]. Dietary POH at 1 or 2 g/kg greatly reduced the incidence and the number
of invasive adenocarcinomas of the colon of rats injected with azoxymethane [50]. To establish
the molecular mechanisms of POH, cell cycle and cell cycle regulatory proteins were studied
in HCT-116 human colon cancer cells. POH exerted a dose-dependent inhibitory effect on cell
growth correlated with a G1 arrest [51]. Phase I and II clinical trials using POH were started
[21, 22, 52–55]. In seven Phase I clinical trials, POH was administered orally to cancer patients
with advanced malignancy. POH was given in divided doses ranging from 2,400 to 16,200 mg
per day (equivalent to approximately 40–270 mg/kg). Treatment duration varied with each
patient but was generally between 2 and 9 months. Nausea, vomiting, eructation, and satiety
were dose-limiting factors in several of these trials [21]. Meadows et al. conducted Phase II
study in patients with metastatic CRC [56]. The authors found that oral POH administration
did not have clinical anti-tumor activity when used for patients with advanced colorectal
carcinoma, despite preclinical evidence of anti-cancer activity. Instead of oral administration,
POH was administered through nasal inhalation to recurrent glioma patients, and these
studies not only demonstrated clinical activity of POH but also revealed that long-term
intranasal inhalation of the compound was very well tolerated over several years of daily use
[21, 57, 58].
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3.8. 1,8-cineole (eucalyptol)

1,8-cineole (eucalyptol) is a bicyclic monoterpene, which comprises up to 90% of the essential
oil of some species of the generic product Eucalyptus oil. 1,8-cineole has several effects such
as anti-inflammatory, anti-oxidant, and anti-atherosclerotic activity in vitro and in vivo. 1,8-
cineole has a cytotoxic effect in Hep G2, HeLa, MOLT-4, K-562, and CTVR-1 cell lines [59]. 1,8-
cineole was reported to have moderate anti-oxidant and cytotoxic properties and pronounced
analgesic and anti-tumor activity [60]. Murata et al. showed that the human CRC cell line RKO
expressed phosphoserine 473-Akt constitutively and treatment with 1,8-cineole dephosphory‐
lated Akt. 1,8-cineole treatment activated p38 and dephosphorylated Akt, which induced
caspase-3 cleavage and resultant cleavage of PARP and finally caused apoptosis. In a xenograft
mouse model, 1,8-cineole therapy showed tumor shrinkage [24].

3.9. α- and β-pinene

α- and β-pinene are bicyclic monoterpenes. They are natural compounds isolated from pine
needle oil. Bhattacharjee and Chatterjee [61] promoted the identification of proapoptotic, anti-
inflammatory, anti-proliferative, anti-invasive, and potential anti-angiogenic activities of α-
pinene, β-pinene, d-limonene, and geraniol by employing a dual reverse virtual screening
protocol. The anti-tumor activity of α-pinene on the BEL-7402 hepatoma cell line in vitro and
in vivo and the mechanisms involved were investigated. The results showed that liver cancer
cell growth was inhibited obviously in vitro and in vivo: Chk1 and Chk2 levels were up-
regulated; and Cyclin B, CDC25, and CDK1 levels were down-regulated [62].

3.10. Conclusion of monoterpenes

Several studies have shown in vitro and in vivo anti-tumor activity of monoterpenes derived
from many essential oils obtained from plants. This chapter shows that many monoterpenes
are being examined for in vitro and in vivo anti-tumor activity of CRC. In addition, two of the
monoterpenes, d-limonene and POH, were moved on to Phase I and II clinical trials, which
indicates the safety of monoterpenes for clinical use. There are many monoterpenes that show
anti-tumor effects in vitro and in vivo, and with additional research some monoterpenes act
to inhibit the proliferation and to induce tumor cell death in clinical use.

4. Fatty acid synthase (FASN) inhibitors

Fatty acid synthase (FASN), the key enzyme of de novo lipogenesis, is significantly up-regulated
in many cancers including CRC [63, 64]. In normal adults, FASN is mainly expressed in cells
with lipid metabolisms, such as liver and adipose tissues [65]. Under a usual diet, the de novo
fatty acid synthesis in normal cells is rarely needed and the FASN protein level is low [66].
FASN is a 270-kDa cytosolic enzyme containing seven catalytic domains [67]. FASN synthe‐
sizes palmitate from one acetyl-CoA, seven malonyl-CoAs, and seven NADPHs [65, 66]. The
expression of FASN has been found to be up-regulated in various human cancer cells including
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CRC [68–70]. FASN is elevated in ACF compared with normal colonic mucosa [71]. Lipogenesis
by cancer cells gives proliferative and survival advantages and drug resistance against
chemotherapeutic drugs [72]. An increased expression of lipogenic enzymes is associated with
a more aggressive metastatic phenotype in CRC [73]. Inhibition of lipogenesis targeting FASN
induces apoptosis selectively in human cancer cells both in vitro and in vivo [74–76]. The
differential expression of FASN, together with the different responses to FASN inhibition
between cancer cells and normal cells, makes FASN a suitable target for cancer treatment. The
pharmacological FASN inhibitors are cerulenin, C75, C93, orlistat, luteolin, and epigallocate‐
chin-3-gallate (EGCG). Triclosan [77], capsaicin [78], and curcumin [79] are reported to inhibit
FASN and have anti-tumor effect. There are several newly developed agents, such as TVB-3567
[80], TVB-3166 [81], and GSK2194069 [82].

CompoundMechanism Animal/cell line tested IC50, etc Reference

Cerulenin Akt inhibition Colon 26 liver
metastasis/Balb-c
mouse

30 mg/kg reduces 50% of liver
metastasis

[93]

Akt inhibition, synergistic
with oxaliplatin

RKO/xenograft in SCID
mouse

Cerulenin 15 mg/kg, oxaliplatin 2.5
mg/kg

[94]

Malonyl-co A independent
apoptosis

RKO 10 μg/ml [101]

C75 Malonyl-co A independent
apoptosis

RKO 10 μg/ml [101]

Orlistat ER stress, synergistic with
thapsigargin

HT-29 Orlistat 25 μM, thapsigargin 25 nM [114]

Luteolin Cell cycle arrest, apoptosis HT-29 60 μM 83% decrease of survival
at 72 h

[121]

S1P, ceramide,
Akt inhibition

Caco-2 100 μM more than 50% decrease
at 48 h

[122]

Synergic effect with aspirin DMH rat carcinogenesis 0.2 mg/kg/weekly for 15 weeks [123]

iNOS, COX2 inhibition Mouse, azoxymethane
administration

1.2 mg/kg orally [124]

β-catenin, GSK-3-β,
cyclin D1 inhibition

HCT-15 100 μM (IC50) [125]

EGCG Cell proliferation, apoptosis HCT-116 100 μM 98.4% decrease of survival
at 48 h

[131]

VEGF/VEGFR axis SW837 mouse xenograft 0.01% EGCG drinking [133]

HES1, Notch 2 HT-29 mouse xenograft 5 mg/kg intragastrically [135]

Clinical trials Polyp relapse decreasing 1.5~2.5 g green tea extract/daily [137]

Table 2. FASN inhibitors and colorectal cancer.
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In this chapter, we reviewed FASN inhibitors with anti-CRC activity. The FASN inhibitors
presented in this chapter were selected with reference to effects shown in specific experimental
models for evaluation of anti-tumor activity and/or by complementary studies aimed to
elucidate mechanisms of action shown in Table 2.

4.1. Cerulenin

Cerulenin is the first-known FASN inhibitor, which is isolated from the culture filtrate of the
fungus Cephalosporum caerulens [83–86]. It was originally used as an anti-fungal antibiotic and
is a potent non-competitive irreversible inhibitor of FASN by binding to the active site of the
KS domain [87–89]. Cerulenin treatment significantly decreases fatty acid synthesis and
induces selective cytotoxicity in various types of cancer cells [90–92]. Murata et al. [93] revealed
the anti-tumor activities of cerulenin in murine colon cancer cell lines Colon 26 and CMT 93.
Shiragami et al. [94] evaluated the anti-tumor effect of cerulenin in human CRC cell lines
HCT-116 and RKO. The overexpression of FASN has been seen to cooperate with survival
pathways, including the phosphatidylinositol-3-kinase (PI3K)⁄Akt pathway. CRC cell lines
expressed FASN and phosphorylated Akt constitutively, and the treatment of CRC cells with
cerulenin suppressed FASN expression, dephosphorylated constitutive activated Akt, and
increased cleaved caspase-3 in murine CRC cell lines Colon 26 and CMT 93, and in human
CRC cell line HCT-116 and RKO cells [93, 94]. FASN has a major role in the synthesis of
phospholipids including phosphatidylinositol trisphosphate (PIP3) [95]. PIP3 binds to Akt and
activates kinase phosphoinositide-dependent protein kinase-1 (PDK-1) with high affinity, and
the phosphorylation of Akt is dependent on PIP3 [95]. In an in vivo experiment, Murata et al.
[93] evaluated the potential effectiveness of cerulenin for metastatic liver tumors of the CRC
cell line. Shiragami et al. [94] revealed the synergistic effect of cerulenin in combination with
oxaliplatin, which means that reduction is possible when combined with cerulenin in the CRC
treatment. Recently, Chang et al. revealed cerulenin down-regulated energy metabolism and
PI3K/Akt/mTOR signaling pathway using human CRC cell lines HT-29 and LoVo [96].
Bauerschlag et al. [97] revealed that relative to normal fallopian tube tissue, ovarian cancer
tissue had 1.8-fold FASN overexpression and cell lines had around 100-fold protein overex‐
pression. In the ovarian cancer cell lines, cerulenin markedly decreased FASN expression and
cell viability and induced apoptosis. Unlike concomitant administration, sequential cerulenin/
cisplatin treatment reduced cisplatin’s half-maximal inhibitory concentration up to 54% in a
cisplatin-resistant cell line [97].

4.2. C75

C75 is a cerulenin-derived, semi-synthetic FASN inhibitor lacking cerulenin’ s reactive epoxy
group [98], and C75 is more chemically stable than cerulenin [98]. C75 has significant anti-
tumor effects against many types of cancer cells, such as the human breast [98], prostate [91],
and ovary [99] as well as renal carcinoma in xenograft animal models [100]. Li et al. reported
that both C75 and cerulenin produce rapid, potent inhibition of DNA replication and S-phase
progression in human cancer cells, as well as apoptotic death. They also revealed that these
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FASN inhibitors reduce cyclin A-, B1-associated kinase activities, and p53, p21 accumulation
which cause growth arrest at G1 and G2 [101]. Cerulenin and C75 were useful against p53
mutations [101]. They discussed that accumulation of malonyl-CoA was independent of
apoptosis induction, and they estimated that the effect of these agents has resulted from
product depletion [101].

4.3. C93

In addition to inhibiting FASN, C75 stimulates fatty acid oxidation by activating carnitine O-
palmitoyltransferase-1 (CPT1) [102]. Activation of CPT1 contributes to the reduction of
neuropeptide Y expression in the hypothalamus [102, 103]. The limiting toxicity of C75 is due
to this stimulation of fatty acid oxidation rather than the inhibition of FASN. C93, which was
designed to specifically inhibit FAS without affecting CPT1 activity [104]. Orita et al. revealed
that C93 inhibited FASN of four human lung cancer cell lines: LX7, H1975, H460, and A549.
Moreover, C93 inhibited subcutaneous and orthotopic H460 xenograft tumor without causing
anorexia and weight loss in the treated animals [105]. They found that higher levels of FAS
expression were observed in 77% of the squamous cancers, 96% of the adenocarcinomas, and
94% of Barrett’s lesions with high-grade dysplasia, when compared with the levels in normal
esophageal epithelium and non-dysplastic Barrett’s mucosa. Mice with Colo680N esophageal
squamous cell carcinoma cell xenograft were treated C93, which significantly inhibited the
growth of orthotopic xenograft tumors without causing anorexia and weight loss in the treated
animals [106].

4.4. Orlistat

Orlistat is an anti-obesity drug approved by the US Food and Drug Administration. Orlistat
is also reported to inhibit FASN [107]. Orlistat is the only long-term option for obesity treatment
in the United States, and it is the only approved weightloss drug in Europe [108]. Orlistat is a
synthetic hydrogenated derivative of lipstatin, produced by the fungus Streptomyces toxytrici‐
ni [109]. It partially inhibits gastric lipase, pancreatic lipase, and carboxyl ester lipase enzymes
that work by hydrolyzing the dietary triglycerides into fatty acids and monoglycerides, which
are absorbed by the mucosa of the gastrointestinal tract [110]. Orlistat reduces the absorption
of ingested fat and increasing its excretion in the feces [111]. The main anti-obesity action of
orlistat is in helping to reduce caloric intake in individuals [112]. Orlistat also helps individuals
to reduce the fat content of their diet, as diets rich in fatty products will lead to more adverse
effects, such as diarrhea and fecal incontinence [108, 112]. Several studies have shown that
orlistat exhibits anti-tumor effects in many cancer cells including human CRC cell line HT-29
in vitro and in vivo by inhibiting FASN activity [107, 113–115]. Treatment of tumor cells with
orlistat-induced ER stress, which is further confirmed by the increased expression of the ER
stress–regulated genes CHOP, ATF4, and GRP78. FAS inhibitors cooperate with the ER stress
inducer thapsigargin to enhance tumor cell killing. These results provide the first evidence
that FASN inhibitors induce ER stress and establish an important mechanistic link between
FASN activity and ER function [114]. Yang et al. revealed that orlistat induced an ATF4-
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dependent transcriptional induction of REDD1 (also known as Rtp801 or DDIT4), a known
mTOR inhibitor and works as a novel caspase-2 regulator in the ovarian cancer. REDD1
positively controls caspase-2-dependent cell death of ovarian cancer cells by inhibiting mTOR,
and this is the main pathway of orlistat-induced cell death in ovarian cancer [116]. Agostini et
al. revealed that orlistat inhibited the orthotopic tongue squamous cell carcinoma in the BALB/
c nude mice. In in vivo experiment, the drug was able to decrease both the volume and
proliferation indexes of the tongue orthotopic tumors and, importantly, reduced the number
of metastatic cervical lymph nodes by 43% [117].

4.5. Luteolin

Luteolin, 3′,4′,5,7-tetrahydroxyflavone, is found in a variety of vegetables, fruits, and medic‐
inal herbs. Luteolin has been shown to function as an anti-oxidant, anti-inflammatory, and
anti-cancer agent [118]. Additionally, luteolin induces cell cycle arrest and apoptosis in the
liver and lung cancer cell lines [119, 120]. Lim do et al. indicated that luteolin inhibited HT-29
cell proliferation by inducing cell cycle arrest and apoptosis [121]. Luteolin exerts toxic effects
on colon cancer cells by inhibiting both S1P biosynthesis and ceramide traffic, inhibiting Akt
activation [122]. The supplementations of luteolin in addition to aspirin in the treatment of
DMH-induced carcinogenesis in rats reflect a better effect than the use of aspirin alone [123].
Luteolin suppresses both iNOS and COX-2 expressions and plays an anti-inflammatory role
during the administration of azoxymethane in mice [124]. Luteolin decreased the expressions
of β-catenin, phospho GSK-3-β, and cyclin D in HCT-15 cells. Luteolin also promoted cell cycle
arrest at the G2/M phase and induced apoptosis in HCT-15 cells. Furthermore, Western blot
analysis showed that luteolin treatment enhanced the expression of Bax and caspase-3,
whereas the expression of Bcl-2 was suppressed [125].

4.6. Epigallocatechin gallate (EGCG)

EGCG, which is green tea polyphenol, inhibits the activity of FASN [126, 127]. EGCG induces
apoptosis in human breast and prostate cancer cells [128–130]. It is also the major biologically
active component that inhibits cell proliferation and induces apoptosis in HCT-116 and SW-480
human CRC cells [131]. EGCG suppresses FASN expression and downstream PI3K/Akt
pathway [132]. EGCG activates stress signals, such as c-Jun N-terminal kinase (JNK) and p38
mitogen-activated protein kinase (MAPK), and induces apoptosis in CRC cell lines [131].
EGCG has also been reported to inhibit the growth of human CRC cells in subcutaneous
xenograft models [133–135]. Maruyama et al. revealed that EGCG strongly reduces liver
metastasis of human CRC in SCID mice [136].

Epidemiologically, green tea consumption of >10 cups daily reduced CRC risk in Japanese
[137]. A double-blind, placebo-controlled study with green tea in Italian patients showed a
successful prevention of prostate cancer. The progression of prostate cancer in men with high-
grade prostate intraepithelial neoplasia, the main premalignant lesion of prostate cancer, was
significantly prevented by oral administration of green tea catechins, 600 mg/d for 1 year [138].
Shimizu et al. conducted a randomized trial to determine the preventive effect of green tea
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extract (GTE) supplements on metachronous colorectal adenomas by raising green tea
consumption in the target population from an average of 6 cups (1.5 g GTE) daily to 10 cups
equivalent (2.5 g GTE) by supplemental GTE tablets. To 136 patients with colorectal polyp
resection, they performed colonoscopy to confirm no polyps in the colorectum 1 year later.
Then they randomized into two groups, i.e., GTE group and control group. The incidence of
metachronous adenomas at the endpoint colonoscopy was 31% (20 of 65) in the control group
and 15% (9 of 60) in the GTE group (relative risk, 0.49; 95% confidence interval, 0.24–0.99; P <
0.05). The size of relapsed adenomas was also smaller in the GTE group than in the control
group (P < 0.001). No serious adverse events occurred in the GTE group. They concluded that
GTE is an effective supplement for the chemoprevention of metachronous colorectal adenomas
[137]. The multicenter RCT trial to investigate EGCG for reducing colon polyp recurrence in
elderly people was performed, which was called minimizing the risk of metachronous
adenomas of the colorectum with GTE (MIRACLE). The clinical trial was a randomized,
placebo-controlled, multicenter trial to investigate the effect of diet supplementation with GTE
containing 300 mg of EGCG on the recurrence of colon adenomas. Patients who had undergone
polypectomy for colonic polyps were randomized to receive either GTE containing 150 mg of
EGCG two times daily or a placebo over the course of 3 years. Incidence, number, and histology
of adenoma at endpoint colonoscopy at 3 years will be compared in both groups [139].

4.7. Triclosan

Triclosan has the U.S. Food and Drug Administration approval as a bactericide in personal
hygiene products (toothpaste, mouth rinse, hand wash, soaps, and deodorant) and has been
used since 1968 [77]. Triclosan has an established safety profile with minimal toxicity in rats,
dogs, baboons, and humans; no significant weight loss is associated with triclosan treatment;
and triclosan is not a genotoxic or mutagenic compound [77]. Triclosan has excellent oral
bioavailability and stability in plasma [140]. Triclosan also acts as a FASN inhibitor to inhibit
enoyl reductase of FASN [141], and it showed chemo-preventative activity in a rat mammary
carcinogenesis model [142]. Similarly, treatment of male rats with triclosan did not induce
significant changes in body weight at any of the test doses [143]. Recently, Sadowski et al.
evaluated triclosan as a repurposed drug against prostate cancer cells and compared its activity
to C75 and orlistat, two well-known FASN inhibitors [77, 144]. In this comparative study,
Sadowski et al. discovered that triclosan is a superior alternative to C75 and orlistat in inducing
cell death of prostate cancer cells through inhibition of FASN [77].

4.8. Capsaicin

Capsaicin (trans-8-methyl-N-vanillyl-6-non-enamide) is the major component in hot chili
peppers and several types of red peppers of the genus Capsicum. It constitutes approximately
40–60% of the six natural capsaiciniod contents of this herb [145, 146]. It is commonly and
frequently consumed worldwide as a spice, food additive, and as a drug for traditional
medications. Capsaicin is a specific and potent anti-carcinogenic agent through the apoptosis
pathway in both in vitro and in vivo cancer models, whereas it does not induce cytotoxicity
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in normal cells [147–151]. Impheng et al. revealed that capsaicin also acts as FASN inhibitor
[78]. Capsaicin decreased FASN expression and inducing apoptosis in HepG2 cells. The
lipogenic enzyme FASN, not ACC and ACLY, is proposed to be the particular target of
capsaicin to induce apoptosis in HepG2 cells. This study also suggests that an accumulation
of malonyl-CoA, as a result of a reduction of fatty acid synthesis, is a critical proapoptotic factor
that inhibits CPT-1 activity, leading to accumulation of ceramide which in turn induces
apoptosis [78].

4.9. Curcumin

Curcumin is a hydrophobic polyphenol derived from the rhizome of Curcuma longa. It
possesses various pharmacological activities, such as respiratory conditions, inflammation,
liver disorders, diabetic wounds, and certain tumors [152]. Curcumin has chemopreventive
and therapeutic properties against many tumors in both in vitro and in vivo models [153–
158]. Curcumin suppresses cell proliferation and inflammation, induces apoptosis, and
sensitizes tumor cells to cancer therapies, and it also suppresses invasion, angiogenesis, and
metastasis of cancer cells [159]. It was found that curcumin showed both fast-binding and slow-
binding inhibitions to FASN in vitro. Curcumin inhibited FASN with an IC50 value of 10.5
μg/ml non-competitively with respect to NADPH and partially competitively against both
substrates Ac-CoA and Mal-CoA [160]. Compared with the known FASN inhibitors14, C75
and EGCG, curcumin was generally more potent [126]. Curcumin-induced HepG2 cell
apoptosis by inhibiting intracellular FASN activity and down-regulating FASN expression and
mRNA level. Sodium palmitate-rescued, curcumin-induced apoptosis in HepG2 cells con‐
firmed that apoptosis related to inhibition of FASN [79].

4.10. Newly developed agents

TVB-3567 [80] and TVB-3166 [81] are newly developed FASN inhibitors provided from 3-V
Biosciences, which inhibit many kinds of cancer cell lines, such as CRC cell lines, COLO-205,
and HT-29 [81]. GSK2194069 was identified from a high-throughput screen of the GSK
compound collection, and this agent inhibits cell growth of A549 cells [82].

4.11. Conclusion of FASN inhibitors

Several studies have shown in vitro and in vivo anti-tumor activity of FASN inhibitors. This
chapter shows that many FASN inhibitors are being examined for in vitro and in vivo anti-
tumor activity of CRC. In addition, one of the FASN inhibitors, EGCG, has moved on to clinical
trials aimed at preventing Colon polyp recurrence, which indicates the safety of monoterpenes
for clinical use. Other FASN inhibitors are effective in in vitro/in vivo researches, and the
clinical trials of using these reagents are expected, but still need more research. Newly
developed agents, such as TVB-3166, TVB-3567, and GSK2194069, are expected to become new
candidates for chemotherapeutic agents against unresectable cancers.
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