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Abstract

Adakite was originally proposed as a genetic term to define intermediate to high silica,
high Sr/Y and La/Yb volcanic  and plutonic  rocks derived from melting of  young,
subducted  lithosphere.  However,  most  volcanic  rocks  in  modern  island  arcs  and
continental arcs are probably derived from melting in the mantle wedge. Trace element
chemistry with high Sr/Y ratios is a distinguishing characteristic of adakites. Ordovi‐
cian and Carboniferous volcanic/plutonic rocks with high Sr/Y ratios occur in Central
Inner Mongolia, which is situated on the southern margin of the Central Asian Orogenic
Belt  (CAOB).  The  samples  are  mostly  granodiorite,  tonalite  and  quartz-diorite  in
composition with intermediate to high-silica, high Na2O (3.08–4.26 wt.%), low K2O
(0.89–2.86 wt.%) and high Na2O/K2O and Sr/Y ratios. Their chondrite-normalized REE
patterns are characterized by LREE enrichment. In mantle-normalized multi-element
variation diagrams, they show typical negative Nb anomalies, and all samples display
positive εHf(t) and εNd(t) values, and low ISr. The Ordovician rocks, however, show higher
Sr/Y  and  La/Yb  ratios  than  the  Carboniferous  samples,  implying  that  the  older
granitoids represent adakitic granitoids, and the Carboniferous granitoids are typical
subduction-related arc granitoids but also with adakite-like compositions. The results
are compatible with the view that the Central Asian Orogenic Belt (CAOB) in Inner
Mongolia  evolved through operation of  several  subduction systems with different
polarities:  an  early-middle  Paleozoic  subduction  and  accretion  system  along  the
northern margin of the North China Craton and the southern margin of the Mongo‐
lian terrane, and late Paleozoic northward subduction along the northern orogen and
exhumation of a high-pressure metamorphic terrane on the northern margin of the
North China Craton.

Keywords: Adakitic, Ordovician and Carboniferous, Geochemistry, Hf-in-zircon iso‐
topes, Central Inner Mongolia, CAOB
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1. Introduction

It is generally agreed that the Solonker suture zone represents the southernmost termination
of the Central Asian Orogenic belt (CAOB; [1–5]). However, there are a lot of controversies
about the timing of the amalgamation of the Central Asian Orogenic belt with continental
blocks to the south [1–9]. It is still debated whether the CAOB evolved through subduction
and accretion of a single, long-lasting, subduction system [10] or through several subduc‐
tion systems with different polarities and through collision/accretion of arcs and microconti‐
nents [11–15].

Adakite was originally proposed as a genetic term to define intermediate to high-silica, high
Sr/Y and La/Yb volcanic and plutonic rocks derived from melting of young, subducted
lithosphere [16]. However, most volcanic rocks in modern island arcs and continental arcs are
probably derived from melting in the mantle wedge [17]. Trace element chemistry with high
Sr/Y ratios is a distinguishing characteristic of adakites [16, 18]. Ordovician and Carboniferous
volcanic/plutonic rocks with high Sr/Y ratios occur in Central Inner Mongolia, which is situated
on the southern margin of the Central Asian Orogenic Belt (CAOB, [19]). Early Paleozoic [6–
9, 20–22] and Late Paleozoic [2–4, 23] arc volcanism/plutonism as part of trench-island arc-
basin systems occurred along the southern margin of South Mongolian microcontinent and
the northern margin of North China Craton, suggesting concurrent two-way subduction
towards opposing continental margins. The chapter focuses on early and late Paleozoic
volcanic/plutonic rocks with high Sr/Y ratios in Central Inner Mongolia, and contributes
geochemical data to the evolution of the CAOB.

2. Geotectonic situation

Central Asian Orogenic Belt (CAOB, [19]) is a giant accretionary orogen [15], bounded by the
Siberian, Tarim and North China Craton ([19, 24]; Figure 1), and reflects a complex evolution
from the late Mesoproterozoic to late Palaeozoic [1, 6, 8, 14, 26, 27].

In Central Inner Mongolia and adjacent southern Mongolia, the Solonker suture zone can be
traced for ca. 1000 km by dismembered ophiolite fragments (Figure 1) and represents a major
paleo-plate boundary in Central Asia that stretches northeastwards for more than 2500 km in
Mongolia and China [28]. It has been variably interpreted as the southernmost limit of the
Altaids ([10]) or the southernmost termination of the CAOB [1]. The Solonker suture zone
separates two continental blocks (Figure 1) [3]. The Northern Block consists of the Southern
Mongolia (or Hutag Uul) block (gneissic granite, 1784 ± 7 Ma, Shi et al., unpublished data) and
the Northern Orogen, which includes metamorphic complex (an orthogneiss has a zircon age
of 437 ± 3 Ma, [29]), an ophiolitic mélange with blueschist, a near-trench granitoid (ca. 498–461
Ma) and a juvenile arc (ca. 484–469 Ma, [3]). The Southern Block comprises the southern orogen
and the northern margin of the North China Craton.
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Figure 1. Geological sketch map of the southeastern CAOB (the inset map of Figure 1A compiled after [19]; Figure 1B
after [3, 25]). In Figure 1B, the Solonker suture zone represents the tectonic boundary between the northern and the
southern continental blocks [3].
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Paleozoic volcanic rocks and granitoids are widely distributed along the margin of the
Solonker suture zone. Ordovician granitoids (quartz-diorite, granodiorite, diorite, tonalite,
and trondjemite; Table 1 and Figure 2) occur in the northern and southern orogen [7, 8, 20, 21,
42, 43]; Figure 1), whereas Carboniferous volcanic rocks and granitoids (quartz-diorite,
granodiorite, tonalite, and granite; Table 1 and Figure 2) are mainly distributed in the northern
orogen ([2, 23, 30, 31, 35, 37, 38, 40, 41]; Figure 1), and scattered along the northern margin of
the North China Craton [44, 45]. The geochemical data of representative rocks are listed in
Table 2.

Unit Episode Lithology Zircon
age (Ma)

Method εHf(t)
(Zircon)

εNd(t)
(Whole rock)

Initial 87Sr/86Sr
(whole rock)

Reference

Northern
Orogen

Ordo
vician

Quartz diorite 490 ± 8 SHRIMP [23]

Tonalite 479 ± 8 SHRIMP +1.5 0.7053 [7]

Quartz diorite 475 ± 6 SHRIMP [7]

Granodiorite 472 ± 3 SHRIMP +7.4 to
+10.7

+2.2 0.7060 This study

Tonalite 464 ± 8 SHRIMP +1.4 0.7053 [7]

Carboni
ferous

Tonalite 329 ± 3 SHRIMP +5.1 0.7043 This study

Quartz diorite 325 ± 3 SHRIMP [30]

Quartz diorite 323 ± 4 SHRIMP [31]

Quartz diorite 322 ± 3 SHRIMP [30]

Monzogranite 322 ± 1 LA-ICP-MS +10.6 to
+14.0

[32]

Quartz diorite 320 ± 3 SHRIMP +8.1 to
+12.3

+2.1 0.7051 This study

Granodiorite 320 ± 8 SHRIMP +1.0 0.7055 This study

Andesite 320 ± 7 SHRIMP [33]

Granite 319 ± 4 LA-ICP-MS [34]

Granodiorite 319 ± 3 SHRIMP [35]

Basalt 318 ± 3 LA-ICP-MS [4]

Granite 317 ± 2 LA-ICP-MS [36]

Garnet
bearing
granite

316 ± 3 SHRIMP [29]

Granodiorite 316 ± 1 LA-ICP-MS +3.0 to
+12.6

[32]

Quartz diorite 315 ± 4 SHRIMP [31]

Basalt 315 ± 4 LA-ICP-MS [4]

Monzonitic
granite

314 ± 2 LA-ICP-MS [37]

Quartz diorite 313 ± 5 SHRIMP [31]

Granodiorite 312 ± 1 LA-ICP-MS [38]
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Unit Episode Lithology Zircon
age (Ma)

Method εHf(t)
(Zircon)

εNd(t)
(Whole rock)

Initial 87Sr/86Sr
(whole rock)

Reference

Monzonitic
diorite

312 ± 4 SHRIMP [39]

Diorite 311 ± 2 SHRIMP [35]

Gabbroic diorite 310 ± 5 SHRIMP +5.4 to
+11.5

+2.5 0.7052 [2]

Quartz diorite 310 ± 2 SHRIMP [35]

Volcanic rock 310 ± 1 LA-ICP-MS [38]

Quartz diorite 309 ± 8 SHRIMP −0.2 0.7056 [23]

Volcanic rock 309 ± 2 LA-ICP-MS [40]

Monzonitic
granite

308 ± 2 LA-ICP-MS [36]

Monzonitic
granite

307 ± 2 SHRIMP [41]

Volcanic rock 307 ± 6 LA-ICP-MS [40]

Rhyolite 303 ± 6 SHRIMP [33]

Mongolia
Hutag Uul

Gneissic granite 1784 ± 7 SHRIMP Shi et al.,
unpub
lished

Granodiorite 454 ± 10 SHRIMP Shi et al.,
unpub
lished

Southern
Orogen

Ordo
vician

Tonalite 491 ± 8 SHRIMP +5.2 0.7047 [8]

Diorite 472 [42]

Dacite 459 ± 8 SHRIMP [43]

Dacite 458 ± 3 SHRIMP +7.1 0.7058 [8]

Quartz diorite 454 ± 4 SHRIMP +2.0 0.7056 [8]

Diorite 452 ± 3 SHRIMP [8]

Trondjemite 451 ± 7 SHRIMP [43]

Granodiorite 450 [42]

Northern
margin
of NCC

Carboni
ferous

Biotite K-
feldspar
granite

342 ± 5 SHRIMP [44]

Quartz diorite 324 ± 6 SHRIMP [45]

Quartz diorite 311 ± 2 SHRIMP [45]

Granodiorite 310 ± 5 SHRIMP [45]

Quartz diorite 302 ± 4 SHRIMP [45]

Ophiolitic
block

Erlianhot-
Hegenshan

Gabbro 354 ± 7 SHRIMP +9.8 0.7043 [3]

Gabbro 298 ± 9 SHRIMP +8.1 0.7037 [25]

Jiaoqier- Gabbro 483 ± 2 SHRIMP [8]
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Unit Episode Lithology Zircon
age (Ma)

Method εHf(t)
(Zircon)

εNd(t)
(Whole rock)

Initial 87Sr/86Sr
(whole rock)

Reference

Xilinhot

Solonker-
Linxi

Trondjemite 324 ± 3 SHRIMP +8.4 0.7039 [3]

Plagiogranite 288 ± 6 SHRIMP +7.8 0.7039 [3]

Gabbro 284 ± 4 SHRIMP +6.8 0.7043 [3]

Wenduer
miao-Xar
Moron

Gabbro 480 ± 3 SHRIMP +9.2 0.7059 [8]

Table 1. Summary of zircon ages, Hf isotopic data and whole-rock Sr-Nd isotopic data.

Figure 2. Cumulative plot for zircon U-Pb ages of Ordovician and Carboniferous rocks from Central Inner Mongolia
(data and references are in Table 1). A for rocks from the Northern Block, which consists of the Southern Mongolia (or
Hutag Uul) block and the northern orogen; and B for rocks from the Southern Block, which is composed of the north‐
ern margin of North China Craton and the southern orogen [3].
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Sample MS02-7 MB1-3 MS3-5 MB1-6 MB1-1 MB1-5 MB1-2 MB1-4

Lithology Tonalite Granodiorite Tonalite Tonalite Granodiorite Quartz-diorite Granite Granite

Age (Ma) 479 ± 8 472 ± 3 464 ± 8 329 ± 3 ca. 320 320 ± 3 297 ± 2 --

SiO2 61.13 67.37 61.62 61.98 66.47 54.96 75.19 71.94

TiO2 0.42 0.25 0.41 0.59 0.43 0.68 0.18 0.17

Al2O3 17.05 16.31 16.56 16.22 15.63 18.80 13.76 15.68

TFe2O3 5.88 3.68 5.62 5.82 4.17 7.98 1.92 1.30

MnO 0.14 0.08 0.14 0.08 0.06 0.12 0.02 0.02

MgO 2.34 1.14 2.27 2.95 1.69 3.65 0.70 0.47

CaO 5.69 3.91 5.78 4.93 3.43 6.25 0.39 1.54

Na2O 3.56 4.26 3.08 3.22 3.37 3.14 3.92 5.47

K2O 1.34 1.37 1.74 1.49 2.86 0.89 2.62 2.89

P2O5 0.19 0.12 0.18 0.16 0.14 0.22 0.09 0.11

LOI 1.84 1.40 2.78 2.48 1.81 2.95 1.32 0.73

TOTAL 99.58 99.89 100.18 99.92 100.06 99.64 100.11 100.32

Na2O/K2O 2.66 3.11 1.77 2.16 1.18 3.53 1.50 1.89

Sc 12.8 5.60 13.4 17.1 9.5 20.0 2.69 0.60

V 115 64 107 123 83 151 33.9 25.1

Cr 20.44 5.0 79.5 45 21 26 8.8 8.1

Co 12.1 6.0 10.6 17.3 10.7 21.8 3.23 2.80

Ni 10.3 3.6 18 29.1 11.4 19.8 7.0 3.9

Cu 5.4 9.1 6.2 38.7 10.3 51.4 23.0 15.8

Zn 51.5 39.2 49.5 55.9 42.7 87.8 18.3 30.9

Ga 16.5 17.4 16.3 16.9 16.1 19.4 12.7 18.1

Ge 1.38 1.48 1.42 1.45 1.17 1.28 1.21 0.78

Rb 32.26 51.1 42.09 69.08 96.9 24.05 99.6 66.5

Sr 649 711 604 304 373 473 198 581

Zr 84.8 78.3 81.9 149.4 171 52.6 75.1 104.4
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Sample MS02-7 MB1-3 MS3-5 MB1-6 MB1-1 MB1-5 MB1-2 MB1-4

Lithology Tonalite Granodiorite Tonalite Tonalite Granodiorite Quartz-diorite Granite Granite

Age (Ma) 479 ± 8 472 ± 3 464 ± 8 329 ± 3 ca. 320 320 ± 3 297 ± 2 --

Nb 3.64 4.73 3.2 5.23 6.20 4.96 6.12 1.96

Cs 0.55 0.794 0.8 1.25 1.12 1.54 1.82 1.27

Ba 685.0 471.8 862.4 241.8 687.1 173.8 487.8 511.8

Hf 2.43 2.09 2.43 3.59 4.50 1.33 2.18 2.88

Ta 0.24 0.26 0.23 0.45 0.55 0.25 0.61 0.19

Th 3.78 10.46 2.76 5.83 11.26 0.49 11.83 2.31

U 1 1.48 1.05 1.277 2.16 0.264 0.58 1.11

La 10.92 25.5 7.35 14.67 19.3 9.45 8.91 5.41

Ce 22.7 49.3 17.01 29.3 37.9 20.9 28.4 14.3

Pr 2.85 4.58 2.11 3.78 4.23 2.63 1.97 1.25

Nd 11.85 15.8 9.03 16.2 16.2 11.6 7.12 5.11

Sm 2.67 2.19 2.32 3.63 3.09 2.61 1.33 1.00

Eu 0.84 0.61 0.77 1.00 0.81 0.88 0.32 0.38

Gd 2.57 2.09 2.26 3.84 2.81 2.72 1.45 0.93

Tb 0.42 0.23 0.38 0.64 0.40 0.42 0.22 0.11

Dy 2.39 1.32 2.26 3.77 2.31 2.54 1.46 0.72

Ho 0.52 0.26 0.51 0.87 0.48 0.53 0.33 0.12

Er 1.52 0.78 1.39 2.32 1.29 1.41 0.95 0.35

Tm 0.25 0.12 0.23 0.39 0.20 0.22 0.16 0.038

Yb 1.64 0.95 1.61 2.61 1.42 1.50 1.18 0.37

Lu 0.27 0.15 0.28 0.44 0.24 0.24 0.18 0.028

Y 16.2 9.1 14.5 27.0 14.1 16.9 11.1 4.68

La/Yb 6.7 26.8 4.6 5.6 13.6 6.3 7.6 14.6

Sr/Y 40 78 42 11 27 28 18 124

Table 2. Major oxide (wt.%) and trace element (ppm) composition of representative samples.
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Figure 3 shows the photographs of field occurrences and photomicrographs of some repre‐
sentative samples. Figure 3A was taken from Central Inner Mongolia to show the beautiful
landscape; Figure 3B shows the Carboniferous volcanic rocks which are located in the Southern
Block.

Granodiorite sample MB1-3 (Figure 3C and 3D), collected from Baiyinbaolidao, southern
Sonidzuoqi, which is located in the Northern Block, is medium-grained, foliated and consists
of plagioclase (45–50 vol.%), quartz (20–25%), K-feldspar (10–15), biotite (5–10%), hornblende
(1–5%), accessory zircon, apatite and sphene. Plagioclase is partially epidotized, sericitized
and biotite grains are chloritized.

Figure 3. Photographs to show field occurrences and photomicrographs of some representative samples.

Tonalite sample MB1-6 (Figure 3E and 3F), which is also collected from Baiyinbaolidao,
Southern Sonidzuoqi, is medium-grained and consists of plagioclase (60–65%), quartz (20–
25%), hornblende (10–15%) and biotite (1–5%) with trace amounts of zircon, apatite and
sphene. Plagioclase is partially epidotized, and biotite grains are chloritized.
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3. Petrogenesis of the Ordovician and Carboniferous volcanic rocks and
granitoids

The Ordovician granitoid samples have intermediate to high-silica (61.13–67.37 wt.%), high
Al2O3 (mostly >15 %), higher Na2O than K2O (Na2O > K2O, Na2O/K2O = 1.77–3.11), low MgO
(<3%), low HREE (Figure 4), depleted HFSE (Figure 5), Y and Yb (Y < 18 ppm, Yb < 1.9 ppm),
high Sr (604–711 ppm), Sr/Y mostly >40 (40.1–78.1) (Table 2; Figure 6) and low ISr with positive
εNd(t) isotope ratios (Table 1; Figure 7). The Ordovician granitoid samples therefore represent
adakitic compositions ([16, 48]; Table 3).

Figure 4. Chondrite (CHON)-normalized REE patterns for representative samples (grey fields show data from [7, 8, 43]
for Ordovician granitoids; and from [23, 30, 32, 34, 36, 37] for Carboniferous granitoids). Chondrite values are from
[46].
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Figure 5. N-MORB-normalized trace element variation diagrams for representative samples (grey fields show data
from [7, 8, 43] for Ordovician granitoids; and from [23, 30, 32, 34, 36, 37] for Carboniferous granitoids). N-MORB val‐
ues are from [47].
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Figure 6. Y vs. Sr/Y plot showing adakitic rocks (after [18]) (data from [7, 8, 43] for Ordovician rocks; and from [23, 30,
32, 34, 36, 37] for Carboniferous rocks).

Figure 7. ISr vs. εNd(t) for some typical Ordovician and Carboniferous rocks with high Sr/Y ratio from Central Inner
Mongolia (data from [8, 23]).
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  Ada
kites 

MS02-7
Tona
lite 

MB1-3
Grano
diorite 

MS3-5
Tona
lite 

Oceanic
arc
granites 

Active
continental
margin arc
granites 

MB1-6
Tona
lite 

MB1-1
Grano
diorite 

MB1-5
Quartz-
diorite 

Ada
kitesa 

Cook
islandb 

Cerro
Pampac 

Omand Little
Portd 

Jamaicad Chiled 

SiO2

(%) 
≥56.0  61.4  62.6  61.13  67.37  61.62  70.1  69.5  68.4  74.5  61.98  66.47  54.96 

Al2O3

(%) 
≥15.0  18.4  17.3  17.05  15.68  16.56  12.0  14.60  14.44  12.52  16.22  15.63  18.80 

Na2O
/K2O 

>1.00  7.75  3.82  2.66  3.11  1.77  15.75  4.37  1.18  0.65  2.16  1.18  3.53 

MgO
(%) 

<3  2.34  1.14  2.27  2.95  1.69  3.65 

Y
(μg/g) 

≤18.00  6  16.2  9.1  14.5  44  19  10  30  27.0  14.1  16.9 

Yb
(μg/g) 

≤1.90  0.85  0.72  1.64  0.15  1.61  4.54  1.37  3.12  2.61  1.42  1.50 

Sr
(μg/g) 

>400  1910  1886  649  711  604  200  274  210  93  304  373  473 

Sr/Y  >20  319  40  78  42  4.6  14.4  21.0  3.1  11  26  28 

Sr
ano
maly 

Posi
tive 

Posi
tive 

Posi
tive 

Posi
tive 

Posi
tive 

Posi
tive 

Posi
tive 

Posi
tive 

Eu
no
maly 

Posi
tive
or
weakly
nega
tive 

Weakly
nega
tive 

Nega
tive 

Posi
tive 

Nega
tive 

Nega
tive 

Weakly
posi
tive 

Age
(Ma) 

<25 Ma <24 Ma  ca. 12
Ma 

479
± 8 

472
± 3 

464
± 8 

        329
± 3 

ca.
320 

320
± 3 

a [16, 49].
b Cook island adakites [50].
c Cerro Pampa adakites [51].
d [52].

Table 3. The comparison of geochemical characteristics between the rocks from Central Inner Mongolia, the typical
adakitic and arc rocks.
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The genesis of adakites is extensively debated, and there are four proposed origins, namely
partial melting of young subducted lithosphere [16], melting of newly underplated lower
continental crust [53], differentiation of a parental basaltic magma [54, 55] and melting of
foundered mafic lower continental crust [56]. High-Al, high Na2O and calc-alkaline adakites
are generally interpreted to have formed due to the melting of subducted oceanic crust and
are different from high-K, high total alkali (Na2O + K2O) and low Al2O3 adakites that form
through melting of thickened basaltic lower continental crust [16, 51, 53, 57–60].

The Inner Mongolian Ordovician granitoids of this study have depleted HREE, Nb, positive
Sr anomalies, low Y and Yb contents and positive to weakly negative Eu anomalies. These
characteristics are consistent with the loss of plagioclase and the presence of garnet as residual
phases, probably related to partial melting of the source material under eclogite-facies
conditions [61, 62]. The petrology and geochemistry of the Ordovician adakitic granitoids
indicate a contribution from melting of subducted oceanic crust in their formation rather than
melting of thickened basaltic lower continental crust.

The Carboniferous samples in this area have intermediate to high-silica (54.96–66.47 wt.%),
high Al2O3 (15.63–18.80 %), higher Na2O than K2O (Na2O > K2O, Na2O/K2O = 1.18–3.53), low
HREE (Table 2; Figure 4), and with low ISr (0.7043–0.7060), positive εNd(t) (+1.0 to +5.1) and
εHf(t) (+8.1 to +12.3) isotope ratios (Table 1; Figures 7 and 8). However, most of them have
lower Sr and Sr/Y ratio than those of Ordovician adakitic granitoids in this area (Table 2;
Figure 6), which are typical subduction-related arc granitoids [52, 63, 64] although still with
adakite-like compositions [16, 48].

Figure 8. U-Pb age vs. εHf(t) for zircons from (data from [2], and [32] for Carboniferous granitoids).
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4. Geodynamic significance of the Ordovician and Carboniferous volcanic
rocks and granitoids

A subduction-accretion complex usually forms along a convergent plate boundary where an
oceanic plate subducts beneath another oceanic or continental plate [65]. Early Paleozoic arc
plutonism as part of trench-island arc-basin systems ([6, 8, 21, 22]; Table 2) occurred in the
southern orogen, along the northern margin of the North China Craton, and late Silurian
molasse deposits unconformably overlie these rocks [6, 66]. Coeval adakitic plutonism is
emplaced in the northern orogen, along the southern margin of the Mongolian terrane [20].
Silurian high-pressure metamorphic rocks [67] and Silurian syncollisional magmatism in the
northern orogen along the Solonker suture [68] were also reported. All these features indicate
an early-middle Paleozoic subduction and accretion system along the northern margin of the
North China Craton and the southern margin of the Mongolian terrane. After demise of the
ocean in the southern orogen, caused by subduction of a ridge crest and by ridge collision with
supra-subduction zone ophiolite in the Silurian [8], the southern orogen became tectonically
consolidated and turned into a post-orogenic setting [69].

There has been some debate about whether the Carboniferous calc-alkaline granitoids formed
in a subduction zone [23, 30] or in a late- to post-orogenic setting [31]. Carboniferous calc-
alkaline plutonic rocks (ca. 328–308 Ma) in the northern orogen were suggested by [2, 23, 30]
as subduction genesis, which can be related to the northward subduction of Asian ocean slab.
Bao et al. [31], however, thought these Carboniferous granitoids formed in a Late Paleozoic
rift area because of Permian bimodal volcanic rocks. These Carboniferous granitoids include
variably foliated gabbro, diorite, quartz diorite, granodiorite, tonalite and granite [23, 30],
which belong to low-K tholeiitic and calk-alkaline series, and are enriched in large ion
lithophile elements (LILE) and depleted in high field strength elements (HFSE) [2, 23, 30], low
ISr, positive εNd(t) and εHf(t) isotope ratios ([23]) showing subduction-related arc granitoids
characteristics [52, 63, 64].

Additionally, a subduction-accretion complex was identified from previously defined late
Carboniferous and early Permian strata in the Daqing pasture, southern Xiwuqi, Inner
Mongolia [4]. In addition to this subduction-accretion complex, most magmatic rocks are
considered to have formed in a subduction setting [23, 30], and the spatial configuration of
both geological units indicates that the subduction polarity was from south to north [4] along
the northern orogen.

Carboniferous granitoids on the northern margin of North China craton also have the com‐
position of tholeiitic and calk-alkaline island-arc rocks and adakitic compositions [45],
however, low negative whole-rock εNd(t) and zircon εHf(t) isotope ratios indicate that they were
derived mainly from anatectic melting of the ancient lower crust with some involvement of
mantle materials [70]. The Carboniferous plutons were interpreted as subduction-related and
emplaced in an Andean-style continental-margin arc [70].

On the northern margin of the North China craton, however, Carboniferous eclogites are
exposed at least 200 km south of the Solonker suture zone and have tholeiitic protoliths (MORB
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and IAT), and eclogite-facies metamorphism reflects deep subduction of oceanic lithosphere
[71]. The granitoids (330–298 Ma) of this area were emplaced and deformed during, and/or
shortly after eclogite-facies metamorphism (ca. 331–319 Ma) [71]. This close temporal rela‐
tionship indicates that magmatism closely followed the exhumation of the high-pressure
metamorphic terrane [3].

5. A possible model for the discrete evolution of CAOB

The southeastern CAOB was formed by the concurrent two-way subduction of Paleo-Central
Asian Ocean towards opposing continental margins in the early Paleozoic (Figure 9A). In the
south is an arc-trench complex, which can be regarded as an analogue of the Izu-Bonin-
Mariana arc [72], and in the north a product of ridge-trench interaction [8]. In the late Paleozoic,
however, Andean-type orogenesis was induced by subduction of Central Asian Ocean beneath
either the northern (e.g. [4]) or southern (e.g. [45]) continental blocks (Figure 9B). Plutonic
magmatism [45] was accompanied by exhumation of a high-pressure metamorphic terrane
[71] in the south; and a subduction-accretion complex [4], together with most arc-related
magmatic rocks [23, 30] was formed along the northern orogen.

Figure 9. A possible model for Ordovician and Carboniferous evolution of Central Inner Mongolia. Abbreviation:
NCC, North China Craton; SMB, South Mongolia Block; MB, Mongolia Block.

6. Modern equivalent

6.1. Cook Island and Cerro Pampa adakites

Cenozoic andesitic to dacitic rocks collected from Cerro Pampa [51] and andesites from Cook
Island [50] have intermediate to high-silica, high Al2O3, higher Na2O than K2O, low HREE,
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depleted HFSE, Y and Yb, high Sr, and high Sr/Y ratios (Table 3), and low ISr with positive εNd
isotope ratios. The samples, therefore, represent adakites [50, 51]. Cerro Pampa adakitic
magmas formed in response to melting of hot slab that was subducting beneath South America
[51], and similar petrogenesis for the Austral Volcanic Zone adakites [50]. Ordovician adakitic
rocks from Central Inner Mongolia show similar petrogenesis and geotectonic setting with the
Cenozoic adakites from Cook Island [50], Cerro Pampa [51] and Aleutian arc [16].

6.2. Oman and Chile volcanic arc granites

Volcanic arc granites from Oman and Chile have high-silica, intermediate Al2O3, low HREE
[52] (Table 3), and with low Sr and Sr/Y ratios than the adakites (Table 3), which are typical
subduction-related arc granitoids derived from melting in the mantle wedge. Most Carbonif‐
erous volcanic rocks and granitoids present similar petrogenesis and geotectonic setting with
the Cenozoic subduction-related arc granitoids.

7. Conclusions

1. The Ordovician and Carboniferous volcanic rocks and granitoids are mostly intermediate
to high-silica, high Na2O/K2O ratio, high Sr/Y ratios. They are characterized by LREE
enrichment and exhibit typical negative Nb anomalies. All samples show positive εHf(t),
εNd(t) values and low ISr.

2. The Ordovician rocks show higher Sr/Y ratio than the Carboniferous rocks, suggesting
that the former represent adakitic rocks and the latter are typical subduction-related arc
rocks with adakite-like compositions.

3. The Central Asian Orogenic Belt evolved through several subduction systems with
different polarities in Central Inner Mongolia, namely an early-middle Paleozoic subduc‐
tion and accretion system along the northern margin of the North China Craton and the
southern margin of the Mongolian terrane, and late Paleozoic northward subduction
along the northern orogen and exhumation of a high-pressure metamorphic terrane on
the northern margin of the North China Craton.
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